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Abstract

The gauge principle seems to lie at the heart of many important and successfull theories like Yang-
Mills and Quantum Electrodynamics. The ‘gauge idea’ that the physical system does not depend on
the coordinates you use to describe it resonates very much with Einstein‘s idea of relativity, and we
are motivated to try to derive gravity from a gauge theoretical point of view. In this talk, the gauge
approach to gravity and spacetime is sketched and closely compared to the more well-known gauge
approach of QED. In turns out that from the gauge approach, we arrive at the so-called Einstein-
Cartan spacetime which is a generalisation of the usual Riemann spacetime of GR. The Einstein-Cartan
spacetime possesses, besides curvature, also a mysterious property called torsion, linked to the intrinsic
spin of matter. Without spin, the theory reduces to the Einstein field equations.

1 Introduction

This field of research tries to find out whether gauge theory is actually an underlying framework of GR:
whether GR and, in general, other spacetime theories can be derived from a gauge theoretical point of view.

Friedrich Hehl, a professor here at Cologne, had been very active in this field and I have based a large part
of this seminar on his paper ‘Gauge theory of gravity and spacetime’. [1]

Gauge theories have in the past been very successful: the interactions within the standard model are based
on the Yang-Mills gauge theory, Quantum Electrodynamics (QED) can emerge from a gauge theory and in
fact gauge principles already play a central role in GR as we learned it, although we might not have noticed.
All of these are motivations to study and develop gauge theories of gravity and spacetime.

Before proceeding, I think it is important to discuss and clarify the notion of gauge. The word gauge is used
widely and frequently throughout physics, but its precise meaning, implications and the philosophy behind
it are controversial. Some speak of gauge symmetries and some of gauge redundancies. So what are they
exactly?

I would like to give an illustration of what gauge means based on a blog by Terence Tao, a mathematician
and field-medal winner. [2]

2 Gauge by T. Tao

The ancient Greeks roughly separated mathematics into two fields: geometry and number theory, where
geometry is the study of abstract forms. Those two fields can be combined by the concept of a coordinate
system. Using a coordinate system, geometrical objects can be described by numerical ones and vice-versa.
For example, one can describe a sphere as a numerical relation x2+y2 = 1 within a two dimensional Cartesian
coordinate system.
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Although not always necessary, it has been proven to be very useful to use coordinate systems: numerical
tools such as Fourier transformation, differentiation and integration can only be used when coordinates have
been chosen. A specific choice of coordinates to describe a system is called a gauge. One should always keep
in mind that the geometric properties of an object should not depend on the coordinate system or gauge
that was chosen to describe it. In other words, certain properties should not change when changing the
coordinate system. Switching from one coordinate system to another is called a gauge transformation.

Consider a two dimensional sphere; the surface of the earth, to first approximation. Let’s say we want to
describe in some model the wind direction at every location on this surface. This can be done by assigning
to every point on the sphere (the base space) a unit vector, or equivalently some point on a circle S1, similar
to a tanget space. If one wants now to concretely, or numerically, describe a wind-direction configuration, a
gauge or coordinate system has to be fixed. In our case, we need, for every unit circle belonging to a point
on the sphere, define a reference point and a preferred direction. The vector at a point can then be described
numerically compared to this reference. For example, we could choose true north as the reference point on
every circle, and the wind direction at every point of the sphere could be expressed with a unit imaginary
number eiφ where φ is the angle away from true north. This would give us a concrete, numerical function to
play with: u(x) = eiφ(x).

However, a priori there is not a clear or unique choice for this gauge. We might also define magnetic north
as a reference. We might even change the reference points by angles θ(x) differently at every point on the
base space. The true, ‘physical’ situation should not depend on this, however; the true wind directions do
not care about how we choose to describe them. To compensate for this change of reference, our function
needs to be adjusted accordingly: u(x) → e−iθ(x)u(x). We recognise here already in this simple example
terms that remind strongly of gauge transformations in Electrodynamics.

Depending on the physical problem or configuration, choosing a certain gauge might greatly simplify or
complexify calculations you want to do with it. Choosing, in practise, a suitable gauge is far from trivial.

Often in physics, gauges are called symmetries; symmetries we impose in the hope of getting some new
interesting physical behavior. However, in the light of this more mathematical discussion, they should be
viewed more correctly simply as choices of coordinate systems. Since gauges and gauge transformations
merely reflect different numerical descriptions of the same system, I would say that philosophically they
should not have an effect on it. A sensible theory has to be gauge invariant.

