$5^{\text {th }}$ exercise sheet on Relativity and Cosmology II

Summer term 2013

Deadline for delivery: Thursday, $16^{\text {th }}$ May 2013 during the exercise class.

Exercise 10 (5 credit points): Kruskal coordinates

Derive the line element of the Schwarzschild metric in Kruskal coordinates as given in the lecture.
For this purpose, introduce a new radial coordinate (for $r>2 M$) as follows

$$
r_{*}=r+2 M \ln \left(\frac{r}{2 M}-1\right) .
$$

Then perform the coordinate transformation:

$$
X=\exp \left(\frac{r_{*}}{4 M}\right) \cosh \left(\frac{t}{4 M}\right), \quad T=\exp \left(\frac{r_{*}}{4 M}\right) \sinh \left(\frac{t}{4 M}\right) .
$$

Exercise 11 (6 credit points): Another coordinate system

Construct a coordinate system for the Schwarzschild metric that is singularity-free at the event horizon by transforming the Schwarzschild time t according to

$$
t \rightarrow T=t+f(r)
$$

Determine $f(r)$ by imposing that the prefactor of $\mathrm{d} r^{2}$ is equal to +1 in the transformed line element. Write out the transformed line element. Is it still static? Which parts of the Kruskal diagram are covered by these coordinates?

Exercise 12 (9 credit points): Penrose diagrams

12.1 Express the line element for Minkowski spacetime in terms of spherical coordinates (t, r, θ, ϕ). Then perform a coordinate transformation

$$
u=t-r, \quad v=t+r .
$$

Write out the transformed line element. How can one interpret the coordinates u and v ?
12.2 Perform another coordinate transformation $(u, v) \mapsto\left(u^{\prime}, v^{\prime}\right)$ according to

$$
u^{\prime}=\arctan (u)=: t^{\prime}-r^{\prime}, \quad v^{\prime}=\arctan (v)=: t^{\prime}+r^{\prime} .
$$

Draw a $\left(t^{\prime}, r^{\prime}\right)$ diagram and hatch the area covered by these coordinates. Then draw a radial light ray in this diagram that goes from infinity (in the original coordinates) to $r=0$ and back to infinity. In a second $\left(t^{\prime}, r^{\prime}\right)$ diagram, sketch the areas $t=$ const. and $r=$ const.
12.3 Calculate the line element in the primed coordinates and show that it is conformal to the line element

$$
\mathrm{d} \bar{s}^{2}=-4\left(\mathrm{~d} t^{\prime 2}-\mathrm{d} r^{\prime 2}\right)+\sin ^{2}\left(2 r^{\prime}\right) \mathrm{d} \Omega^{2} .
$$

