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Exercise 28 (4 points): Geodesic deviation

Consider two neighbouring geodesics with worldlines x*(t) and x* () + ¢*(t), where ¢#(7) is considered
to be small, so that quadratic and higher-order terms can be neglected. Let u¥ = dx#/dt be the velocity.
Show that the relative acceleration satisfies
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which is known as the geodesic deviation equation.

Exercise 29 (7 points): Dust and ideal fluid

In curved spacetime, the energy-momentum tensors of dust and ideal fluid are given by
™ = pulu’ + P (u'u’ + g,

where u# is the four-velocity field, p the energy density, P the pressure; for dust, P = 0.

29.1 Argue briefly that p and P are scalars.

29.2 For dust, show that dust particles move on geodesics.

29.3 Derive the continuity and the Euler equations of an ideal fluid by contracting V, T"" = 0 with u, and
Suv + Uy iy, respectively.

29.4 Consider the spatially-flat (Friedmann—Lemaitre—)Robertson—Walker metric, defined by
ds* = —N(t)?df? +a(t)2(5ij dx'dx/, N>0,a>0.

Write down the continuity equation for an ideal fluid.

Hint: the spatial homogeneity and isotropy have to be used.

See overleaf.
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Exercise 30 (3+8 points): Relativistic charged particle I

Consider a charged massive test particle in special relativity, described by the action (c = 1)
A B o B ] , .
S [xl} = J dtL(xl,xf) = J dt {—m«/l — (&) = q@(x]) —|—qx]A,«(xk) } ,
A A
where ¥/ := dx'/dt, m and g are the mass and the electric charge, @ and A; the electric and vector potentials.
30.1 Calculate the canonical momentum P; = P; (xf , xk) := 0L/0x'. Derive its partial inverse X' = v'(x/, ).
Remark. If such an inverse exists, the system is called regular, and there is no constraint.

30.2 (bonus) Calculate the canonical Hamiltonian H = H (xi, Pj). Derive the canonical equations of motion
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30.3 (bonus) From the results in 30.2, find the relativistic Lorentz force in terms of the three-velocity Xl
kinematic momentum p; := P; — gA;, electric field E; := —0;® — 0;A; and magnetic B-field B' := e’Jk&jAk.

Exercise 31 (6 points): Relativistic charged particle II: parametrised formulation

Consider a charged massive test particle in special relativity, described by the action (c = 1)

B AB
S[xﬂ} = JA dA L(x”,)'cv) = J;L d/\{*ﬂ’l\/ 777}“/)&]43&1/ +quAH}/ v, 0= 0/ 1/2/3/
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where x* := dx#/dA, AV is the four-potential.

31.1 Calculate the action under A — A; = f(A), where the boundaries are fixed, f(Aap) = Aap, and
f'(A) > 0. Can one impose 77, x*%" = —1 before deriving the equations of motion?
Remark. Such a system is called parametrised, and belongs to a subset of all singular systems. The
Einstein—Hilbert action is also parametrised.

31.2 Calculate the canonical four-momentum Py, = P, (xV,%F) = 0L/ 0x" of the particle. Show that its partial
inverse x# = v#(x", P,) does not exist.

Remark. Such a non-existence is the defining property of a singular system, which is often a synonym for
constrained system. The Maxwell theory is also singular, but not parametrised.

31.3 Calculate x# Py (x",xf) — L(x", %").

Remark. This result can be shown to be universal for all parametrised systems.



