Institute for Theoretical Physics

Prof. Dr. Claus Kiefer

Tatevik Vardanyan, Mauricio Ortiz Torres and Blanca Hergueta

ver. 1.01

First exercise sheet on Relativity and Cosmology I

Winter term 2022/23

Release: Thu, Oct. 20th Submit: Thu, Oct. 27th Discuss: Thu, Nov. 3rd

Exercise 1 (10 points): Newtonian Gravity I: Radial motion of a mass point

Consider a mass m in the gravitational field of a mass $M \gg m$, such that M sits at the origin. At some initial time t = 0, m is located at a distance r(0) = R and has an initial velocity $\dot{r}(0) = v_0 > 0$, so that it undergoes one-dimensional motion.

- **1.1** When is the solution r(t) unbounded?
- **1.2** Give an explicit solution for r(t) for the lowest initial velocity that allows for an unbounded solution.

Exercise 2 (10 points): Newtonian Gravity II: Potential of a homogeneous spherical shell

Consider a spherical shell of a mass M with constant density ρ . Denote the inner radius with R_1 and the outer radius with R_2 .

Calculate the Newtonian potential at a distance r from the origin. Distinguish between the cases $r < R_1$, $R_1 < r < R_2$, and $r > R_2$. Take care of continuity (why?) and boundary conditions at $r \to 0^+$ and $r \to +\infty$.