3 Quantum electrodynamics

Let’s now, before discussing gauges further, move on to a physical relevant situation we all know: quantum
electrodynamics. [3] Although everyone already knows this example, I think it is useful to discuss it from a
truly gauge-theoretical point of view. Furthermore, we can make a clear analogy with the gauge theory for
spacetime later.

We start from the bare-bones action that corresponds to the Dirac equation of relativistic quantum mechanics:

S =

∫
ψ̄(i~cγµ∂xµ −mc2)ψ d4x .

We see immediately that this action is invariant under a global phase shift ψ → ψeiφ. This global symmetry
is now, due to Noether’s theorem, linked to a conserved current:

Jµ(x) =
e

~
ψ̄(x)γµψ(x) (1)

Gauge theory now enters the stage. We apply what is called the gauge principle: we demand that this
global symmetry also holds locally. In other words, we demand the action stays invariant under a phase
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shift dependent on position in spacetime: ψ → ψeiφ(x). This is the principle of gauge theories: a global
symmetry is recognized and then made local, without giving up the invariance of the Lagrangian. In light of
the previous discussion we could look at it this way: the dirac spinors live in 4 dimensional spacetime (the
base space) and consist of imaginary components in C. It should not matter what reference orientation we
choose for the complex plane in which those components live.

However, we see that the action as defined above is not invariant under such a local transformation: the
derivative will also act on this local phase change:

∂µ(eiφ(x)ψ(x)) = eiφ(x)∂µψ(x) + i(∂µφ(x))ψ(x)

What is going wrong here is that we are using the normal partial derivative. The partial derivative essentially
compares in this case two spinor vectors at infinitesimal distance. What we should keep in mind here is
that we use differently oriented complex coordinates to describe the spinors at each point in spacetime. We
should come up with a proper way to compare two of them at different positions. The object that does this
is called the connection.

The connection is an essential object in differential geometry and we already encountered it in GR as the
Christoffel symbols. In this example I will simply introduce it as an additional term we use to construct an
invariant derivative. We construct the so called covariant derivative:

Dµ := ∂µ − i
e

~
Aµ, (2)

and demand that it does not depend on the gauge:

D′µψ
′ = D′µ(eiφ(x)ψ) = eiφ(x)(Dµψ).

One can show this is satisfied when our introduced connection Aµ transforms as follows:

Aµ → A′µ = Aµ −
~
e
∂µφ(x),

and we can see that this extra term will cancel with the unwanted term from the partial derivative above.
Besides being called the connection, this Aµ is also called the gauge field or gauge potential in this context.
Physically, we can identify it with the electromagnetic 4-potential.

With this covariant derivative we arrive at a new, now gauge invariant Lagrangian:

S =

∫
ψ̄(i~cγµDµ −mc2)ψ d4x =

∫ [
ψ̄(i~cγµ∂µ −mc2)ψ + ceψ̄(x)γµψ(x)Aµ] d4x .(3)

We see that by applying the gauge principle, the interaction between the electron field and the electromagnetic
field pops up naturally.

To quote Einstein, it is unnatural to have something that acts on the system without being acted upon. In
this case, we would like to add a term to the Lagrangian that describes the dynamics of the gauge field. We
can construct a simple, gauge invariant term starting from the commutator of the covariant derivatives

[Dµ, Dν ] = ∂µAν − ∂νAµ =: Fµν

equivalently, in terms of forms (A = diff. 1-form):

F := dA

which we recognize as the gauge invariant electromagnetic tensor. From its definition we could identify the
electric and magnetic field as well as the homogenious Maxwell equations. We can now construct the scalar

FµνF
µν
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Adding this scalar to the Lagrangian we arrive at the starting point of QED:

SQED =

∫ (
ψ̄(i~cγµDµ −mc2)ψ + c~JµAµ −

1

4µ0
FµνF

µν
)

d4x . (4)

Note that this addition to the Lagrangian is not unique, we could also add other dynamical terms for Aµ.
It turns out, however, to be the most simple addition and therefore a logical starting point. Varying this
Lagrangian with respect to the gauge field Aµ will lead to conditions which we could identify with the
inhomogenious Maxwell equations:

δSQED

δAµ
= 0 ⇒ ∂αF

αβ = µ0J
β (5)

4 Principle of relativity and gauge principle

Let’s now move to GR. As we will see, the gauge idea lies really at the heart of it, although with an essential
twist from the above examples.

