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Chapter 1

Thermodynamics of Black Holes and

Hawking Radiation

Claus Kiefer,

Fakult�at f�ur Physik, Universit�at Freiburg,

Hermann-Herder-Str. 3, 79104 Freiburg, Germany

La �loso�a �e scritta in questo grandissimo libro, che continua-

mente ci sta aperto innanzi a gli occhi (io dico l'universo), ma

non si pu�o intendere se prima non s'impara a intender la lin-

gua, e conoscer i caratteri, ne' quali �e scritto. Egli �e scritto in

lingua matematica, e i caratteri son triangoli, cerchi, ed altre �g-

ure geometriche, senza i quali mezi �e impossibile a intenderne

umanamente parola.

Galileo Galilei, Il Saggiatore

Modern Science is built upon a mathematical description of Nature.

Although its characters are no longer only triangles, circles and other geo-

metrical �gures, Galileo's characterisation of science is as valid as it was in

his time.

Black holes { the subject of this school { provide an example par

excellence for this mathematical description of Nature. Their very exis-

tence and simple geometrical properties were predicted by pure theory {

Einstein's geometric theory of gravity, the general theory of relativity. By

now, their existence has been proven by observations with almost certainty.

It is expected, not least with the advent of powerful gravitational wave de-
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Thermodynamics of Black Holes and Hawking Radiation 3

tectors, that observations of black holes will play a key role in 21st century

astronomy.

The subject of my contribution is the thermodynamics of black holes

and Hawking radiation. The main focus is therefore on quantum aspects,

although I shall elaborate on all the classical aspects of black holes that are

a necessary prerequisite for the understanding of their quantum behaviour.

Apart from the physics of the early Universe, quantum aspects of black

holes will provide the only key towards an understanding of a quantum

theory of gravity.

I shall start in the next section with a general introduction into black

hole physics. This serves both the purpose to recall the basic notions known

from elementary courses as well as to give the material and set the notation

needed for the main part. It may also be considered as an introduction to

some of the material covered by other lectures.

Section 1.2 then enters the main theme and gives a review of the laws

of black-hole mechanics. These laws have full analogies to the laws of

thermodynamics, but at the classical level of section 1.2 this analogy is

purely formal. A physical interpretation is only possible within quantum

theory and given in section 1.3. I there discuss both the derivation of

Hawking radiation and its physical interpretation. Section 1.4, then, is

devoted to the interpretation of black-hole entropy and the problem of

information loss. The last two sections enter the most speculative parts

of black holes { the possible role they play in and for a quantum theory

of gravity. Section 1.5 covers canonical gravity, while section 1.6 covers

superstring theory.

To keep the references to a minimum, I put more emphasis on cit-

ing books and reviews than on original work. Two recent proceedings

that cover all aspects are Hehl et al. (1998) and Wald (1998). A very

recommendable general introduction is Thorne (1994); an excellent short

introduction is Luminet (1998).

The metric convention is diag(1;�1;�1;�1); I follow the abstract index

notation of Wald (1984).
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1.1 Black holes { A general introduction

Black holes have a long and fascinating story, see Israel (1987). Probably

the �rst person who envisaged the existence of `dark stars' was the Rev-

erend John Michell in 1784. He wanted to develop a method to measure

the distance of stars by taking into account the `diminution of their light'

escaping the star's gravitational �eld. (Recall that the �rst parallax was

measured by Bessel in 1837, so in Michell's time this was an interesting

proposal.) At that time, Newton's corpuscular theory of light was prevail-

ing, so it was a sensible problem to study a star with an escape velocity

greater than the speed of light. (Recall that the �niteness of the speed of

light had already been noted in 1676.) Setting v = c in the expression for

the escape velocity v of a spherically symmetric body, v

2

= 2GM=r, one

�nds for the corresponding radius

r � R

0

=

2GM

c

2

� 3

M

M

�

km: (1.1)

This radius, R

0

, is known as the Schwarzschild radius (see below). For a

body with the mass of the earth, R

0

� 0:9cm only.

