$3^{\text {rd }}$ exercise sheet on Relativity and Cosmology II

Summer term 2013

Deadline for delivery: Thursday, $2^{\text {nd }}$ May 2013 during the exercise class.

Exercise 5 (10 credit points): ADM energy

Assume that the metric of a certain spacetime can be written as $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$, where $h_{\mu \nu}$ are functions that vanish at infinity. In this case the total energy of the system is given by the surface integral

$$
E=\frac{1}{16 \pi G} \int \sum_{i, j}\left(g_{i j, j}-g_{j j, i}\right) \mathrm{d}^{2} S_{i},
$$

which has to be taken over a surface far away from any mass distribution. The Latin indices denote spatial coordinates. Calculate this so-called ADM energy for the Schwarzschild metric.

Hint: The calculation is most easily done in isotropic coordinates, cf. exercise 1.

Exercise 6 (5 credit points): Redshift and conserved quantities in the Schwarzschild spacetime

6.1 Consider a stationary ${ }^{*}$ observer \mathcal{A} at $r=R, R \geq 2 M$ in the Schwarzschild spacetime of mass M and an observer \mathcal{B} at infinity. The timelike Killing vector shall be denoted by $\mathcal{\xi}^{\mu}=(1,0,0,0)$. Furthermore, we define the quantity $V^{2}:=-\xi_{\mu} \xi^{\mu}$. Observer \mathcal{A} emits energy with frequency ω_{R} (measured in his rest frame) which is measured by observer \mathcal{B} as being ω_{∞}.
a) Express the four-velocity u^{μ} of observer \mathcal{A} in terms of ξ^{μ} and V and use this to derive the relation between the frequencies ω_{R} and ω_{∞}.
b) What does observer \mathcal{B} measure when observer \mathcal{A} reaches the Schwarzschild radius $r=2 M$? What does this mean for the redshift?
6.2 When discussing the movement of particles in the Schwarzschild spacetime, it was shown that the angular momentum

$$
\ell:=r^{2} \sin ^{2}(\vartheta) \frac{\mathrm{d} \varphi}{\mathrm{~d} s}
$$

is a conserved quantity. Derive this result from the existence of a Killing vector $\eta^{\mu}=(0,0,0,1)$, where the last component corresponds to the φ-component.

Exercise 7 (5 credit points): Time dilation in the Schwarzschild spacetime

Show that the proper time $\mathrm{d} \tau$ on a circular geodesic in the Schwarzschild geometry of mass M obeys the relation:

$$
\mathrm{d} \tau=\sqrt{1-\frac{3 M}{r}} \mathrm{~d} t .
$$

Use this to give an estimate for the time dilation of a satellite flying in a low orbit around the Earth.

[^0]
[^0]: ${ }^{*}$ A stationary observer is an observer in a stationary spacetime whose 4 -velocity u^{μ} is proportional to the given timelike Killing vector.