Einstein came up with general relativity when he thought about the equivalence of gravitational mass and
inertial mass. Because they seem to be identical up to very high order, an observer with mass inside an
enclosed capsule that experiences some normal force could not tell whether the capsule is accelerating,
dragging him along, or if it is at rest but in the influence of some gravitational field.

Einstein made the radical conclusion that not only are the gravitational and inertial masses equal, the
physical effects are in fact identical.

This statement is equivalent to saying that the difference between gravitational and inertial effects is only a
difference in the mathematical description of the same physical system. It’s merely a difference in the choice
of coordinate system.

This reminds us immediately of the gauge principle: local changes in coordinate systems have no physical
meaning. In the case of GR, we demand that local, general coordinate transformations (gauge transforma-
tions) have no effect on the physical reality.

We learned in GR-I about the covariant derivative. It was introduced in the context of differential geometry
as a derivative that is invariant under general coordinate transformations. It is equal to a partial derivative
plus a term we called the connection:

DαV
µ := ∂αV

µ + ΓµανV
ν .

We can now see that this all fits completely with the gauge viewpoint on GR! Dµ is the correct derivative
that is invariant under gauge transformations. The connection, or Christoffel symbols, is a similar object to
the gauge field from QED.

There is one essential difference with the other gauge theories, however. In the context of QED, the gauge
transformation was dependent on the position in spacetime but had an effect on the abstract space of phases
of wave functions. In the case of GR, a gauge transformation not only depends on the point in spacetime,
but also affects that very same spacetime! The once rigid space time has changed its role in the theater of
physics from stage to actor.

Einstein did not derive GR from a gauge theoretical point of view. The deep connection between GR and
the gauge principle motivates us, however, to try to do this. It leads us, in fact, to a more general theory of
spacetime.
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5 Geometry

5.1 Coframe and connection

Let’s now briefly discuss geometry of spacetime in the Cartan-formalism, used by Hehl. It is not necessary
to understand this deeply to get the idea later.

The first ingredient we need is a differentiable manifold where at each point we can span the local cotangent
frame by four linearly independent cotangent vectors, the coframe θα = ei

αdxi, where dxi are the coordinate
covectors. From the coframe, we could define the dual : the usual tangent vector space. In this discussion,
the coframe is most useful, however. The cotangent frame might be anholonomic, defined by dθα 6= 0, which
would translate to the fact that the ei

α are not constants.

The second essential ingredient is the connection, Γα
β = Γiα

βdxi which allows us to compare tangent covec-
tors at different points on the manifold. It allows us to define parallel transport and covariant differentiation.

Note that at this point, we haven’t defined a metric yet. Whereas in GR, we mostly reason from the metric
and also derive the connection from it, it can be seen separately as a more fundamental object. In fact,
also Einstein recognized the connection as the directly relevant conceptual element for GR: it can break the
rigidity of space allowing for curvature. The Riemannian metric seems in some sense to be of secondary
importance.

The coframe and the connection are a good starting point for a description of spacetime. Also, we could see
they correspond to the gauge potentials (equation 15). From it, we can define the curvature and torsion as
follows:

Tα := Dθα = dθα + Γβ
α ∧ θα =

1

2
Tij

αdxi ∧ dxj , (6)

Rα
β := DΓα

β = dΓα
β + Γα

γΓγ
β =

1

2
Rijα

βdxi ∧ dxj (7)

which we could now also call the gauge field strengths. We already encountered the curvature in GR I. There
it was the Riemann tensor. It can also be written as the commutator of the covariant derivative

RβαµνVβ := [Dµ, Dν ]Vα

and it could be interpreted as the change in direction a vector gets when it is parallel-transported along a
closed curve. Similarly, the torsion tells about the change of spin a vector gets.

5.2 Metric

If we want now to measure angles and time and space intervals, we need to introduce a metric tensor

g = gαβθ
α ⊗ θβ = ei

αej
βgαβdx

idxj . (8)

We can choose a coframe such that the metric becomes orthonormal.

From it we can define the nonmetricity:

Qαβ := −Dgαβ = . (9)

The nonmetricity tells about how the metric would change around a closed loop. We require it to be zero if
we want the space and angles to be integrable.

Now that we have a metric, we could compare our connection to the more specific Levi-Cevita connection.
They are equal when the torsion and nonmetricity vanish.
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Figure 1: Different types of spaces, where Riemann-Cartan is the most general one with both nonzero
curvature and nonzero torsion.

