black holes semiclassical considerations

Christian Schell (cschell@smail.uni-koeln.de)

28.10.2010

outline

- black holes (bh)
 - different solutions
 - general proberties
- 2 black holes mechanics
- 3 Hawking radiation
 - preliminar remarks
 - QFT in curved spacetime
 - Hawking temperature
- entropy & information loss problem
 - Bekenstein-Hawking entropy
 - information loss problem

main references:

- Kiefer, C.: Thermodynamics of Black Holes and Hawking Radiation, avaiable under http://www.thp.uni-koeln.de/gravitation/ → Research → Black holes
- Kiefer, C.: Quantum Gravity, 2nd edition, Oxford University Press, Oxford 2007
- Wald, R.: General Relativity, Chicago University Press, Chicago 1984

in the first part, geometrized units are used; $c\equiv 1\equiv {\it G},$ later just $c\equiv 1$

different solutions general proberties

different solutions

- \bullet stationary bh \rightarrow Schwarzschild-solutions
- $\bullet\ {\rm charged}\ {\rm bh}\ {\rightarrow}\ {\rm Reissner-Nordström-solution}$
- $\bullet \ \ {\rm rotating} \ \ {\rm bh} \rightarrow {\rm Kerr-solution}$
- \bullet charged rotating bh \rightarrow Kerr-Newman-solution

different solutions general proberties

general proberties

definition: let (M, g_{ab}) be a strongly asymptotically predictible, asymptotically flat spacetime. Let there be a globally hyperbolic region V with $\overline{M \cap \mathcal{J}^-(\mathcal{I}^+)} \subset V$ (M, g_{ab}) contains a black hole (bh), if $M \not\subset \mathcal{J}^-(\mathcal{I}^+)$ black hole region $B := M \setminus \mathcal{J}^-(\mathcal{I}^+)$ event horizon $H := \partial B$ spacetime, that isn't strongly asymptotically predictible, contains naked singularities

black holes (bh) 2nd law black holes mechanics 0th law Hawking radiation 1st law entropy & information loss problem 3rd law

rotating bh

Consider the Penrose process for rotating bhs event horizon $A = \int_{r=r_+} \sqrt{g_{\Phi\Phi}g_{\Theta\Theta}} d\Theta d\Phi =$ $\int (r_+^2 + a^2) \sin \Theta d\Theta d\Phi = 4\pi (r_+^2 + a^2) =: 16\pi M_{irr}^2,$

$$M^2_{irr}=rac{1}{2}(M^2+\sqrt{M^4-J^2})\Leftrightarrow M^2=M^2_{irr}+rac{1}{4}rac{J^2}{M^2_{irr}}\geq M^2_{irr}$$

as energy can be extracted from the bh, one finds for angular momentum $L < E/\Omega_H$ $\delta M = E, \ \delta J = L \Rightarrow \delta J < \delta M/\Omega_H$

2nd law 0th law 1st law 3rd law

rotating bh

[Christodoulou 70]:
$$\delta M_{irr}^2 = \frac{Mr_+}{\sqrt{M^2 - a^2}} (\delta M - \Omega_H \delta J) > 0$$

with $\Omega_{H}=a/(r_{+}^{2}+a^{2})=a/2Mr_{+}$ angular velocity of bh

$$\Rightarrow \delta A \sim \delta M_{irr}^2 \ge 0$$

area of the horizon can't decrease

[Christodoulou 70] Christodoulou, D. 1970: Reversible and Irreversible Transformation in Black-Hole Physics, Phys. Rev. Lett., **25**, 1596-1597 black holes (bh) 2nd law black holes mechanics 0th law Hawking radiation 1st law entropy & information loss problem 3rd law

general case

[Hawking 71] (cited from [Wald 84], S. 312): (M, g_{ab}) strongly asymptotically predictible spacetime satisfying $R_{ab}k^ak^b > 0 \forall$ null k^a . Σ_1 , Σ_2 spacelike Cauchy surfaces for globally hyperbolic region V with $\Sigma_2 \subset \mathcal{I}^+(\Sigma_1)$, $H_1 = H \cap \Sigma_1, \ H_2 = H \cap \Sigma_2$ with event horizon H Then area of H_2 is greater than or equal to area of H_1 so, no process decreases future event horizon of bh $A > A_1 + A_2$ future horizon \Rightarrow time asymmetry 2^{nd} law of bh dynamics dA > 0 ($d_{rev}A = 0$) [Hawking 71] Hawking, S. 1971: Gravitational Radiation from Colliding Black Holes, Phys. Rev. Lett., 26, 1344-1346

2nd law 0th law 1st law 3rd law

0th law of bh dynamics

back to rotating bh introduce future directed Killing field χ^a , $\chi^a \chi_a = 0$ on horizon so gradient is normal to horizon, parallel to χ^a

$$abla^{a}(\chi^{b}\chi_{b}) = -2\kappa\chi^{a}$$

 κ surface gravity for Kerr bh: $\kappa = \frac{\sqrt{M^2 - a^2}}{2Mr_+}$ Schwarzschild limit: $\kappa \xrightarrow{a \to 0} \frac{1}{2r_+} = \frac{1}{4M}$

