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fundamental objects

fundamental objects are strings:

open

closed

usual worldline becomes a worldsheet
on this worldsheet we have left- & right-moving components
∆x → 0, but cutoff at small, nonzero value ⇒ ∆p 9∞
modified uncertainty relation ∆x = ~

∆p
+ α′∆p

~
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fundamental objects

parameter α′ related to string tension TS by α′ = 1/(2πTS)
minimum distance given by string length lS ∼

√
α′

for open strings there are two types of boundary conditions

von Neumann free endpoints

Dirichlet fixed endpoints
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string entropy

quantizing strings in flat spacetime leads to an infinite
tower of massive states
for each level of excitation N there are highly degenerated
states with M2 ∼ 1

α′ (N − 1)
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string entropy

level density dN of highly excited string state
divide string with energy M into two parts, s. th.
M = M1 + M2

⇒ dN(M) = dN(M1)dN(M2) = dN(M1 + M2)
this leads to the exponential function for dN :
dN ∼ e4π

√
N ≈ eM/M0 with M0 := 1

4π
√
α′

from statistical mechanics one has for the string entropy
SS : dN = eSS

⇒ SS ∼ M ∼
√

N
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string entropy

interpretation [Mitchell, Turok 87]: string as random walk
with step size lS
energy after n steps E ∼ n/lS
k possible directions
⇒ total number of configurations kn

⇒ entropy for large n proportional to energy

[Mitchell, Turok 87] Mitchell, D., Turok, N. 1987: Statistical Mechanics

of Cosmic Strings, Phys. Rev. Lett., 58, 1577-1580
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string coupling

string interactions governed by the string coupling
constant g
determined by scalar field φ called dilaton (g = e〈φ〉, 〈·〉
vacuum expectation value)
Newtons constant in D dimensions: GD ∼ g 2lD−2

S , for
four spacetime dimensions G4 ∼ g 2l2

s

so G is determined by dynamic field, but often g just
treated as a parameter in the theory
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curvature condition

classical spacetime only well defined when curvature less
than 1/l2

s

low energy approach breaks down if curvature approaches
string scale
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SUSY

string theory implies supersymmetry (SUSY):
fundamental symmetry between bosons and fermions,
which transforms one into the other
important consequence: bound of total mass M of all
states by their charge Q: M ≥ Q
bound is called BPS bound (Bogomolnyi, Prasad,
Sommerfield)
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SUSY

BPS state invariant under non-trivial subalgebra of full
SUSY algebra
mass fixed in terms of charges (no quantum corrections)
and spectrum preserved while going from weak to strong
coupling
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dimensionality

spacetime has more than the usual four dimensions; 26 in
bosonic string theory, 10 in supersymmetric theories (to
get rid of negative norm ghost states)
idea proposed in 1920’s by Kaluza and Klein
explanation, why we usually do not see extra dimensions:

compactification ⇒ Calabi-Yau mannifolds
extra dimensions are large, but we are confined to live on
3+1 dimensional submanifold, called brane, space
outside of brane called bulk
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D-branes

string theory includes more objects than just
one-dimensional strings, but also higer dimensional
branes, nonperturbative objects with mass M ∼ 1

glS

gravitational field GM ∼ glS (→ 0 for weak coupling, so
there is a flat spacetime description)
these branes just can be seen as the surfaces, where open
strings can end
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D-branes

the dynamic of these branes at weak coupling is described
by open strings which the two endpoints are stuck on
certain surfaces (→ brane)

condition at end of string, keeping it on the surface, is
given by Dirichlet boundary condition (⇒ D-brane)
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D-branes

all particles of standard model (quarks, leptons, gauge
bosons,. . .) are believed to come from these open strings
and are confined to the branes
more exotic particles like the graviton come from
excitation states of closed strings which are free to move
in the bulk

∃ many types of D-branes, of various dimensions, each carries
charge
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D-branes