Michell asked: How big must a star with the density equal to the

density of the Sun be, to have v = c? Since then the radius of the star is

equal to its Schwarzschild radius R

0

, one has (R

�

is the radius of the Sun)

R

0

R

�

=

2GM

c

2

R

�

=

2G

c

2

M

�

R

3

0

R

4

�

and therefore

R

0

R

�

=

�

c

2

2G

R

�

M

�

�

1=2

=

�

R

�

R

0�

�

1=2

� 483;

where R

0�

denotes the Schwarzschild radius of the Sun. Note that this

corresponds to a mass of about 10

8

M

�

{ which coincides with the mass of

some of the supermassive black holes that are now assumed to exist in the

centre of the galaxies (see Treves' lectures)!

A similar discussion can be found in Laplace's famous work Exposition

du Syst�eme du Monde (1796). It played also a role in Soldner's discussion

(1801) about light de
ection in the neighbourhood of stars and his specu-

lation about a very massive dark object in the centre of our Galaxy.

1801 was also the year where Young discovered the interference prop-

erties of light. This gave rise to the advent of the wave theory of light, in

which the presence of dark stars did not seem to make much sense. For this

reason all reference to them was omitted in the 1808 edition of Laplace's

Exposition.
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The modern theory of black holes started with the advent of gen-

eral relativity in 1915. Soon after the �eld equations had been published,

Karl Schwarzschild discovered an exact solution to these equations, which

describes the gravitational �eld outside a spherically-symmetric mass dis-

tribution. This solution is also of the utmost importance for black holes,

and it is described below.

The �rst exact solution that describes the collapse of a body { a pres-

sureless dust cloud { was obtained by Oppenheimer and Snyder in 1939.

In this case the dust cloud crunches to a spacetime singularity at r = 0

and describes what is now known as a black hole, an object so dense that

not even light can escape. However such objects were not taken seriously

by most scientists, including Einstein, for a long time. This was in part

due to the ill-understood nature of a singularity, that occurred at r = R

0

,

see Thorne (1994) for a fascinating account of this story. For this reason it

was also not really accepted that black holes could result as the �nal stage

in the life of a star.

This changed in the sixties, and one could call the period from 1960 to

1975 the classical period of black hole research. The nature of the singu-

larity at r = R

0

was clari�ed through the introduction of Kruskal coordi-

nates (see below). The singularity theorems showed that the singularity at

r = 0 found by Oppenheimer and Snyder is not an artifact of the spherical

symmetry assumed in their model, but occurs generally under well-de�ned

conditions, see Hawking and Penrose (1996). The uniqueness theorems

(`black holes have no hair') exhibit, very surprisingly, that stationary black

holes are fully characterised by a small set of parameters (see below).

On the observational side, neutron stars were discovered in 1967. Since

neutron stars are possible �nal states of a star collapse { the others being

white dwarfs and black holes {, also the most exotic option, the black hole,

was then taken more seriously. (1967 was also the year where the name

black hole was coined by John Wheeler.) In retrospect, the year 1963 is

also very important through the discovery of quasars, although this had

not been recognised at that time.

Today, there is a general consensus that black holes do exist in Nature

and that they have been observed. The best stellar black-hole candidate

at present is probably the X-ray nova V404 Cygni with a massM > 6M

�

,

and the best supermassive black-hole candidate is the black hole that lurks

in the centre of the Milky Way and has a mass of about 2:6� 10

6

M

�

, see

the lectures by Treves.

The year 1974 saw the fascinating and surprising { theoretical { dis-

covery that black holes are not really black when quantum theory is taken

into account, but radiate with a thermal spectrum like an ordinary `black

body'. This so-called Hawking radiation is the cornerstone of all modern

theoretical developments and will play a central role in my review. The

year 1974 thus opened the quantum period of black hole research, a period
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where no end is yet in sight. The main open questions are the full quan-

tum picture of black-hole evaporation and the interpretation of black-hole

entropy. Candidates for a quantum theory of gravity, such as canonical

quantum gravity or superstring theory, attempt to �nd a solution for these

problems.

In the following I shall give a brief introduction into the Schwarz-

schild metric describing the gravitational �eld outside a spherically sym-

metric mass distribution.

