$2^{\text {nd }}$ exercise sheet on Relativity and Cosmology I
 Winter term 2015/16

Deadline for delivery: Thursday, $5^{\text {th }}$ November 2015 at the beginning of the exercise class.

Exercise 4 (12 credit points): Addition of velocities

Consider a mass point moving with velocity \vec{w}^{\prime} with respect to the inertial system \mathcal{I}^{\prime}.
What is its velocity \vec{u} with respect to an inertial system \mathcal{I} if \mathcal{I}^{\prime} moves with velocity \vec{v} against \mathcal{I} ? (Set $c=1$.) Show that the result can be written as

$$
\vec{u}=\frac{\vec{v}+\vec{w}_{\|}^{\prime}+\frac{\vec{w}_{\perp}^{\prime}}{\gamma}}{1+\vec{v} \vec{w}^{\prime}}
$$

where $\vec{w}_{\|}^{\prime}$ and \vec{w}_{\perp}^{\prime} denote the parallel and orthogonal components of \vec{w}^{\prime} with respect to \vec{v}, respectively.
Discuss the special cases $\vec{v} \| \vec{w}^{\prime}$ and $\vec{v} \perp \vec{w}^{\prime}$.
Show that

$$
\vec{u}^{2}=1-\frac{\left(1-\vec{w}^{\prime 2}\right)\left(1-\vec{v}^{2}\right)}{\left(1+\vec{v} \vec{w}^{\prime}\right)^{2}} \leq 1
$$

and discuss the limiting case $\left|\vec{w}^{\prime}\right| \rightarrow 1$.

Exercise 5 (8 credit points): Aberration

Consider an inertial system \mathcal{I}^{\prime} that moves with velocity \vec{v} against an inertial system \mathcal{I}. Consider a ray of light which arrives in \mathcal{I} at an angle θ with respect to \vec{v}.
Under which angle θ^{\prime} does this light ray arrive in \mathcal{I}^{\prime} ? Show that this relation can be written in the form

$$
\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{1+v}{1-v}} \tan \left(\frac{\theta^{\prime}}{2}\right)
$$

Hint: Use the law for the addition of velocities from exercise 4.

