ver. 1.00

11th exercise sheet on Relativity and Cosmology II

Summer term 2019

Release : Mon, June 24 th	Submit: Mon, July 1 st in lecture	Discuss : July 4 th /5 th
---	--	--

Exercise 59 (7 credit points): *Ideal fluids in Cosmology*

Consider an ideal fluid in a Friedmann–Lemaître model.

- **59.1** Show that comoving observers move on geodesics.
- **59.2** Evaluate the covariant conservation of the energy–momentum tensor of the ideal fluid for this kind of observers and show that this yields only *one* non-trivial equation, which on the other hand can also be deduced directly from the Friedmann equations.
- **59.3** Consider an equation of state of the form $p = w\rho$ with w = const.

Calculate the function $\rho(a)$. For which values of w does $\ddot{a} > 0$ hold? In which cases is the strong energy condition fulfilled?

Calculate $\rho(a)$ for a so-called "Chaplygin gas" whose equation of state is $p = -A/\rho$ (A = const. > 0) and discuss the extremal cases $a \to 0$ and $a \to \infty$.

59.4 Consider a flat Friedmann universe that satisfies $\Omega_m + \Omega_x = 1$, where Ω_m refers to pressureless matter and $\Omega_x = \rho_x / \rho_c$ denotes a hypothetical form of energy with density ρ_x and equation of state

 $p_{\mathbf{x}} = w_{\mathbf{x}} \rho_{\mathbf{x}}$.

Which condition has w_x depending on Ω_m to fulfill such that there is an accelerated expansion? Calculate the Hubble parameter as a function of redshift, H(z).

Exercise 60 (6 credit points): Friedmann I

Consider a Friedmann–Lemaître model with $\mathcal{K} \neq 0$ and present density parameters $\Omega_{m,0}$, $\Omega_{r,0}$ and $\Omega_{v,0}$ as well as $\Omega := \Omega_{m,0} + \Omega_{r,0} + \Omega_{v,0}$. Furthermore let

$$\rho_{\rm c}(a) = \frac{3\,\dot{a}^2}{8\pi G\,a^2}$$

be the critical density at a time when the scale parameter had the value *a*, and let $\Omega_m(a) = \rho_m(a)/\rho_c(a)$ etc. be the corresponding relative densities.

Determine the quantity $\Omega(a) - 1$ as a function of $\Omega_{m,0}$, $\Omega_{r,0}$, $\Omega_{v,0}$ and a. This quantity indicates how much the considered model "deviates" from a flat model at a certain time. What kind of problem with regard to the deviation from flatness at earlier times arises for a Friedmann–Lemaître model whose density parameter Ω differs only slightly from unity today?

Exercise 61 (7 credit points): Friedmann II

Solve the Friedmann equation for a universe that contains radiation as well as non-relativistic matter (dust). For this purpose, rewrite the Friedmann equation as a differential equation with respect to the conformal time η , solve this equation for the three possible values of \mathcal{K} and write out the result in the form $(a(\eta), t(\eta))$.

Determine the *t*-dependence of a(t) for early $(t \to 0)$ and late $(t \to \infty)$ times for all the possible values of \mathcal{K} .