1

This topic is covered in many excellent text-

books including Misner, Thorne, and Wheeler (1973), Sexl and Urbantke

(1983), Straumann (1984), Wald (1984), and { on a more mathematical

level { Hawking and Ellis (1973). The Schwarzschild metric is the unique

spherically-symmetric solution to the vacuum Einstein equations

R

ab

= 0: (1.2)

In the standard coordinates, its line element reads

ds

2

=

�

1�

2GM

r

�

dt

2

�

�

1�

2GM

r

�

�1

dr

2

� r

2

d


2

; (1.3)

where d


2

= d�

2

+sin

2

� d�

2

is the line element on the unit two-sphere. It

is a direct consequence of spherical symmetry that this metric is also static

(Birkho�'s theorem). The constant 2GM is determined by comparison

with the Newtonian limit (this is why, in spite of the vacuum equations

(1.2), G comes into play). One easily recognises the singularities in the

metric (1.3) at r = 0 and r = 2GM = R

0

. While the singularity at r = 0

is a real one (divergence of curvature invariants), the singularity at r = R

0

is a coordinate singularity, see below.

It is of interest to consider also the interior solution of a spherically-

symmetric body whose exterior solution is given by (1.3). Making the

ansatz of a static spherically-symmetric metric,

ds

2

= e

�(r)

dt

2

� e

�(r)

dr

2

� r

2

d


2

; (1.4)

and taking for matter an ideal 
uid whose energy-momentum tensor reads

T

ab

= (�+ p)u

a

u

b

� g

ab

p ; (1.5)

where � and p are respectively density and pressure, one arrives at the

1

From now on c = 1.
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TOV-solution

e

�(r)

=

�

1�

2GM(r)

r

�

�1

;

�(r) = � �(r) + 8�G

r

Z

1

dr

0

r

0

(p+ �)e

�(r

0

)

;

M(r) � 4�

r

Z

0

dr

0

r

02

�(r

0

):

It is evident that outside the body this is equal to the Schwarzschild solu-

tion.

From the covariant conservation equation T

ab;

b

= 0 one �nds

dp

dr

= �

G

�

M(r) + 4�r

3

p

�

r

2

�

1�

2GM(r)

r

�

�1

(�+ p) : (1.6)

This is the general relativistic extension of the well-known hydrodynamical

equilibrium equation

dp

dr

= �

GM(r)

r

2

� (1.7)

found in Newtonian theory. The modi�cations due to general relativity

are: In addition to M(r) one has a term proportional to p, since also

pressure generates gravity; one has � + p instead of �, since gravity also

acts on pressure; and one has r

�2

�! r

�2

(1 � 2GM(r)=r)

�1

, meaning

that gravity increases faster than r

�2

. As a consequence of this, there is

an upper limit to the mass of a neutron star.

For the very important special case � = constant, one �nds from (1.6)

that the pressure in the centre of the star diverges if its radius R �

9

8

R

0

.

This is a direct consequence of the general-relativistic feature of nonlinear-

ity that pressure generates more pressure. This lower bound on the radius

leads to an upper bound of the mass, M � M

max

= 4[ 9(3G

3

��)

1=2

]

�1

.

One can show that the existence of such limits remains for � 6= constant

(Wald 1984). The above special case of constant density was already dis-

cussed by Schwarzschild in 1916; he was pleased by this result, since it

suggested to him that the singularity at R = R

0

is of no relevance. How-

ever, this limit only shows that a static situation can no longer occur for

R �

9

8

R

0

; it does not say anything about a dynamical situation, see below.

Can one give an illustration for the geometry of the Schwarzschild

metric (1.3)? Taking t = constant (staticity) and � = constant = �=2

(spherical symmetry), one obtains the spatial line element

d�

2

=

�

1�

2GM

r

�

�1

dr

2

+ r

2

d�

2

: (1.8)
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This can be embedded in an auxiliary three-dimensional euclidean space

with line element ds

2

= dr

2

+dz

2

+ r

2

d�

2

by looking for a rotation surface

z(r) that reproduces (1.8). One immediately �nds the rotational paraboloid

z(r) = �

p

8GM

p

r � 2GM : (1.9)

The corresponding embedding diagram is shown in �gure 1.1 (schemati-

cally). One recognises that the region r < R

0

is not covered and that there

Universe
‘Our’ 

‘Another’ 
Universe

Figure 1.1. Einstein-Rosen bridge

exist two asymptotically 
at regions, one corresponding to `Our' Universe.

