# Eleventh exercise sheet on Relativity and Cosmology I <br> Winter term 2022/23 

Release: Thu, Jan. 19 ${ }^{\text {th }}$
Submit: Thu, Jan. $26^{\text {th }}$
Discuss: Thu, Feb. $2^{\text {nd }}$

## Exercise 34 (10 points): An exact plane-wave solution I

Consider the following exact metric given by Bondi, Pirani and Robinson (1959):

$$
\mathrm{d} s^{2}=L^{2}\left(\mathrm{e}^{+2 \beta} \mathrm{~d} x^{2}+\mathrm{e}^{-2 \beta} \mathrm{~d} y^{2}\right)+\mathrm{d} z^{2}-\mathrm{d} t^{2}=L^{2}\left(\mathrm{e}^{+2 \beta} \mathrm{~d} x^{2}+\mathrm{e}^{-2 \beta} \mathrm{~d} y^{2}\right)-\mathrm{d} u \mathrm{~d} v
$$

where $L=L(u), \beta=\beta(u)$ are the background and wave factors, and $u=t-z, v=t+z$ the retarded and advanced light-cone or null coordinates, respectively.
34.1 Show that

$$
\begin{aligned}
& \Gamma^{v}{ }_{x x}=\frac{\mathrm{d}}{\mathrm{~d} u}\left(L^{2} \mathrm{e}^{+2 \beta}\right) \\
& \Gamma^{x}{ }_{u x}=\Gamma^{x}{ }_{x u}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} u} \ln \left(L^{2} \mathrm{e}^{+2 \beta}\right) \quad \Gamma^{y}{ }_{u y}=\Gamma^{y}{ }_{y u}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} u} \ln \left(L^{2} \mathrm{e}^{-2 \beta}\right),
\end{aligned}
$$

whereas all the other Christoffel symbols of the second kind vanish.
Hint. It might be quicker to apply the variational method directly, instead of using the definition.
34.2 Show that a co-moving particle, defined by $\dot{x}=\dot{y}=\dot{z}=0$ and $\dot{t}=1$, moves on a geodesic.
34.3 Derive the Ricci tensor.

## Exercise 35 (6 points): An exact plane-wave solution II

The vacuum Einstein equation of the Bondi-Pirani-Robinson metric reduces to

$$
L^{\prime \prime}+\left(\beta^{\prime}\right)^{2} L=0, \quad f^{\prime}:=\frac{\mathrm{d} f}{\mathrm{~d} u}
$$

35.1 Solve the vacuum Einstein equation for $\beta^{\prime} \equiv 0, L(0)=1$ and $L^{\prime}(0)=0$.
35.2 For simplicity, let $\beta \equiv 0, L(0)=1$ and $L^{\prime}(0)=-1$. Solve the vacuum Einstein equation for these conditions. Employ the transformation to the new coordinates

$$
\begin{aligned}
& \bar{t}=t-\frac{1}{2}(1-t+z)\left(x^{2}+y^{2}\right), \\
& \bar{z}=z-\frac{1}{2}(1-t+z)\left(x^{2}+y^{2}\right), \\
& \bar{x}=(1-t+z) x, \quad \bar{y}=(1-t+z) y
\end{aligned}
$$

to show that this solution is in fact just the Minkowski space, although containing a singularity.
35.3 Consider the linearised theory. For that purpose let $\beta$ and $\beta^{\prime}$ be small and of the same order, and $L=1+\gamma$ where $\gamma(u)$ is of the same order as $\beta^{2}$. Show that the Bondi-Pirani-Robinson metric then takes a form that corresponds to a + -polarised wave in the linearised theory.
35.4 (bonus) Now go back to the full theory. Let $L \equiv 1$ for $u \leqslant-a<0$, and $\beta^{\prime} \equiv 0$ for $u<-a$ and $u \geqslant 0$. In other words, $\beta^{\prime} \neq 0$ can only happen for $-a \leqslant u<0$. Furthermore, assume that $\beta^{\prime}$ is such that the singularity appears at some $u>0$.
Provide a qualitative discussion and a sketch of the solution for $L(u)$.
Hint: It is sufficient to consider the convexity of $L$ on $[-a, 0)$.
35.5 (bonus) Recall the configuration in the lecture, where a beam of plane gravitational wave meets a ring of test particles, initially at rest in the $z=0$ plane.
What happens to the ring after the wave has passed by, in the exact (35.4) and the linearised theories?

## Exercise 36 (4 points): Polarisation

In a flat background spacetime, consider two Cartesian coordinate systems $(t, x, y, z)$ and $\left(t, x^{\prime}, y^{\prime}, z\right)$ that can be transformed into each other by a rotation with the angle $\theta$ around the $z$-axis.
36.1 Consider an electromagnetic wave that propagates in the $z$-direction. Let $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{x^{\prime}}$, and $\hat{\mathbf{e}}_{y^{\prime}}$ be the unit polarisation vectors in the coordinate systems. Show that

$$
\hat{\mathbf{e}}_{x^{\prime}}=\hat{\mathbf{e}}_{x} \cos (\theta)+\hat{\mathbf{e}}_{y} \sin (\theta), \quad \hat{\mathbf{e}}_{y^{\prime}}=-\hat{\mathbf{e}}_{x} \sin (\theta)+\hat{\mathbf{e}}_{y} \cos (\theta)
$$

36.2 Analogously, consider a linearised gravitational wave propagating in the z-direction. Let $\mathbf{e}_{+}, \mathbf{e}_{\times}, \mathbf{e}_{+^{\prime}}$, $\mathbf{e}_{x^{\prime}}$ be the polarisation tensors in the coordinate systems. Show that

$$
\mathbf{e}_{+^{\prime}}=\mathbf{e}_{+} \cos (2 \theta)+\mathbf{e}_{\times} \sin (2 \theta), \quad \mathbf{e}_{\times^{\prime}}=-\mathbf{e}_{+} \sin (2 \theta)+\mathbf{e}_{\times} \cos (2 \theta)
$$

36.3 (bonus) Let $|\rightarrow\rangle$ and $|\leftarrow\rangle$ be the quantum states of a spin- $\frac{1}{2}$ particle, whose spin is aligned or antialigned with respect to the $x$-direction, respectively, and analogously $\left|\rightarrow^{\prime}\right\rangle$ and $|\leftarrow\rangle$ with respect to the $x^{\prime}$-direction. Show that

$$
\left|\rightarrow^{\prime}\right\rangle=|\rightarrow\rangle \cos \left(\frac{\theta}{2}\right)+\mathrm{i}|\leftarrow\rangle \sin \left(\frac{\theta}{2}\right), \quad\left|\leftarrow^{\prime}\right\rangle=\mathrm{i}|\rightarrow\rangle \sin \left(\frac{\theta}{2}\right)+|\leftarrow\rangle \cos \left(\frac{\theta}{2}\right) .
$$

37.4 (bonus) Write down the generalisation for the basis states of linear polarisation for a radiation field of arbitrary spin $s$.

