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Exercise 16: Lagrange multipliers

In this exercise we review the method of Lagrange multipliers and explain how it fits into the variational
principle of constrained systems.
Consider an optimisation problem with an equality constraint:

maximise f(x,y) = x%y, O
subject to g(x,y) = x> +2y> -6 =0.

The idea is that the local extrema of f(x,y) subject to the constraint g(x,y) = 0 coincide with the critical points
of another function (usually called the Lagrangian):

L(xy,A) = f(xy) + A8(x,y) = x*y + A" + 2~ 6), ()
where A is called the Lagrange multiplier.

1. Can you give a motivation for this definition based on the contour plots of f(x,y) and g(x,y)?

2. Find the critical points of L(x,y, A) and the constrained maximum of f(x,y).

Remark. In the case of constrained mechanical systems, the idea behind the method of Lagrange multipliers
is similar, only now the optimisation problem is Hamilton’s principle.

Exercise 17: Quadratic action for a relativistic particle: gauge transformations

Consider a charged point particle in special relativity, described by the actions [1, sec. 2.1]
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1. Consider the non-degenerate reparametrisation
df
)\—>/\f2f()\), a >0, f(/\A,B) :)\A,B‘ (4a)

Show that the transformation laws

det dxXf ga qan dA
HOAY o o axr. f gt dx R _ ar
x(A) — (Af) (M), I A, dydn N(A) — Nf(Af) dAfN(A). (4b)

imply that S' given in in eq. (3a) is invariant under the reparametrisation given in egs. (4a) to (4b).
2. Using eq. (4b), show that under an infinitesimal reparametrisation

A—Ar=A—e(A), e(Anp) =0, (5a)
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one obtains the following variations

8@ (A) = X (A) = ¥(A) = e(A) " + O(ez) ) (5b)
SeN(A) = Np(A) = N(A) = - (c(ON(A) +0(<), (50)

which imply that x#(A) is a worldline scalar and N(A) is a worldline scalar density.
3. From SP, one can show that any phase space quantity A obeys the evolution law

% - [A,NHL—HJNH}P . (6a)

Show that
W~ NA)n"py, (6b)

where p, := P, — qA,. Argue that this implies that p,, is also a worldline scalar. Moreover, show that

pu ~ N(A)n*7qFuope, (6¢)

where Fp = Apy — Ayp-

4. Using eq. (6a), show that
N(A) ~ +oV, (7a)
ITI(A\)=H; ~0. (7b)

5. Let us now see how reparametrisations (“gauge transformations” for the point particle) can be generated
in phase space. Using egs. (5b) to (5c) and egs. (6b) to (7b), show that

Sy X" (A) ~ [x¥,S(A)H L ]p , (8a)

56(A)P}l<)‘) ~ [Pw g(/\)HJ_]p ’ (8b)
d d

56(A)N(A) = £ r |:N, d)CLH:|P , (8c)

SenyTT(A) ~ 0, (8d)

where (A) = €(A)N(A). Argue that the above equations imply that the reparametrisation-induced
gauge transformation of any phase space function A can be written as

SeyA~[AGlp, (8e)
where the quantity
—_ _de
G:=—C(A)H, d/\H (8f)

is called the gauge generator.
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