Sixth exercise sheet on Relativity and Cosmology I
 Winter term 2020/21

Release: Mon, Dec. $14^{\text {th }}$
Submit: Mon, Dec. $21^{\text {rd }}$ on ILIAS
Discuss: Thu, Jan. $7^{\text {th }}$

Exercise 17 (7 points): Covariant derivative I: Metricity and torsion

An affine connection $\widetilde{\nabla}$, also known as a covariant derivative $\widetilde{\nabla}_{i}$, can be defined by its connection coefficients $\widetilde{\Gamma}^{i}{ }_{k j}$, which transform in the same way as the Christoffel symbols. The covariant derivative of a tensor $A^{i}{ }_{j}$ is then

$$
\widetilde{\nabla}_{i} A_{k}^{j}:=\partial_{i} A_{k}^{j}+\widetilde{\Gamma}_{i l}^{j} A_{k}^{l}-\widetilde{\Gamma}_{i k}^{l} A_{l}^{j}
$$

$\tilde{\nabla}$ can be characterised by its non-metricity and torsion, defined as

$$
Q_{i j k}(\tilde{\nabla}):=-\widetilde{\nabla}_{i} g_{j k}, \quad T^{i}{ }_{j k}(\tilde{\nabla}):=2 \widetilde{\Gamma}^{i}{ }_{[j k]} \equiv \widetilde{\Gamma}^{i}{ }_{j k}-\widetilde{\Gamma}^{i}{ }_{k j} .
$$

17.1 Let $T^{\cdots} \ldots$ be a (q, p)-tensor. Argue that $\widetilde{\nabla}_{i} T^{\cdots} \ldots$ is a $(q, p+1)$-tensor. Are $Q_{i j k}$ and $T^{i}{ }_{j k}$ tensors?
17.2 Let ∇ be the Levi-Civita connection in (pesudo-)Riemannian space, whose coefficients are given by the Christoffel symbols of the second kind $\Gamma^{i}{ }_{k j}$. Show that the metric is covariantly constant, i.e. $\nabla_{k} g_{i j}=$ $-Q_{k i j}(\nabla) \equiv 0, \nabla_{k} g^{i j} \equiv 0$; furthermore, show that $T^{i}{ }_{j k}(\nabla) \equiv 0$.
17.3 Let the non-metricity and torsion of $\tilde{\nabla}$ be zero. Show that $\tilde{\nabla}$ is necessarily Levi-Civita.

Exercise 18 (7 points): Derivative of a determinant

Let $g=\operatorname{det} g_{i j}$ be the metric determinant, d the dimension of the manifold; $\widetilde{\epsilon}^{i j \ldots m}$ and $\epsilon_{i j \ldots m}$ the Levi-Civita symbols, taking values +1 (or -1) for even (or odd) permutations of the indices, denoted in the lecture as $\varepsilon(i j \ldots m)$.
18.1 From the definition of g, argue that

$$
g=\frac{1}{d!} \tilde{\epsilon}^{i k \ldots m} \widetilde{\epsilon}^{j l \ldots n} g_{i j} g_{k l} \ldots g_{m n}, \quad \frac{1}{g}=\frac{1}{d!} \epsilon_{i k \ldots m} \epsilon_{j l \ldots n} g^{i j} g^{k l} \ldots g^{m n}
$$

which implies $\tilde{\epsilon}^{i j \ldots k}\left(\epsilon_{\sim i j \ldots k}\right)$ is a tensor density of weight $+1(-1)$.
18.2 Express $g_{i j}$ (and $g^{i j}$) in terms of $d, g, \epsilon_{i j \ldots k}\left(\right.$ or $\widetilde{\epsilon}^{i j \ldots k}$) and $g^{i j}$ (or $g_{i j}$). Show that the determinant variation can be given by

$$
\delta g=+g g^{i j} \delta g_{i j}=-g g_{i j} \delta g^{i j}
$$

18.3 Express $\partial g / \partial x^{i}$ in terms of g and the Christoffel symbols.

Exercise 19 (6 points): Covariant derivative II: Vector densities

19.1 Let V^{i} be a vector field and $\tilde{V}^{i}:=\sqrt{|g|} V^{i}$ be the corresponding vector density of weight 1 . Show that

$$
\nabla_{i} V^{i}=\frac{1}{\sqrt{|g|}} \partial_{i}\left(\sqrt{|g|} V^{i}\right), \quad \text { and } \quad \nabla_{i} \tilde{V}^{i}=\partial_{i} \tilde{V}^{i}
$$

19.2 The Laplace-Beltrami operator for a scalar field ϕ is given by $\square \phi:=\nabla^{i} \nabla_{i} \phi$.
a) Rewrite $\square \phi$ such that the result only contains partial derivatives, instead of covariant derivatives.
b) As an example, calculate the operator in spherical coordinates of a 3-dimensional Euclidean space.

