Prof. Dr. Claus Kiefer

Yi-Fan Wang, Leonardo Chataignier and Tim Schmitz

ver. 1.00

Fifth exercise sheet on Relativity and Cosmology I

Winter term 2020/21

Release: Mon, Dec. 7th Submit: Mon, Dec. 14th on ILIAS Discuss: Thu, Dec. 17th

Exercise 14 (6 points): Curvature I

For a nearly spherical body, the ratio of its Schwarzschild radius to its physical radius is a heuristic measure for the deviation of the geometry in the neighbourhood of the body from the flat Minkowski space-time.

- **14.1** Compare this ratio for a globular cluster of stars ($M \approx 10^6 M_{\odot}$, $R \approx 20 \,\mathrm{pc}$), the Sun, the Earth, a neutron star ($M \approx M_{\odot}$, $R \approx 10 \,\mathrm{km}$), a White Dwarf ($M \approx M_{\odot}$, $R \approx 10^4 \,\mathrm{km}$) as well as for a proton and an electron. For the latter two, use their Compton wavelengths \hbar/mc as the (effective) radius.
- **14.2** Which mass would an elementary particle need to have, such that its Compton wavelength would be as large as its Schwarzschild radius? What size would its Schwarzschild radius then be?
- **14.3** The quantities appearing in these considerations are often expressed in terms of the so-called Planck units, which result from a unique combination of the natural constants G, c and \hbar . Calculate the Planck mass, the Planck length, the Planck time and the Planck energy in SI units.

Exercise 15 (9 points): Curvature II

In cylindrical coordinates (ρ, φ, z) of 3-dimensional Euclidean space, consider a surface of revolution with generatrix $z = \exp(-a^2 \rho^2)$.

- **15.1** Determine the induced metric on the surface.
- **15.2** Calculate the curvature scalar at the apex using three different methods:
 - a) Compare the circumferences and the areas (Bertrand–Diguet–Puiseux theorem).
 - b) Find the radius of the spherical shell, that best approximates the given surface around the apex, and use the known curvature of a sphere with radius *R*.

Exercise 16 (6 points): Transformations of the Christoffel symbols

Consider the Christoffel symbols of the first and second kinds

$$\Gamma_{ikj} := \frac{1}{2} \left(g_{ik,j} - g_{kj,i} + g_{ji,k} \right), \qquad \Gamma^i_{kj} := g^{il} \Gamma_{lkj}.$$

and a general coordinate transformation $x^i \rightarrow x^{i'}(x^j)$

- **16.1** Derive the transformation of the symbols $\Gamma_{ikj} = \Gamma_{ikj} \left(\Gamma_{i'k'j'} \right)$ under the coordinate transformation. Do they constitute the components of a tensor?
- **16.2** Derive the corresponding transformation for $\Gamma^{i}_{kj} = \Gamma^{i}_{kj} (\Gamma^{i'}_{k'j'})$.