10th exercise sheet on Relativity and Cosmology II

Summer term 2016

Deadline for delivery: Thursday, 30th June 2016 during the exercise class.

Exercise 20 (18 credit points): Ideal fluids in Cosmology

Consider an ideal fluid in a Friedmann-Lemaître model.

- **20.1** Show that comoving observers move on geodesics.
- **20.2** Evaluate the covariant conservation of the energy–momentum tensor of the ideal fluid for this kind of observers and show that this yields only *one* non-trivial equation, which on the other hand can also be deduced directly from the Friedmann equations.
- **20.3** Consider an equation of state of the form $p = w\rho$ with w = const.

Calculate the function $\rho(a)$. For which values of *w* does $\ddot{a} > 0$ hold? In which cases is the strong energy condition fulfilled?

Calculate $\rho(a)$ for a so-called "Chaplygin gas" whose equation of state is $p = -A/\rho$ (A = const. > 0) and discuss the extremal cases $a \to 0$ and $a \to \infty$.

20.4 Consider a flat Friedmann universe that satisfies $\Omega_m + \Omega_x = 1$, where Ω_m refers to pressureless matter and $\Omega_x = \rho_x / \rho_c$ denotes a hypothetical form of energy with density ρ_x and equation of state

 $p_{\mathbf{x}} = w_{\mathbf{x}} \rho_{\mathbf{x}}$.

Which condition has w_x depending on Ω_m to fulfill such that there is an accelerated expansion? Calculate the Hubble parameter as a function of redshift, H(z).

Exercise 21 (2 credit points): Redshift of matter and vacuum energy density equality

Current observations by the Planck satellite indicate that in the present universe $\Omega_{m,0} \approx 0.31$ and $\Omega_v \approx 0.69$. Calculate the redshift at which the energy density of matter was equal to that of the vacuum.