BPS state: D-branes are flat (i.e. form an extremal surface)
and have (in the groundstate) no open strings attached
on excited D-branes (open strings attached) two open strings
can approach each other and form a closed string
the later one can leave the D-brane and take some of the
branes energy with it
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fundamental questions

fundamental questions of black hole dynamics:

origine of black hole entropy?
usually, thermodynamics is an approximate theory of
underlying fundamental statistic description
there, entropy is a measure (log) of the number of
microstates and therefore for information

black hole evaporation ⇒ information loss?
this would imply a violation of the unitarity of quantum
mechanics
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extremal black hole

extremal black hole has minimal possible mass that is
compatible with given charge and angular momentum
(M ∼ Q)
often supersymmetric (i.e. invariant under several
supercharges) as a consequence of BPS bound
then stable and no emission of Hawking radiation
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breakthrough

breaktrough 1996 by Strominger and Vafa with charged five
dimensional extremal black holes [Strominger, Vafa 96]
astrophysically not very interesting, but theoretically since they
satisfy BPS bound M ≥ Q
M = Q are extremal black holes with zero Hawking
temperature (equivalent to strong coupling analogs of BPS
states)
[Strominger, Vafa 96] Strominger, A., Vafa, C. 1996: Microscopic Origin

of the Bekenstein-Hawking Entropy, arXiv:hep-th/9601029v2
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breakthrough

procedure:

start with extremal (BPS states) black hole in 5
dimensions and N = 4 SUSY ⇒ SBH

reduce as a gedankenexperiment string coupling g to
obtain weakly coupled system of strings and branes with
equal charge; number of BPS-states NBPS = eSS

microscopic explanation of black hole entropy! (compares
states in flat spacetime without horizon with area of black
hole, formed at strong coupling)
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5 dimensional black hole

we follow the derivation given in [Kiritsis 07]
SUSY allows us to count string states while sending coupling
gS adiabatically to 0
start with collection of highly coupled strings in 10 dimensions,
compactify 5 dimensions, so effective 5 dimensional spacetime
T 5 = T 4 × S1

[Kiritsis 07] Kiritsis, E.: String Theory in a Nutshell, Princton University

Press, Princton 2007
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5 dimensional black hole

extremal black hole constructed as bound state of three
objects of type-IIB string theory; D1 & D5 brane along with
momentum on common interaction
D5 brane wrapping T 5 = T 4 × S1 providing pointlike particle
in 5 dimensions → charge Q5, D1 string wraps S1 → Q1, Qp

units of momentum along S1
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5 dimensional black hole

SUSY is preserved by the solution; supercharges (generates
space-time SUSY) are reduced during process
BPS condition satisfied; it allows us to write mass at
M = M1 + M2 + M3

with horizon (given by S1 with radius R), 3 radii are associated

r 2
i =

g 2
S l8

S

RV
Mi , (V : volume of torus)
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5 dimensional black hole

first two masses are due to winding modes

M1 =
Q1R

gS l2
S

M2 =
Q5RV

gS l6
S

third mass due to Kaluza-Klein excitation of D5 brane along
circular dimension

M3 =
QP

R

Christian Schell (cschell@smail.uni-koeln.de) black holes



string theory
string theory and black holes

information loss problem

black hole entropy calculation in string theory
correspondence principle

5 dimensional black hole

this leads to the radii ri =
gS l

4
S√

RV

√
Mi

r1 =

√
gS l3

S

√
Q1√

V

r2 =
√

gS lS
√

Q5

r3 =

√
gS l4

S

√
Qp

R
√

V
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5 dimensional black hole

5 dimensional area

A = 2π2r1r2r3 = 2π2 g 2
S l8

S

RV

√
Q1Q5Qp

with G5 = (2π)2G10/RV = (2π)58π6g 2
S l8

S one finds for the
entropy

SBH =
A

4G5
= 2π

√
Q1Q5Qp
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5 dimensional black hole - microscopic

in the low energy limit the dynamics of the D1 − D5 bound
system is described by a 2 dimensional superconformal field
theory with central charge c = 6Q1Q5

for large left-moving/right-moving momenta NL, NR the
number of states in unitary conformal field theory is
asymptotically determined by the central charge alone

Ω(NL,NR) ∼ exp(2π
√

c/6(
√

NL +
√

NR))

entropy

S = ln Ω = 2π(
√

Q1Q5NL +
√

Q1Q5NR) + O(
1√

Q1Q5

)
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discoveries

soon after initial breakthrough, agreement between black holes
and weakly coupled string and D-branes systems was extended:

extremal charged black holes with rotation [Horowitz,
Roberts 07]

near extremal black holes with nonvanishing Hawking
temperature [see e.g. Kiritsis 07; 12.6]

radiation rate from black holes and from D-branes agrees
[see e.g. Kiritsis 07; 12.8, 12.9]

