www.thp.uni-koeln.de/gravitation/courses/rci13.html

1st exercise sheet on Relativity and Cosmology I

Winter term 2013/14

Deadline for delivery: Thursday, 24th October 2013 at the beginning of the first exercise class.

Exercise 1 (6 credit points): Newtonian Gravity I: Radial motion of a mass point

Consider a mass *m* in the gravitational field of a mass $M \gg m$. At some initial time t = 0, *m* is located at a distance r(0) = R and has an initial velocity $\dot{r}(0) = v_0 > 0$ (one-dimensional motion).

When is the solution r(t) unbounded?

Give an explicit solution for r(t) for the lowest initial velocity that allows for an unbounded solution.

Exercise 2 (4 credit points): Newtonian Gravity II

Give a brief review (\lesssim 2 pages) of the Kepler problem in classical mechanics.

Exercise 3 (10 credit points): Newtonian Gravity III: Potential of a homogeneous spherical shell

Consider a spherical shell of a mass *M* with constant density ρ . Denote the inner radius with R_1 and the outer radius with R_2 .

Calculate the Newtonian potential at a distance *r* from the origin. Distinguish between the cases $r < R_1$, $R_1 < r < R_2$, and $r > R_2$.