Note also that each point on the surface represents in fact a two-sphere.

The geometry in �gure 1.1 is often called an Einstein-Rosen bridge.

The geometry of the TOV-solution with � = constant is, for t =

constant, given by

d�

2

=

�

1�

8�Gr

2

�

3

�

�1

dr

2

+ r

2

d


2

(1.10)

and describes a space with positive curvature, i.e. a three-sphere with radius

R = [3=(8�G�)]

1=2

. Taking for the interior part of a star this solution

and for the exterior part the Schwarzschild solution, the corresponding

embedding diagram looks like �gure 1.2. Since the Einstein �eld equations

only determine the local spacetime geometry, the global topology is not

�xed by them. Instead of �gure 1.1, one can identify the two asymptotic

regions and arrive at a so-called wormhole, as depicted in �gure 1.3.
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star

horizon

Figure 1.2. Geometry in the vicinity of a star

BLACK HOLE
WHITE HOLE


Horizon
 Horizon


WORMHOLE





Figure 1.3. Wormhole

To classify the nature of the singularity at r = R

0

, one looks for a

coordinate system that is as nonsingular as possible. This proceeds in two

parts:

First, the line element (1.3) is written in the form

ds

2

=

�

1�

2GM

r

�

�

dt

2

� dr

2

�

�

� r

2

d


2

(1.11)

through the introduction of the tortoise coordinate

r

�

= r + 2GM ln

�

�

�

r

2GM

� 1

�

�

�

: (1.12)

This has the advantage that radial light rays propagate as in 
at space

since dt = � dr

�

.
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Second, one looks for a coordinate transformation (t; r

�

) 7�! (T;X)

that preserves this properties, but avoids coordinate singularities. This is

achieved by the Kruskal coordinates

X = exp

�

r

�

4GM

�

cosh

t

4GM

=

r

r

2GM

� 1 exp

�

r

4GM

�

cosh

t

4GM

;

(1.13a)

T = exp

�

r

�

4GM

�

sinh

t

4GM

=

r

r

2GM

� 1 exp

�

r

4GM

�

sinh

t

4GM

:

(1.13b)

The inverse transformation can be given only implicitly,

X

2

� T

2

=

�

r

2GM

� 1

�

exp

�

r

2GM

�

; (1.14a)

T

X

= tanh

t

4GM

: (1.14b)

The line element (1.11) then reads

ds

2

=

32(GM)

3

r

exp

�

�

r

2GM

�

�

dT

2

� dX

2

�

� r

2

(T;X)d


2

: (1.15)

Note that there is no longer any coordinate singularity at r = R

0

= 2GM ;

only the curvature singularity at r = 0 remains. The coordinate transfor-

mation (1.13) can thus be extended in a straightforward manner to r < R

0

,

and one arrives at the Kruskal diagram �gure 1.4. This is the maximal ana-

lytic extension of the Schwarzschild manifold, meaning that every geodesic

can be extended either to the value1 of its a�ne parameter or encounters

a singularity.

One recognises from �gure 1.4 that the singularity at r = 0 is, in fact,

spacelike and therefore distinguishes a certain time, not a space point.

An observer present in II cannot `see' the singularity. Since radial light

rays propagate on straight lines inclined by �45

�

to the axes, the causal

properties of the Kruskal manifold are evident.

Note in particular the presence of event horizons that separate the

various regions from each other: By no means whatsoever can any signal

emitted in II reach the outside regions I or III. The opposite is true for

region IV: no signal emitted from I or III can enter it. The region II never

becomes part of the past of an outside observer, as old as he might become.

The Einstein-Rosen bridge shown in �gure 1.1 is obtained from �gure

1.4 as the cross section t = constant through the origin. The two asymp-

totically 
at regions of �gure 1.1 are thus the regions I and III in �gure
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horizon

past singularity

future singularity

X

‘Our’ Universe

T

IV

future event

horizon
past event

I

III

II

    = 0

    = const.