2nd law Oth law 1st law 3rd law

0th law of bh dynamics

as shown in [Wald 84, p.331ff], taking the Lie derivative w.r.t. Killing field $\chi^{\rm a}$ gives

$$\mathcal{L}_{\chi}\kappa = 0$$

i.e. $\kappa = \text{const on orbits of } \chi^a$ so $\kappa = \text{const on horizon}$ 0^{th} law of bh dynamics

2nd law 0th law 1st law 3rd law

1st law of bh dynamics

[Bardeen, Carter, Hawking 73]:

$$dM = \frac{\kappa}{8\pi} dA + \Omega_H dJ$$

1st law of bh dynamics relationship

- $E \leftrightarrow M$
- $\kappa \leftrightarrow T$
- $A \leftrightarrow S$

[Bardeen, Carter, Hawking 73] Bardeen, J.M., Carter, B., Hawking, S. 1973: The Four Laws of Black Hole Mechanics, Commun. Math. Phys., **31**, 161-170

2^{na} law 0th law 1st law 3rd law

3rd law of bh dynamics

surface gravity for charged rotating bh ([Wald 84, p 331])

$$\kappa = rac{\sqrt{M^2 - a^2 - q^2}}{2M(M + \sqrt{M^2 - a^2 - q^2}) - q^2}$$

 κ vanishes for *extreme* bh, $M^2 = a^2 + q^2$ [Wald 74]: the closer one gets to extreme bh, the harder it is, to go a step further impossible to achive $\kappa = 0$ in a finite number of steps 3^{rd} law of bh dynamics [Wald 74] Wald, R. 1973: Gedanken Experiments to Destroy a Black Hole, Ann. Phys., **82**, 548-556

black holes (bh)	2 ^{nc}
black holes mechanics	0 th
Hawking radiation	
entropy & information loss problem	3 rd

2nd law 0th law 1st law 3rd law

summary

	thermodynamics	black hole
0 th	thermal equilibrium:	stationary bh:
	T = const	κ = const
	throughout body	over horizon
1^{st}	$dE = TdS - pdV + \mu dN$	$dM = \frac{\kappa}{8\pi} dA + \Omega_H dJ + \Phi dq$
2 nd	$dS \ge 0$	$dA \ge 0^{n}$
3 rd	T = 0 impossible	κ = 0 impossible
	in physical process	in physical process

preliminar remarks QFT in curved spacetime Hawking temperature

bh entropy & temperature

$$dE = dM = T_{bh}dS_{bh} = \frac{\kappa}{8\pi G}dA$$

$$\Rightarrow \frac{dS_{bh}}{dA} = \frac{\kappa}{8\pi G} \frac{1}{T_{bh}} \Rightarrow S_{bh} = \frac{\kappa}{8\pi G} \frac{A}{T_{bh}}$$

$$T_{bh} = \frac{\kappa}{G\varsigma}, \ S_{bh} = \frac{\varsigma A}{8\pi}$$

$$[S_{bh}] = [k_B] \Rightarrow [\frac{k_B}{\varsigma}] = [A] = \text{lenght}^2$$

preliminar remarks QFT in curved spacetime Hawking temperature

bh entropy & temperature

fundamental lenght:
$$I_{PI} \stackrel{c\equiv 1}{=} \sqrt{G\hbar}~(pprox 10^{-33} {
m cm})$$

 $arsigma \sim rac{k_B}{G\hbar}$

$$T_{bh}\sim rac{\hbar\kappa}{k_B},\,\,S_{bh}\sim rac{k_BA}{G\hbar}$$

preliminar remarks QFT in curved spacetime Hawking temperature

factors of proportionality \Rightarrow QFT

to determin the proportonality factors, one need to consider quantum fields in the neighborhood of the bh horizon. The space is highly curved \Rightarrow QFT in curved space time [Hawking 75]

no uniquely defined vacuum \Rightarrow particle creation/annihilation [Hawking 75] Hawking, S. 1975: Particle Creation by Black Hole, Comm. Math. Phys., **43**, 199-220

preliminar remarks QFT in curved spacetime Hawking temperature

accelerated observer

first, uniformely accelerated observer in (1+1)-Minkowski space time in Rindler coordinates ($\tau,\ \rho$)

$$\left(\begin{array}{c} T\\ X \end{array}\right) = \left(\begin{array}{c} \rho \sinh(a\tau)\\ \rho \cosh(a\tau) \end{array}\right)$$

preliminar remarks QFT in curved spacetime Hawking temperature

Unruh effect

$$ds^2 = dT^2 - dX^2 = a^2 \rho^2 d\tau^2 - d\rho^2$$

vacuum global state correlating regions I and III, whereas observer restricted to I

vacuum for massless scalar field in Minkowski space time

$$|0
angle_{M}=\prod_{\omega}\sqrt{1-e^{-2\pi\omega/a}}\sum_{n}e^{-n\pi\omega/a}|n_{\omega}^{\mathsf{I}}
angle\otimes|n_{\omega}^{\mathsf{III}}
angle$$

