4th exercise sheet on Relativity and Cosmology I

Winter term 2017/18

Deadline for delivery: Thursday, 16th November 2017 during the exercise class.

Exercise 9: Energy-momentum tensor for electromagnetic field

Recall from the lecture course that the energy-momentum tensor for electromagnetic field reads

$$T^{\mu
u} \coloneqq rac{1}{4\pi} \left(F^{\mu\lambda} F^{
u}{}_{\lambda} - rac{1}{4} \eta^{\mu
u} F^{\lambda
ho} F_{\lambda
ho}
ight) \; ,$$

where $F_{\mu\nu}$ has been defined in exercise **6**.

- 1. Express T^{00} , T^{0i} and T^{ij} in terms of \vec{E} and \vec{B} . What is the physical meaning of T^{00} and T^{0i} ?
- 2. Interpret the four conservation equations for $T^{\mu\nu}$ as well as the components T^{ij} . Use the results in item 1.

Exercise 10: Accelerated frame of reference

1. Show that the equations

$$t = \frac{c}{g} \sinh\left(\frac{g t'}{c}\right) + \frac{x'}{c} \sinh\left(\frac{g t'}{c}\right) ,$$

$$x = \frac{c^2}{g} \left[\cosh\left(\frac{g t'}{c}\right) - 1\right] + x' \cosh\left(\frac{g t'}{c}\right) ,$$

$$y = y' ,$$

$$z = z' ,$$

describe a transformation from an inertial frame to an accelerated frame of reference (g = const.).

2. Calculate the components of the metric with respect to the frame (t', x', y', z').

Exercise 11: *Rindler coordinates*

Consider the two-dimensional metric

$$\mathrm{d}s^2 = -v^2\,\mathrm{d}u^2 + \mathrm{d}v^2\,.$$

- 1. At which point in space do the components of the metric tensor exhibit a singularity?
- 2. Find a coordinate transformation which shows that this so-called Rindler space is only a part of the two-dimensional Minkowski space, which is usually represented by $ds^2 = -dt^2 + dx^2$.
- 3. Compare the Rindler coordinates with the coordinates from exercise 10.
- 4. Give an illustrative interpretation of the Rindler coordinates (consider u = const. and v = const.).
- 5. Determine the proper acceleration along the curve v = const.