    = 0

    = const.    =
 const.

r

r

r

t

r

Figure 1.4. Kruskal diagram

1.4. If one investigated instead cross sections T = constant in �gure 1.4,

one would obtain changing embedding diagrams suggesting the picture of a

dynamical collapse; this demonstrates that the Schwarzschild metric (1.3)

is static only in its exterior part, not in its interior part r < R

0

. The origin

in �gure 1.4 is often called the bifurcation two-sphere.

Instead of the Kruskal diagram (�gure 1.4) it is often more convenient

to consider a diagram of a conformally related spacetime in which the

regions of in�nity are mapped to a �nite boundary. This so-called Penrose

diagram is depicted in �gure 1.5. It will also play a crucial role in the

discussion of Hawking radiation in section 1.3. I want to note that with

some topological identi�cations one can arrive from the Kruskal manifold

shown in �gures 1.4 and 1.5 at a manifold with only one exterior solution.

This so-called geon is discussed at length by Louko and Marolf (1998), see

also the brief discussion in section 1.5 below (�gure 1.19).

It is straightforward to study the equations of motion for light rays

and observers in the Kruskal spacetime (1.15). The solutions of the corre-

sponding geodesic equation is found in the textbooks cited above. I only

want to recall that a particle moving from region I to II reaches the singu-
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    = 0

    = 0

++

- -

i
o

i
o

IV

+
i

+
i r

r
-

i
-

i

III

II

I

Figure 1.5. Penrose diagram of the Kruskal spacetime

larity at a �nite proper time { in spite of the fact that the coordinate time

t ! 1 for r ! R

0

. For example, the free-fall time s from the horizon to

the singularity is given by

s = �GM � 1:54� 10

�5

M

M

�

sec ; (1.16)

and the proper time for nongeodesic motion is even shorter. The time

(1.16) roughly corresponds to the time it would take for light to propagate

a distance of R

0

in 
at space. We shall encounter this characteristic time

at several occasions again.

I want to emphasise that the situation depicted in �gures 1.4 and 1.5

is still time symmetric. The region IV (the `white hole region') is the time

reverse of region II (the `black hole region'). This time-symmetric situation

is sometimes called an eternal hole. A genuine black hole is obtained from

a time asymmetric situation such as a star collapsing to a singularity (this

is the case, for example, in the Oppenheimer-Snyder model). The time

reverse of such a situation { a star expanding out of a singularity - is called

a white hole. Both situations are shown in �gure 1.6. It is evident that

only two of the four regions of �gure 1.4 are present. In particular, the

second asymptotically 
at region III is absent.

Coordinates that are often used to study a spherically-symmetric col-

lapse situation are the (`in-going' version of the) Eddington-Finkelstein co-

ordinates. Instead of the original Schwarzschild coordinates (t; r) one uses

(~v; r) with ~v = t + r

�

and r

�

according to (1.12). The line element (1.3)
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������

I

future event
horizon

IV
past event
horizon

T T

X

I

X

(b) white hole

II

(a) black hole

future singularity

����������

expanding star

collapsing star past singularity

Figure 1.6.

then reads

ds

2

=

�

1�

2GM

r

�

d~v

2

� 2d~vdr � r

2

d


2

: (1.17)

The spacetime diagram showing the collapse of a star to form a black hole

is shown, using these coordinates, in �gure 1.7. This diagram demonstrates

in particular that light rays emitted from the surface of the collapsing star

are received by the distant observer at later and later times. For the same

reason, the emitted light becomes increasingly redshifted according to (for

radial rays)

�z �

��

�

= exp

�

t

4GM

�

: (1.18)

For the total decrease of luminosity L one must also take into account

non-radial rays, with the result

L(t) � L

0

exp

�

�

t

3

p

3GM

�

: (1.19)

The characteristic time scale � in this formula is

� � 3

p

3GM � 2:5� 10

�5

M

M

�

sec (1.20)
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Figure 1.7. Star collapsing to form a black hole

and of the same order of magnitude as (1.16).

