Tenth exercise sheet on Relativity and Cosmology I

Winter term 2022/23

Release: Thu, Jan. $12^{\text {th }}$
Submit: Thu, Jan. $19^{\text {th }}$
Discuss: Thu, Jan. $26^{\text {th }}$

Exercise 30 (7 points): Dust and ideal fluid

In curved spacetime, the energy-momentum tensors of dust and ideal fluid are given by

$$
T^{\mu v}=\rho u^{\mu} u^{v}+P\left(u^{\mu} u^{v}+g^{\mu v}\right)
$$

where u^{μ} is the four-velocity field, ρ the energy density, P the pressure; for dust, $P=0$.
30.1 Argue briefly that ρ and P are scalars.
30.2 For dust, show that dust particles move on geodesics.
30.3 Derive the continuity and the Euler equations of an ideal fluid by contracting $\nabla_{\nu} T^{\mu \nu}=0$ with u_{μ} and $g_{\mu v}+u_{\mu} u_{v}$, respectively.
30.4 Consider the spatially-flat (Friedmann-Lemaître-)Robertson-Walker metric, defined by

$$
\mathrm{d} s^{2}=-N(t)^{2} \mathrm{~d} t^{2}+a(t)^{2} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}, \quad N>0, a>0 .
$$

Write down the continuity equation for an ideal fluid.
Hint: the spatial homogeneity and isotropy have to be used.

Exercise 31 (4 points): Contracted Bianchi identity from action

Let $R_{\mu \nu}$ and R be the Ricci tensor and scalar, respectively. Derive the contracted Bianchi identity

$$
G_{; \mu}^{\mu v}:=\left(R^{\mu v}-\frac{1}{2} g^{\mu v} R\right)_{; \mu}=0
$$

by demanding the Einstein-Hilbert action be invariant under infinitesimal coordinate transformations.

Exercise 32 (3 points): Relativistic charged particle I

Consider a charged massive test particle in special relativity, described by the action $(c=1)$

$$
S\left[x^{i}\right]=\int_{A}^{B} \mathrm{~d} t L\left(x^{i}, \dot{x}^{j}\right):=\int_{A}^{B} \mathrm{~d} t\left\{-m \sqrt{1-\left(\dot{x}^{i}\right)^{2}}-q \Phi\left(x^{j}\right)+q \dot{x}^{i} A_{i}\left(x^{k}\right)\right\}
$$

where $\dot{x}^{i}:=\mathrm{d} x^{i} / \mathrm{d} t, m$ and q are the mass and the electric charge, Φ and A_{i} the electric and vector potentials.
32.1 Calculate the canonical momentum $P_{i}=P_{i}\left(x^{j}, \dot{x}^{k}\right):=\partial L / \partial \dot{x}^{i}$. Derive its partial inverse $\dot{x}^{i}=v^{i}\left(x^{j}, P_{k}\right)$. Remark. If such an inverse exists, the system is called regular, and there is no constraint.
32.2 (bonus) Calculate the canonical Hamiltonian $H=H\left(x^{i}, P_{j}\right)$. Derive the canonical equations of motion

$$
\frac{\mathrm{d} x^{i}}{\mathrm{~d} t}=\frac{\partial H}{\partial P_{i}}, \quad \frac{\mathrm{~d} P_{i}}{\mathrm{~d} t}=-\frac{\partial H}{\partial x^{i}}
$$

32.3 (bonus) From the results in 30.2, find the relativistic Lorentz force in terms of the three-velocity \dot{x}^{i}, kinematic momentum $p_{i}:=P_{i}-q A_{i}$, electric field $E_{i}:=-\partial_{i} \Phi-\partial_{t} A_{i}$ and magnetic B-field $B^{i}:=\epsilon^{i j k} \partial_{j} A_{k}$.

Exercise 33 (6 points): Relativistic charged particle II: parametrised formulation

Consider a charged massive test particle in special relativity, described by the action $(c=1)$

$$
S\left[x^{\mu}\right]=\int_{A}^{B} \mathrm{~d} \lambda L\left(x^{\mu}, \dot{x}^{v}\right):=\int_{\lambda_{A}}^{\lambda_{B}} \mathrm{~d} \lambda\left\{-m \sqrt{-\eta_{\mu v} \dot{x}^{\mu} \dot{x}^{v}}+q \dot{x}^{\mu} A_{\mu}\right\}, \quad \mu, v, \rho=0,1,2,3
$$

where $\dot{x}^{\mu}:=\mathrm{d} x^{\mu} / \mathrm{d} \lambda, A_{\mu}$ is the four-potential.
33.1 Calculate the action under $\lambda \mapsto \lambda_{f}=f(\lambda)$, where the boundaries are fixed, $f\left(\lambda_{A, B}\right)=\lambda_{A, B}$, and $f^{\prime}(\lambda)>0$. Can one impose $\eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=-1$ before deriving the equations of motion?
Remark. Such a system is called parametrised, and belongs to a subset of all singular systems. The Einstein-Hilbert action is also parametrised.
33.2 Calculate the canonical four-momentum $P_{\mu}=P_{\mu}\left(x^{\nu}, \dot{x}^{\rho}\right):=\partial L / \partial \dot{x}^{\mu}$ of the particle. Show that its partial inverse $\dot{x}^{\mu}=v^{\mu}\left(x^{\nu}, P_{\rho}\right)$ does not exist.
Remark. Such a non-existence is the defining property of a singular system, which is often a synonym for constrained system. The Maxwell theory is also singular, but not parametrised.
33.3 Calculate $\dot{x}^{\mu} P_{\mu}\left(x^{\nu}, \dot{x}^{\rho}\right)-L\left(x^{\nu}, \dot{x}^{\rho}\right)$.

Remark. This result can be shown to be universal for all parametrised systems.

