$11^{\text {th }}$ exercise sheet on Relativity and Cosmology II
 Summer term 2016

Deadline for delivery: Thursday, $7^{\text {th }}$ July 2016 during the exercise class.

Exercise 22 (12 credit points): Dark energy

One way to simulate a cosmological constant is by means of a homogeneous scalar field ϕ with a suitable potential $V(\phi)$. For this purpose, consider the action

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\frac{1}{2} g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right)
$$

22.1 Derive the equation of motion for a homogeneous field $\phi(t)$ in a Friedmann universe.
22.2 Calculate the energy-momentum tensor of the scalar field by means of a variation with respect to the metric. Specialize this calculation to a homogeneous field in a Friedmann universe and identify its energy-momentum tensor with that of an ideal fluid. That way, determine the energy density ρ_{ϕ} and the pressure p_{ϕ}. For which idealization does ϕ describe a cosmological constant?
22.3 In a concrete model one considers the potential $V(\phi)=\kappa / \phi^{\alpha}$ with at first arbitrary parameters \mathcal{K} and α. The scale factor shall obey the time evolution $a(t) \propto t^{n}$ (universe with $k=0 ; n=\frac{2}{3}$ during matter domination, $n=\frac{1}{2}$ during radiation domination).
Look for a solution for ϕ of the form $\phi(t) \propto t^{A}$. Determine A and find the relation that has to be imposed between κ and α. Finally, calculate the energy density ρ_{ϕ} and compare this to the density ρ of matter (or radiation, respectively).

Exercise 23 (8 credit points): De Sitter space

Show that the spacetime characterized by the de Sitter metric

$$
\mathrm{d} s^{2}=-\left(1-\frac{r^{2}}{\alpha^{2}}\right) \mathrm{d} t^{2}+\left(1-\frac{r^{2}}{\alpha^{2}}\right)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \phi^{2}\right), \quad \alpha^{2}=\frac{3}{\Lambda},
$$

can be mapped isometrically onto the four-dimensional subspace

$$
x^{2}+y^{2}+z^{2}+u^{2}-T^{2}=\alpha^{2}
$$

of \mathbb{R}^{5} with metric

$$
\mathrm{d} s^{2}=-\mathrm{d} T^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}+\mathrm{d} u^{2}
$$

Guidance: Replace the Euclidean coordinates (y, z, u) of the embedding space by the usual polar coordinates (r, θ, ϕ). Then consider the embedding $(t, r, \theta, \phi) \mapsto(T, x, r, \theta, \phi)$ with

$$
(t, r) \mapsto(T, x), \quad T=\sqrt{\alpha^{2}-r^{2}} \sinh \left(\frac{t}{\alpha}\right), \quad x=\sqrt{\alpha^{2}-r^{2}} \cosh \left(\frac{t}{\alpha}\right)
$$

whereas the remaining coordinates are unchanged.
Draw a (T, x) diagram and indicate the curves $t=$ const. as well as $r=$ const.
Remark: This transformation is restricted to $x \geq|T|, x>0$. However, one can cover the whole range of coordinates analogously to the Kruskal diagram by means of additional transformations.