That a singularity occurs under a much wider range of conditions than

under a spherically symmetric situation is demonstrated by the singularity

theorems (Hawking and Penrose 1996). One needs a certain energy condi-

tion, a condition for the global structure (for example, that there are no

closed timelike curves), and the existence of so-called trapped surfaces. A

trapped surface is a surface where not only in-going light rays converge, but

also out-going light rays. Such trapped surfaces are for example present in

the shaded interior region of �gure 1.7. Under these conditions, a singular-
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ity necessarily occurs. A spacetime is called singular if it is timelike or null

geodesically incomplete and cannot be embedded in a bigger spacetime.

A characteristic feature of the collapse situation of �gure 1.7 is the oc-

currence of an event horizon that prevents the singularity from being seen

from outside. It is unknown whether in a realistic collapse an event hori-

zon always forms; this is the content of the cosmic censorship hypothesis :

Nature abhors naked singularities.

I emphasise that the cosmic censorship hypothesis does not exclude the

occurrence of spacelike past singularities such as white holes. An important

example of a spacelike past singularity is the Big Bang. One can always

put a Cauchy surface at a position later than such a past singularity and

predict all future evolution from initial data on this Cauchy hypersurface.

This is not possible for a timelike naked singularity. The apparent non-

occurrence of white holes is related to the Second Law of thermodynamics

(Zeh 1992) and will be brie
y discussed in section 1.5. Their presence is

often excluded by the Weyl tensor hypothesis (Hawking and Penrose 1996).

Can one say anything about the nature of the singularity that occurs

in a generic collapse? The general expectation is that upon approaching

the singularity so-called BKL-oscillations occur { chaotic oscillations in

tidal curvature that occur in random directions (Belinsky et al. 1982). The

nature of the singularity itself can only be clari�ed in a quantum theory of

gravity.

A most remarkable development in the mathematical study of black

holes has been the proof of various uniqueness theorems for black holes

(Heusler 1996, 1998). In the Einstein-Maxwell theory, stationary black

holes (the asymptotic �nal stage after the collapse) are uniquely charac-

terised by three parameters: mass M , angular momentum J and electric

charge q. All other degrees of freedom (`multipoles') are radiated away dur-

ing the collapse (`Black holes have no hair.') In the presence of other �elds

(e.g., non-abelian gauge �elds) this theorem no longer necessarily holds,

but the corresponding black-hole solutions are usually unstable.

I want to conclude this section with a brief description of the stationary

black-hole solutions that have charge and/or angular momentum.

The spherically-symmetric black-hole solution with electric charge q is

the Reissner-Nordstr�om solution:

ds

2

=

�

1�

2GM

r

+

Gq

2

r

2

�

dt

2

�

�

1�

2GM

r

+

Gq

2

r

2

�

�1

dr

2

�r

2

d


2

:

(1.21)

It can be generated from the Schwarzschild metric (1.3) through the sub-

stitution

M �!M �

q

2

2r

:
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The metric (1.21) is a solution to the non-vacuum Einstein equations

R

ab

�

1

2

g

ab

R = 8�GT

ab

(1.22)

with the energy-momentum tensor corresponding to a point charge,

4�T

ab

= q

2

=(2r

4

) diag(1;�1;�1;�1). In geometrical units, the unit of

charge is given by e

p

G � 1:38� 10

�34

cm.

For charge jqj <

p

GM , the metric (1.21) has coordinate singularities

at

r

�

= GM �

p

(GM)

2

�Gq

2

: (1.23)

The variable r

+

denotes the coordinate radius of the event horizon (r

+

!

R

0

for q ! 0); r

�

characterises the Cauchy horizon { the evolution of

�elds beyond the Cauchy horizon cannot be predicted from initial data on

a spacelike hypersurface. All these features can be immediately recognised

from the Penrose diagram of this solution, see �gure 1.8

The interesting feature is that the singularity at r = 0 is now timelike

{ and therefore is a naked singularity for some regions, e.g. regions III { and

that there is an in�nite repetition of this structure. It should be mentioned,

however, that this structure is unstable with respect to small perturbations

and that BKL-oscillations are expected to occur; they would produce a

spacelike singularity. Recent years have seen a tremendous progress in

understanding the internal structure of black holes (Israel 1998).

