www.thp.uni-koeln.de/gravitation/courses/rcii14.html

12th exercise sheet on Relativity and Cosmology II

Summer term 2014

Deadline for delivery: Wednesday, 9th July 2014 during the exercise class.

Exercise 23 (18 credit points): *Ideal fluids in Cosmology*

Consider an ideal fluid in a Friedmann-Lemaître model.

- **23.1** Show that comoving observers move on geodesics.
- **23.2** Evaluate the covariant conservation of the energy–momentum tensor of the ideal fluid for this kind of observers and show that this yields only *one* non-trivial equation, which on the other hand can also be deduced directly from the Friedmann equations.
- **23.3** Consider an equation of state of the form $p = w\rho$ with w = const.

Calculate the function $\rho(a)$. For which values of w does $\ddot{a} > 0$ hold? In which cases is the strong energy condition fulfilled?

Calculate $\rho(a)$ for a so-called "Chaplygin gas" whose equation of state is $p = -A/\rho$ (A = const. > 0) and discuss the extremal cases $a \to 0$ and $a \to \infty$.

23.4 Consider a flat Friedmann universe that satisfies $\Omega_{\rm m} + \Omega_{\rm x} = 1$, where $\Omega_{\rm m}$ refers to pressureless matter and $\Omega_{\rm x} = \rho_{\rm x}/\rho_{\rm c}$ denotes a hypothetical form of energy with density $\rho_{\rm x}$ and equation of state

$$p_{\rm x}=w_{\rm x}\rho_{\rm x}$$
.

Which condition has w_x depending on Ω_m to fulfill such that there is an accelerated expansion? Calculate the Hubble parameter as a function of redshift, H(z).

Exercise 24 (2 credit points): *Redshift of matter and vacuum energy density equality*

Current observations by the Planck satellite indicate that in the present universe $\Omega_{m,0}\approx 0.32$ and $\Omega_v\approx 0.68$. Calculate the redshift at which the energy density of matter was equal to that of the vacuum.