ver. 1.1

Ninth exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release: Mon, Dec. 17th Submit: Mon, Jan. 7th in lecture Discuss: Thu, Jan. 10th

Exercise 28 (4 points): Geodesic deviation

Consider two neighbouring geodesics with worldlines $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$, where $\xi^{\mu}(\tau)$ is considered to be small, so that quadratic and higher-order terms can be neglected. Let $u^{\mu} = dx^{\mu}/d\tau$ be the velocity. Show that the relative acceleration satisfies

$$\frac{\mathrm{D}^2 \xi^\mu}{\mathrm{D} \tau^2} = R^\mu{}_{\nu \kappa \lambda} u^\nu u^\kappa \xi^\lambda \,,$$

which is known as the geodesic deviation equation.

Exercise 29 (7 points): Dust and ideal fluid

In curved spacetime, the energy-momentum tensors of dust and ideal fluid are given by

$$T^{\mu\nu} = \rho u^{\mu}u^{\nu} + P(u^{\mu}u^{\nu} + g^{\mu\nu}),$$

where u^{μ} is the four-velocity field, ρ the energy density, P the pressure; for dust, P = 0.

- **29.1** Argue briefly that ρ and P are *scalars*.
- **29.2** For dust, show that dust particles move on geodesics.
- **29.3** Derive the continuity and the Euler equations of an ideal fluid by contracting $\nabla_{\nu} T^{\mu\nu} = 0$ with u_{μ} and $g_{\mu\nu} + u_{\mu}u_{\nu}$, respectively.
- **29.4** Consider the spatially-flat (Friedmann–Lemaître–)Robertson–Walker metric, defined by

$$ds^2 = -N(t)^2 dt^2 + a(t)^2 \delta_{ii} dx^i dx^j$$
, $N > 0$, $a > 0$.

Write down the continuity equation for an ideal fluid.

Hint: the spatial homogeneity and isotropy have to be used.

See overleaf.

Exercise 30 (3+8 points): Relativistic charged particle I

Consider a charged massive test particle in special relativity, described by the action (c = 1)

$$S\left[x^{i}\right] = \int_{A}^{B} \mathrm{d}t \, L\left(x^{i}, \dot{x}^{j}\right) := \int_{A}^{B} \mathrm{d}t \left\{-m\sqrt{1-\left(\dot{x}^{i}\right)^{2}} - q\Phi\left(x^{j}\right) + q\dot{x}^{j}A_{i}\left(x^{k}\right)\right\},\,$$

where $\dot{x}^i := dx^i/dt$, m and q are the mass and the electric charge, Φ and A_i the electric and vector potentials.

- **30.1** Calculate the *canonical* momentum $P_i = P_i(x^j, \dot{x}^k) := \partial L/\partial \dot{x}^i$. Derive its partial inverse $\dot{x}^i = v^i(x^j, P_k)$. *Remark*. If such an inverse exists, the system is called *regular*, and there is *no constraint*.
- **30.2** (bonus) Calculate the *canonical* Hamiltonian $H = H(x^i, P_i)$. Derive the canonical equations of motion

$$\frac{\mathrm{d}x^i}{\mathrm{d}t} = \frac{\partial H}{\partial P_i}, \qquad \frac{\mathrm{d}P_i}{\mathrm{d}t} = -\frac{\partial H}{\partial x^i}.$$

30.3 (bonus) From the results in **30.2**, find the relativistic Lorentz force in terms of the three-velocity \dot{x}^i , kinematic momentum $p_i := P_i - qA_i$, electric field $E_i := -\partial_i \Phi - \partial_t A_i$ and magnetic *B*-field $B^i := \epsilon^{ijk} \partial_i A_k$.

Exercise 31 (6 points): Relativistic charged particle II: parametrised formulation

Consider a charged massive test particle in special relativity, described by the action (c = 1)

$$S[x^\mu] = \int_A^B \mathrm{d}\lambda \, L(x^\mu,\dot{x}^
u) := \int_{\lambda_A}^{\lambda_B} \mathrm{d}\lambda \left\{ -m\sqrt{-\eta_{\mu
u}\dot{x}^\mu\dot{x}^
u} + q\dot{x}^\mu A_\mu
ight\}, \qquad \mu,
u,
ho = 0,1,2,3\,,$$

where $\dot{x}^{\mu} := dx^{\mu}/d\lambda$, A_{μ} is the four-potential.

- **31.1** Calculate the action under $\lambda \mapsto \lambda_f = f(\lambda)$, where the boundaries are fixed, $f(\lambda_{A,B}) = \lambda_{A,B}$, and $f'(\lambda) > 0$. Can one impose $\eta_{\mu\nu}\dot{x}^\mu\dot{x}^\nu = -1$ before deriving the equations of motion? Remark. Such a system is called parametrised, and belongs to a subset of all singular systems. The Einstein–Hilbert action is also parametrised.
- **31.2** Calculate the canonical four-momentum $P_{\mu} = P_{\mu}(x^{\nu}, \dot{x}^{\rho}) := \partial L/\partial \dot{x}^{\mu}$ of the particle. Show that its partial inverse $\dot{x}^{\mu} = v^{\mu}(x^{\nu}, P_{\rho})$ does *not* exist. *Remark.* Such a non-existence is the defining property of a *singular system*, which is often a synonym for
- **31.3** Calculate $\dot{x}^{\mu}P_{\mu}(x^{\nu},\dot{x}^{\rho}) L(x^{\nu},\dot{x}^{\rho})$. *Remark.* This result can be shown to be universal for all parametrised systems.

constrained system. The Maxwell theory is also singular, but not parametrised.