$3^{\text {rd }}$ exercise sheet on Relativity and Cosmology II
 Summer term 2014

Deadline for delivery: Wednesday, $30^{\text {th }}$ April 2014 during the exercise class.

Exercise 5 (10 credit points): Differential forms

5.1 Consider an n-dimensional manifold with a metric. Let $\left\{\omega^{i}\right\}$ be an orthonormal basis of 1 -forms, and let ω be the preferred volume form $\omega=\omega^{1} \wedge \omega^{2} \wedge \cdots \wedge \omega^{n}$.
Show that in an arbitrary coordinate system $\left\{x^{k}\right\}$ the following holds:

$$
\begin{equation*}
\omega=\sqrt{|g|} \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n} \tag{1}
\end{equation*}
$$

where g denotes the determinant of the metric whose components $g_{i j}$ are given in these coordinates.
5.2 The contraction of a p-form ω (with components $\omega_{i j \ldots k}$) with a vector v (with components v^{i}) is given by $[\omega(v)]_{j \ldots k}=\omega_{i j \ldots k} v^{i}$. Consider the n-form $\omega=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n}$.
Show that with a given vector field v the following holds:

$$
\begin{equation*}
\mathrm{d}[\omega(v)]=v^{i}{ }_{, i} \omega \tag{2}
\end{equation*}
$$

5.3 We define $\left(\operatorname{div}_{\omega} v\right) \omega:=\mathrm{d}[\omega(v)]$.

Show that by using coordinates in which ω has the form $\omega=f \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n}$ the following holds:

$$
\begin{equation*}
\operatorname{div}_{\omega} v=\frac{1}{f}\left(f v^{i}\right)_{, i} \tag{3}
\end{equation*}
$$

5.4 In three-dimensional Euclidean space, the preferred volume form is given by $\omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$.

Show that in spherical coordinates this volume form is given by $\omega=r^{2} \sin \theta \mathrm{~d} r \wedge \mathrm{~d} \theta \wedge \mathrm{~d} \phi$.
Use the result of 5.3 to show that the divergence of a vector field

$$
\begin{equation*}
v=v^{r} \frac{\partial}{\partial r}+v^{\theta} \frac{\partial}{\partial \theta}+v^{\phi} \frac{\partial}{\partial \phi} \tag{4}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\operatorname{div} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v^{\theta}\right)+\frac{\partial v^{\phi}}{\partial \phi} \tag{5}
\end{equation*}
$$

Exercise 6 (10 credit points): Electrodynamics in flat spacetime

Differential forms are a convenient tool for field theories, as we will show in this exercise. Consider electrodynamics in flat spacetime. The Faraday 2-form F describing an arbitrary electromagnetic field is given by

$$
\begin{equation*}
\mathbf{F}:=\frac{1}{2} F_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}=-E_{x} \mathrm{~d} t \wedge \mathrm{~d} x-E_{y} \mathrm{~d} t \wedge \mathrm{~d} y-E_{z} \mathrm{~d} t \wedge \mathrm{~d} z+B_{x} \mathrm{~d} y \wedge \mathrm{~d} z+B_{y} \mathrm{~d} z \wedge \mathrm{~d} x+B_{z} \mathrm{~d} x \wedge \mathrm{~d} y \tag{6}
\end{equation*}
$$

and the current 1 -form is given by

$$
\begin{equation*}
\mathbf{j}:=\rho \mathrm{d} t+j_{x} \mathrm{~d} x+j_{y} \mathrm{~d} y+j_{z} \mathrm{~d} z \tag{7}
\end{equation*}
$$

6.1 The Hodge star operator \star maps p-forms to $(4-p)$-forms. Therefore, 2 -forms are mapped to 2 -forms by this operator. The 2 -form dual to the Faraday 2 -form is the Maxwell 2 -form, defined by $\tilde{\mathbf{F}}:=\star \mathbf{F}$.
Use the following definition of the Hodge star acting on the 1-form basis

$$
\begin{equation*}
\star(\mathrm{d} t \wedge \mathrm{~d} x):=\mathrm{d} y \wedge \mathrm{~d} z \quad \text { (and cyclic permutations) } \tag{8}
\end{equation*}
$$

and show that the Maxwell 2-form is given by

$$
\begin{equation*}
\tilde{\mathbf{F}}=-B_{x} \mathrm{~d} t \wedge \mathrm{~d} x-B_{y} \mathrm{~d} t \wedge \mathrm{~d} y-B_{z} \mathrm{~d} t \wedge \mathrm{~d} z+E_{x} \mathrm{~d} y \wedge \mathrm{~d} z+E_{y} \mathrm{~d} z \wedge \mathrm{~d} x+E_{z} \mathrm{~d} x \wedge \mathrm{~d} y \tag{9}
\end{equation*}
$$

6.2 Show that the equation $\mathrm{dF}=0$ corresponds to the two homogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \quad \text { and } \quad \vec{\nabla} \times \vec{E}=-\partial_{t} \vec{B} \tag{10}
\end{equation*}
$$

6.3 Calculate $\star \mathbf{j}$ (a 3-form), which is the dual of the current 1-form \mathbf{j}. For that, use the relation

$$
\begin{equation*}
\star \mathrm{d} t:=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \quad \text { (and cyclic permutations). } \tag{11}
\end{equation*}
$$

Then show that the equation $\mathrm{d} \tilde{\mathbf{F}}=4 \pi \star \mathbf{j}$ corresponds to the two inhomogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho \quad \text { and } \quad \vec{\nabla} \times \vec{B}=\partial_{t} \vec{E}+4 \pi \vec{j} \tag{12}
\end{equation*}
$$

6.4 The relation $\mathrm{d}(\mathrm{d} \boldsymbol{\omega})=0$ holds for any p-form $\boldsymbol{\omega}$.

Choosing $\omega=\star \mathbf{j}$, show that this yields the continuity equation $\vec{\nabla} \cdot \vec{j}+\partial_{t} \rho=0$.
These calculations have been carried out using the exterior derivative d. In curved spacetime, the covariant derivative D has to be used instead to accommodate for the curvature of spacetime.
6.5 Explain in your own words why a covariant derivative is needed on a curved background, and give special attention to the connection. What is the intuitive interpretation of the connection? Why can it be chosen to be zero in Minkowski space?