[Unruh 76] Unruh, W. 1976: Notes on Black-hole evaporation, Phys. Rev. Lett., **14**, 870-892

derivation in e.g. [Crispino, Higuchi, Matsas 08] Crispino, L., Higuchi, A., Matsas, G, 2008: The Unruh effect and its applications, avaiable at arXiv:0710.5373v1 [gr-qc]

preliminar remarks QFT in curved spacetime Hawking temperature

Unruh effect

oberserver in region I, trace out all degrees of freedom in region III in density matrix

$$\rho_{\mathbf{l}} = \mathrm{tr}_{\mathbf{I}\mathbf{I}\mathbf{I}} |0\rangle_{M} \langle 0|_{M} = \prod_{\omega} (1 - e^{-2\pi\omega/a}) \sum_{n} e^{-n\pi\omega/a} |n_{\omega}^{\mathbf{l}}\rangle \langle n_{\omega}^{\mathbf{l}}|$$

 $\rho_{\rm I}$ corresponding to thermal canonical ensemble with Davis-Unruh temperature

$$T_{DU} = rac{\hbar a}{2\pi k_B}$$

uniformely accelerated observer sees *thermal* distribution of particles

preliminar remarks QFT in curved spacetime Hawking temperature

Hawking temperature

equivalence principle \Rightarrow bh radiates with T_{DU} where *a* is replaced by κ

$$T_H = rac{\hbar\kappa}{2\pi k_B} ([ext{Hawking 75}])$$

[Hawking 75] Hawking, S. 1975: Particle Creation by Black Hole, Comm. Math. Phys., **43**, 199-220

preliminar remarks QFT in curved spacetime Hawking temperature

special case: Schwarzschild

$$\kappa = rac{1}{4 \, G M} \Rightarrow$$
 $T_H = rac{\hbar}{8 \pi \, G k_B M} pprox 10^{-6} rac{M_\odot}{M} K$

preliminar remarks QFT in curved spacetime Hawking temperature

lifetime

assumption: decrease in mass corresponds to energy radiated to infinity Stefan-Boltzmann:

$$rac{dM}{dt}\sim -AT_H^4\sim -M^2M^{-4}=-M^{-2}$$

integration $t(M) \sim \left(M_0^3 - M^3\right) \stackrel{M \ll M_0}{pprox} M_0^3$

lifetime
$$au_{bh} \sim \left(\frac{M_0}{m_{Pl}}\right)^3 t_{Pl} \approx 10^{65} \left(\frac{M_0}{m_\odot}\right)^3$$
 years

Bekenstein-Hawking entropy information loss problem

Bekenstein-Hawking entropy

$$S_{bh} = rac{\varsigma A}{8\pi}$$

Bekenstein-Hawking entropy

$$S_{BH}=rac{k_BA}{4G\hbar}(\cdot c^3)=S_{bh}$$

entropy is measure for lack of information about global quantum state

Bekenstein-Hawking entropy information loss problem

Schwarzschild case

$$A = 4\pi R_S^2$$

$$\Rightarrow S_{BH} = \frac{k_B \pi R_S^2}{G \hbar} \approx 1 \cdot 10^{77} k_B \left(\frac{M}{M_{\odot}}\right)^2$$

comparisson to statistical mechanics ($S = k_B \ln(\#(\text{states})))$: $\Rightarrow S_{\odot} \sim 10^{57} k_B$

so entropy of resulting bh is much larger than the one of the colliding star

Bekenstein-Hawking entropy information loss problem

statistical explanation of bh entropy?

microscopic description of entropy like

$$S_{bh} \stackrel{?}{=} -k_B \operatorname{tr}(\rho \ln \rho)$$

with density matrix ρ given from statistical mechanics? are states hidden behind the horizon? what are/where are microscopic degrees of freedom? what happens with entropy after bh evaporation (no hair theorem)?

Bekenstein-Hawking entropy information loss problem

information loss problem

if bh radiation purely thermal

 \Rightarrow any initial (in particular pure) state evolves into mixed state as final stage of bh evolution

then it would be a contradiction to unitary evolution in quantum mechanics

in unitaryly evolutioning systems, there is no increase of entropy

if bh mechanics violates this principle, it means, that information gets destroyed

 \rightarrow information loss problem

Bekenstein-Hawking entropy information loss problem

loopholes

- information indeed lost
 - \Rightarrow replace quantum mechanical Liouville equation by $\rho \to \$\rho \neq S\rho S^\dagger$
- evolution completely unitary; semiclassical approximations doesn't handle bh radiation
- bh doesn't evaporate completely; some core is left (e.g. of order of the Planck units) where all the information is hidden