Third exercise sheet on Relativity and Cosmology I
 Winter term 2020/21

Release: Mon, Nov. $23^{\text {rd }}$
Submit: Mon, Nov. $30^{\text {th }}$ on ILIAS
Discuss: Thu, Dec. $3^{\text {rd }}$

Exercise 6 (10 points): Covariant Maxwell equations

Recall from classical electromagnetism the Maxwell equations (in Gaussian units with $c=1$):

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho, \quad \vec{\nabla} \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=4 \pi \vec{J} ; \quad \vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \tag{1}
\end{equation*}
$$

In terms of the scalar (Φ) and vector (\vec{A}) potentials, the electric and magnetic fields are $\vec{E}=-\vec{\nabla} \Phi-\partial_{t} \vec{A}$ and $\vec{B}=\vec{\nabla} \times \vec{A}$. In components, eq. 11 reads

$$
\begin{array}{rlrl}
\sum_{i=1}^{3} \partial_{i} E^{i} \equiv \partial_{i} E^{i} & =4 \pi \rho, & \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon^{i j k} \partial_{j} B_{k}-\partial_{t} E^{i} \equiv \epsilon^{i j k} \partial_{j} B_{k}-\partial_{t} E^{i}=4 \pi J^{i} \\
\partial_{i} B^{i}=0, & \epsilon^{i j k} \partial_{j} E_{k}+\partial_{t} B^{i}=0
\end{array}
$$

where $\epsilon^{i j k}$ is the Levi-Civita pseudo-tensor, $i, j, \ldots=1,2,3$, and Einstein notation is assumed, as has been explained in eq. 2a. Let $A^{\mu}:=(\Phi, \vec{A})$ be the four-potential, $j^{\mu}:=(\rho, \vec{J})$ the four-current, $\mu, v, \ldots=0,1,2,3$, and define the field-strength tensor

$$
\begin{equation*}
F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{3}
\end{equation*}
$$

6.1 Show that the expressions

$$
\begin{align*}
\sum_{v=0}^{4} \partial_{v} F^{\mu v} \equiv \partial_{v} F^{\mu v} & =4 \pi j^{\mu}, \tag{4a}\\
\partial_{\rho} F_{\mu v}+\partial_{\mu} F_{v \rho} & +\partial_{v} F_{\rho \mu} \tag{4b}
\end{align*}=0
$$

correspond to eqs. (2a) and (2b) respectively.
Hint: $\epsilon_{i j k} \epsilon^{i l m}=\delta_{j}{ }^{l} \delta_{k}{ }^{m}-\delta_{j}{ }^{m} \delta_{k}{ }^{l}$.
6.2 Show that eq. 4a leads to the continuity equation $0=\partial_{t} \rho+\vec{\nabla} \cdot \vec{J} \equiv \partial_{\mu} j^{\mu}$. How does the continuity equation look like in a Lorentz-boosted reference frame?

Exercise 7 (6 points): Covariant Lorentz force

Let $p^{\mu}:=m u^{\mu}$ be the kinematic four-momentum, u^{μ} the four-velocity, τ the proper time; $\vec{P}:=m \vec{v}, \vec{v}:=\mathrm{d} \vec{x} / \mathrm{d} t$, and t the coordinate time.
7.1 Show that the spatial components of the covariant Lorentz four-force

$$
\begin{equation*}
\frac{\mathrm{d} p_{\mu}}{\mathrm{d} \tau}=f_{\mu}=q F_{\mu \nu} u^{\nu} \tag{5}
\end{equation*}
$$

give in the non-relativistic limit the Lorentz force

$$
\frac{\mathrm{d} \vec{P}}{\mathrm{~d} t}=\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

7.2 What is the physical meaning of the time component f^{0} of the covariant four-force in eq. 55?

Exercise 8 (6 points): Kottler-Moller coordinates
Let g be a constant acceleration, (t, x, y, z) Cartesian coordinates in 4-dimensional Minkowski space. Consider the transformation ($c=1$)

$$
\begin{aligned}
& t=\left(\frac{1}{g}+x^{\prime}\right) \sinh g t^{\prime}, \\
& x=\left(\frac{1}{g}+x^{\prime}\right) \cosh g t^{\prime}-\frac{1}{g}, \\
& y=y^{\prime}, \quad z=z^{\prime} .
\end{aligned}
$$

9.1 Show that the transformation gives accelerated frames of reference with constant acceleration.
9.2 Calculate the components of the metric with respect to the coordinates $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$.