6 Gauge theory of gravity and spacetime

6.1 Dirac lagrangian and conserved currents

Let’s now return to the gauge theory. We start, like in QED, with the Dirac Lagrangian in Minkowski
spacetime. As is stressed by Hehl, in a gauge theory it is important to start with a conserved current
connected to some global symmetry of the system. We set c = 1:

L =
i

2
Ψ̄(γi∂i +m)Ψ. (10)

We first consider the invariance of the Lagrangian under global (or rigid) Poincaré transformations. From
the translational invariance we get, from Noether’s theorem, the energy momentum tensor density:

Tiα = δki L−
∂L

∂∂kΨ
∂iΨ (11)

Similarly, we get from the Lorentz-invariance the canonical total angular momentum tensor density, consisting
of intrinsic and orbital part:

Jij
k = Sij

k + xiTj
k − xjTik = −Jjik (12)

where the intrinsic, canonical spin angular momentum density is given by

Sij
k =

∂L

∂∂kΨ
lijΨ = −Sji

k (13)

Both give us conservation laws:
∂iTα

i = 0, ∂kJij
k = 0. (14)
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6.2 Gauging the Poincaré group

We have learned in GR that the Poincaré group is a Lie group with 10 generators: 4 translations in spacetime
and 6 Lorentz transformations consisting of 3 spatial rotations and 3 boosts. It is a semidirect product of
the translational and the Lorentz group:

P (1, 3) = T (4) o SO(1, 3).

In gauge theory, a new field (gauge field) is naturally introduced for every generator of the considered Lie
group. These fields are then used to construct a gauge-invariant Lagrangian.

The case for the Poincaré group in Minkovski spacetime is far from trivial, especially since the group is
non-abelian (meaning it does not commute, roughly) and since the translations and Lorentz transformations
are interrelated in a non-trivial way. It was first successfully analyzed by Tom Kibble in 1960. [4]

He derived that from the 4 spacetime translations, we get 4 gauge potentials: θα. From the Lorenz group,
we get 6 potentials: Γαβ = −Γβα whose symmetry is inherited from the symmetry of the Lorentz generators.
Because of the four dimensional spacetime we get in total 40 new field parameters.

θα = ei
αdxi, Γαβ = Γi

αβdxi. (15)

These gauge potentials correspond exactly to the coframe and connection, and together they give a new
structure to the spacetime! A gauge invariant Lagrangian was constructed by Kibble:

L =
ie

2
eiαΨ̄γα(∂i +

i

4
σβγΓi

βγ)Ψ + herm. conj. +mΨ̄Ψ (16)

where σβγ := i
2 [γβ , γγ ]. It can now be shown now that:

δL

δei
α = Tα

i,
δL

δΓi
αβ

= Sαβ
i; (17)

so varying the action w.r.t. the gauge field gives us back the very same conserved currents we derived from
Noether’s theorem!

6.3 Sciama Kibble field equations

We now want to add to the Lagrangian a term that describes the dynamics of the gauge potentials, like in
the case for QED. Again, there is no unique way of doing this. The simplest way is to construct a scalar
from the curvature. We create first the Ricci tensor Rici

α = ejβRij
αβ and then the scalar density eeiαRici

α.
We can now add this to our Lagrangian and get the total action:

Wtot =

∫
d4x[

1

2κ
e(eiαRici

α − 2Λ) + L(ek
γ ,Ψ, DΨ)], (18)

where also the cosmological constant Λ was added and e := det
(
eiα
)
. Varying this Lagrangian now with

respect to our gauge fields ei
α and Γi

αβ leads finally to the following equations:

Ricα
i − 1

2
ei
αRicγ

γ + Λei
α =

κ

e
Tα

i (19)

Torαβ
i − eiαTorβγ

γ + eiβTorαγ
γ =

κ

e
Sαβ

i. (20)
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These equations are known as the Einstein-Cartan field equation and they are the final result of this gauge-
theoretical approach to gravity and spacetime. They are in fact a more general version of the Einstein field
equations; we already see a big similarity in equation 19. When the intrinsic spin Sαβ

i is zero, we get
vanishing torsion and the equations reduce completely to the Einstein field equations.

With spin, we expect, according to the Einstein-Cartan equations, that torsion will become relevant. In
‘daily’ life, its effects are predicted to be very small and they haven’t been measured yet. However, a critical
density is known

ρEC ≈
m

λComptonl2Plank

,

at which the torsion will become relevant. It is expected that densities were high enough during the early
stages of our universe to actually require Einstein-Cartan formalism for a correct discription!
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