The special case jqj =

p

GM is referred to as describing an extremal

black hole; this case plays a crucial role in the quantum gravity sections 1.5

and 1.6. The two horizons now coincide, and the corresponding Penrose

diagram is shown in �gure 1.9. For jqj >

p

GM , there is no event horizon

present: Instead of a black hole, there is now a naked singularity. The

Penrose diagram is shown in �gure 1.10. From an astrophysical point of

view, charged black holes are not expected to play any role since they

would rapidly attract opposite charges and discharge. They play, however,

a useful role as a toy model for the realistic case of rotating black holes to

which I now turn.

The solution for a rotating stationary black hole, the so-called Kerr

solution, is no longer spherically symmetric and static: It is axisymmetric

and only stationary. This is characterised by the presence ot the two Killing

vectors �

a

= (

@

@t

)

a

and  

a

= (

@

@�

)

a

. Apart from its massM , the solution is

characterised by its angular momentum J . It is sometimes more convenient

to use the parameter a = J=(GM) that has unit of length. In particular

coordinates, so-called Boyer-Lindquist coordinates, the Kerr line element
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Figure 1.8. Penrose diagram for the Reissner-Nordstr�om solution (jqj <

p

GM)

reads

ds

2

=

�

�

2

�

dt� a sin

2

� d�

�

2

�

sin

2

�

�

2

�

(r

2

+ a

2

)d�� adt

�

2

�

�

2

�

dr

2

� �

2

d�

2

(1.24)

with

�

2

� r

2

+ a

2

cos

2

� ;

� � r

2

� 2GMr + a

2

:

(1.25)

The most general solution for a stationary black hole is the Kerr-

Newman solution: It possesses in addition an electric charge q and can be
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Figure 1.9. Penrose diagram for the extremal Reissner-Nordstr�om solution

(jqj =

p

GM). The points p don't belong to the singularity
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oi

+

I
r

singularity
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p

Figure 1.10. Penrose diagram for the Reissner-Nordstr�om solution correspond-

ing to a naked singularity (jqj >

p

GM)

obtained from (1.24) through the substitution

M �!M �

q

2

2r

:

The Penrose diagrams for the Kerr solution show similar features as in

�gures 1.8, 1.9 and 1.10. (The singularity at �

2

= 0 is now a ring singularity

through which one can `escape' to a strange anti-gravity universe.) For

jaj < GM one has coordinate singularities at r

�

= GM �

p

(GM)

2

� a

2

,

r

+

referring to the event horizon, and r

�

referring to the Cauchy horizon.

Again, jaj = GM is the extremal case and jaj > GM describes a naked

singularity.
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In the next section I shall discuss in which sense these stationary black-

hole solutions obey formally the laws of thermodynamics.
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1.2 The laws of black-hole mechanics

In this section I shall discuss the laws of black-hole mechanics, laws obeyed

by the stationary black-hole solutions, that formally mimic the laws of

phenomenological thermodynamics. A general reference is Wald (1994), a

very readable short introduction is Bekenstein (1980).

For this purpose it is illustrative to follow the historical route and

start with some special properties of rotating black holes. The Kerr solu-

tion (1.24) exhibits the feature that the Killing �eld �

a

= (

@

@t

)

a

becomes

spacelike (�

a

�

a

< 0) in a certain region outside the black hole. (For the

spherically-symmetric black holes, this happens only inside the event hori-

zon.) This region is the so-called ergosphere, characterised by

r

+

< r < GM +

p

(GM)

2

� a

2

cos

2

� : (1.26)

The ergosphere is shown (for a � GM) in �gure 1.11.
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black hole

rotation

Figure 1.11. Ergosphere of a rotating black hole

Since the Killing �eld �

a

generates time translations at asymptotic

in�nity, its spacelike nature in the ergosphere means that an observer there

would have to travel with more than the speed of light to follow an orbit

of �

a

{ he thus cannot remain static and he is forced to rotate with the

hole. This is the extreme version of the Lense-Thirring e�ect that is very

weak in the vicinity of the Earth and that only recently has been observed.

