2nd Problem Set for Advanced Quantum Mechanics winter term 2008

Problem 4 (Spin and density matrix)

(2 Points)
The spin state of an electron is represented on \mathbb{C}^{2} (in the basis formed by the eigenstates of \hat{S}_{z}) by the density matrix

$$
\rho:=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

$a, b \in \mathbb{R}, a \geq 0, b \geq 0, a+b=1$.
a) If a measurement is made of the $\operatorname{Spin} \hat{S}_{x}$ what is the probability that the result will be (i) $\hbar / 2$
(ii) $-\hbar / 2$?
b) Use these results to compute the expectation value of \hat{S}_{x}, and check that the answer agrees with the result calculated directly from the formula $\langle\hat{A}\rangle=\operatorname{tr}(\hat{\rho} \hat{A})$.

Problem 5 (Convexity of density matrices)

Let $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ be a pair of density matrices. Show that $r \hat{\rho}_{1}+(1-r) \hat{\rho}_{2}$ is a density matrix for all $r \in \mathbb{R}$ such that $0 \leq r \leq 1$.

Problem 6 (Legendre polynomials)

The Legendre polynomials $P_{l}(x)$ can be defined by a generating function according to

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} P_{l}(x) t^{l} \tag{1}
\end{equation*}
$$

Prove from this equation by use of the Taylor formula the Rodrigues formula

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \tag{2}
\end{equation*}
$$

Show also that

$$
\int_{-1}^{1} P_{l}(x) P_{k}(x) d x= \begin{cases}0 & l \neq k \tag{3}\\ \frac{2}{2 l+1} & l=k\end{cases}
$$

(Hint: From (1) one gets

$$
\frac{1}{\sqrt{1-2 t x+t^{2}}} \cdot \frac{1}{\sqrt{1-2 s x+s^{2}}}=\sum_{l, k=0}^{\infty} P_{l}(x) P_{k}(x) t^{l} s^{k} .
$$

Integrate this from -1 to 1.)
Give the first four polynomials in explicit form.

Problem 7 (Eigensystem)

A particle of mass m moves in the potential

$$
V(x)= \begin{cases}\infty & \text { for } x<0 \\ \frac{1}{2} m \omega^{2} x^{2} & \text { for } x>0\end{cases}
$$

Find the eigenvalues and eigenfunctions of the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

Deadline: Wednesday, 29.10.08