[Horowitz, Roberts 07] Horowitz, G., Roberts, M. 2007: Counting the

Microstates of a Kerr Black Hole, arXiv:0708.1346v1 [hep-th]
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neutral black holes

neutral black holes: SBH ∼ A ∼ M2 and SS ∼ M (cf. above)
seems to be a contradiction, but

consider effective Schwarzschild radius RS = 2GM

increase g ⇒ RS increases and black hole can be formed

conversaley start with black hole, decrease g

we have a highly excited string state with mass
M2

S ∼ N/l2
S (at G = 0)
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neutral black holes

if RS ≤ lS , we have a black hole with
M2

bh ∼ l2
S/G 2 ∼ N/l2

S

l2
S/G ∼

√
N ⇒ SBH ∼ R2

S/G ∼ l2
S/G ∼

√
N ∼ MS ∼ SS

so the entropies agree at the correspondence point

RS ∼ lS does not imply, that the black hole must be small,
because since SBH ∼

√
N ⇒ RS ∼ G 1/2N1/4 and N � 1
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correspondence principle

the considerations above lead to a general relation between
black holes and strings, called the correspondence principle:

if curvature at the black hole’s horizon becomes bigger
than the string scale, the black hole state becomes a
string and D-brane state with same charge and angular
momentum

mass changes by at most a factor of order unity during
transition

this principle applies to all kinds of black holes including higher
dimensional black holes and those which are far from
extremality.
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string theory and black holes

these leads to a simple picture of the end of a black hole:

like in Hawking’s semiclassical picture it evaporates down
to string scale
turns into highly excited string and radiates until
it becomes lower excited string, e.g. an elementary
particle
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information loss problem

in semiclassical picture, black hole evaporation seems to
violate thermodynamic principles and therefore be in conflict
with unitarity in quantum mechanics
for example for carged, near extremal black hole, the weak
coupling limit provides quantum system with equal entropy
and radiation - indication, that black holes do not contradict
quantum mechanics
this indication becomes much stronger
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gravity/gauge correspondence

gravity/gauge correspondence [Maldacena 98]: under certain
boundary conditions, string theory (includes gravity) is
completly equivalent to a (nongravitational) gauge theory
our intuition about both theories are governed by weak
coupling limit
therefore it seems to be a contradiction but the
correspondence occurs in the case when one theory is in the
weak and the other one in the strong coupling limit
[Maldacena 98] Maldacena, J. 1998: The Large N Limit of

Superconformal Field Theories and Supergravity, arXiv:hep-th/9711200v3
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solution of information loss problem

consequence: formation and evaporation of black holes in
small stadium can be described by ordanary Hamiltonian
evolution implicated by gauge theory
violation of quantum mechanics (unitarity) disapears in
Hamiltonian evolution

⇒ no information loss!
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AdS/CFT correspondence

AdS/CFT correspondence:
conjectured duality between string theory in Anti de Sitter
(AdS) space and conformal field theory (CFT) on boundary of
AdS at infinity
CFT manifestly unitary ⇒ string theory in AdS information
preserving
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holographic principle

this correspondence leads to the holographic principle, a
description of quantum mechanics, where fundamental degrees
of freedom live on lower dimensional space
proposed in 1993 by t’Hooft and worked out by Susskind,
using two postulates:

total information in a volume is equivalent to theory that
lives only on surface area of region

boundary of region contains at most single degree of
freedom per Planck area
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open questions

precise counting of Schwarzschild black hole’s entropy

how comes information out of the black hole? ⇒ seems
to violate locallity (reconstruction of string theory from
gauge theory → physics may not be local on all length
scales)
to this point see [Hawking 05]: black hole described by
path integrals → information contained in some quantum
field, hard to recover

origin of spacetime? reconstruction from gauge theory?
how does black hole know to form itself to have area
A = 4G~

kBc3 SBH?

[Hawking 05] Hawking, S. 2005: Information Loss in Black Holes,

arXiv:hep-th/9711200v3
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