University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer

3rd exercise sheet on Relativity and Cosmology II

Summer term 2013

Deadline for delivery: Thursday, 2nd May 2013 during the exercise class.

Exercise 5 (10 credit points): *ADM energy*

Assume that the metric of a certain spacetime can be written as $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, where $h_{\mu\nu}$ are functions that vanish at infinity. In this case the total energy of the system is given by the surface integral

$$E = \frac{1}{16\pi G} \int \sum_{i,j} \left(g_{ij,j} - g_{jj,i} \right) \, \mathrm{d}^2 S_i \,,$$

which has to be taken over a surface far away from any mass distribution. The Latin indices denote spatial coordinates. Calculate this so-called ADM energy for the Schwarzschild metric.

Hint: The calculation is most easily done in isotropic coordinates, cf. exercise 1.

Exercise 6 (5 credit points): *Redshift and conserved quantities in the Schwarzschild spacetime*

- **6.1** Consider a stationary^{*} observer \mathcal{A} at r = R, $R \ge 2M$ in the Schwarzschild spacetime of mass M and an observer \mathcal{B} at infinity. The timelike Killing vector shall be denoted by $\xi^{\mu} = (1, 0, 0, 0)$. Furthermore, we define the quantity $V^2 := -\xi_{\mu}\xi^{\mu}$. Observer \mathcal{A} emits energy with frequency ω_R (measured in his rest frame) which is measured by observer \mathcal{B} as being ω_{∞} .
 - **a)** Express the four-velocity u^{μ} of observer \mathcal{A} in terms of ξ^{μ} and V and use this to derive the relation between the frequencies ω_{R} and ω_{∞} .
 - **b)** What does observer \mathcal{B} measure when observer \mathcal{A} reaches the Schwarzschild radius r = 2M? What does this mean for the redshift?
- **6.2** When discussing the movement of particles in the Schwarzschild spacetime, it was shown that the angular momentum

$$\ell := r^2 \sin^2(\vartheta) \, \frac{\mathrm{d}\varphi}{\mathrm{d}s}$$

is a conserved quantity. Derive this result from the existence of a Killing vector $\eta^{\mu} = (0, 0, 0, 1)$, where the last component corresponds to the φ -component.

Exercise 7 (5 credit points): *Time dilation in the Schwarzschild spacetime*

Show that the proper time $d\tau$ on a circular geodesic in the Schwarzschild geometry of mass *M* obeys the relation:

$$\mathrm{d}\tau = \sqrt{1 - \frac{3M}{r}} \,\mathrm{d}t\,.$$

Use this to give an estimate for the time dilation of a satellite flying in a low orbit around the Earth.

^{*}A stationary observer is an observer in a stationary spacetime whose 4-velocity u^{μ} is proportional to the given timelike Killing vector.