$6^{\text {th }}$ exercise sheet on Relativity and Cosmology I

Winter term 2015/16

Deadline for delivery: Thursday, $3^{\text {rd }}$ December 2015 during the exercise class.

Exercise 15 (5 credit points): Curvature II

Consider a family of Gaussian curves $z=\exp \left(-a^{2} r^{2}\right)$ with $r^{2}=x^{2}+y^{2}$, embedded into a flat 3-dimensional space. Determine the metric on the surface formed by these Gaussian curves using polar coordinates (r, φ) and calculate the curvature at the apex using three different methods:
15.1 Use the two formulae given in the lecture: a) comparison of circumference and b) comparison of area.
15.2 Find the spherical shell with radius R that approximates the given surface best around the apex and use the known curvature of a sphere with radius R.

Exercise 16 (6 credit points): Christoffel symbols

Derive the transformation properties of the Christoffel symbols

$$
\Gamma_{\mu v \lambda}=\frac{1}{2}\left(g_{\mu v, \lambda}+g_{\lambda \mu, v}-g_{v \lambda, \mu}\right)
$$

under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}\left(x^{\alpha}\right)$.
(The result shows that the Christoffel symbols do not form a tensor.)

Exercise 17 (9 credit points): Metricity

It was stated in the lecture that the metric is covariantly constant for Riemannian spaces, meaning that its covariant derivative vanishes,

$$
\nabla_{\alpha} g_{\mu \nu}=0 \quad \text { and } \quad \nabla_{\alpha} g^{\mu \nu}=0
$$

17.1 Prove the above two statements.
17.2 How does $\nabla_{\alpha} g_{\mu \nu}=0$ transform under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}\left(x^{\alpha}\right)$?