Quite generally, black holes are characterised by general relativistic e�ects

that under ordinary circumstances are only minor corrections.

For r ! r

+

, the coordinate angular velocity of this rotation becomes




H

=

a

r

2

+

+ a

2

=

a

2GMr

+

: (1.27)
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This can be interpreted as the angular velocity of the hole itself. The

Killing �eld

�

a

� �

a

+


H

 

a

(1.28)

is tangential to the horizon.

Since �

a

�

a

(r

+

) = 0, �

a

is null (and future-directed) on the horizon;

since the horizon is itself a null surface, �

a

is at the same time tangential

and normal to the horizon { the horizon thus also constitutes a so-called

Killing horizon.

We note that the area of a closed spacelike section through the event

horizon is

A =

Z

r=r

+

p

g

��

g

��

d�d� = 4�(r

2

+

+ a

2

) � 16�(GM

irr

)

2

; (1.29)

where the irreducible mass M

irr

has been introduced. Its signi�cance will

be explained below.

As Penrose noted in 1969, the presence of the ergosphere leads to the

possibility that energy can be extracted from the black hole. Because �

a

is spacelike in the ergosphere, the energy of a test particle, de�ned by

E = p

a

�

a

, need not be positive. Suppose a projectile with energy E

0

is sent into the ergosphere. Let the projectile disintegrate while being

in the ergosphere, with one part (with energy E

1

) falling down the hole

and the other part (with energy E

2

) escaping to in�nity. If E

1

< 0, the

recovered fragment has an energy bigger than E

0

(E

0

= E

1

+ E

2

). This

energy must, of course, have been extracted from the mass of the black

hole; M ! M � jE

1

j. One also �nds for the angular momentum L of the

lost fragment that L < E

1

=


H

. So a negative-energy particle has negative

angular momentum.

How much energy can be extracted in this way from the black hole?

It is clear that the black hole parameters should obey �J < �M=


H

after

the above fragment has been swallowed. Christodoulou was able in 1970

to rewrite this condition as a condition on the irreversible mass introduced

in (1.29),

�M

2

irr

=

Mr

+

p

(GM)

2

� a

2

(�M � 


H

�J) > 0 : (1.30)

Since the irreducible mass of the black hole can thus not be lowered by

the Penrose process, the mass itself cannot be reduced belowM

irr

(M

0

; J

0

),

where M

0

, J

0

denote the initial mass and angular momentum. Since

M

irr

(M

0

; J

0

) � M

0

=

p

2, at most 29 % of the mass can be extracted by

the Penrose process. The parameter space allowed by the Penrose process

is shown in �gure 1.12.
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2
J > M

2

J

M

J < M 

M   (M  ,J  )

A > A0

irr      0     0

Figure 1.12. The region A > A

0

reachable via the Penrose process

I should note that there exists also a wave analogue of the Penrose

process, the so-called superradiance. Consider an incident wave of the form

�

0

(r; �) exp(�i!t) exp(im�): For 0 < ! < m


H

, the re
ected wave has an

energy greater than the incident wave, as has been noted by Starobinsky

and Zel'dovich in the seventies.

The Penrose process could become of utmost importance in astro-

physics: rotational energy of a black hole immersed in a magnetic �eld can

be transferred to an escaping jet (`Blandford-Znajek process') as observed

in active galaxies.

From M

irr

one also �nds, see (1.29),

�A � 0 ; (1.31)

i.e. the area of the horizon cannot decrease.

Surprisingly, this area law holds much more generally than just for the

Penrose process. This generalisation is the content of Hawking's famous

theorem that he proved in 1971:

For a predictable black hole satisfying R

ab

k

a

k

b

� 0 for all null k

a

,
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the surface area of the future event horizon never decreases with

time.

A `predictable' black hole is one for which the cosmic censorship hypothesis

holds (see Wald 1984) { this is thus a major assumption for the area law.

I emphasise that the time asymmetry comes into play because a statement

is made about the future horizon, not the past horizon; the analogous

statement for white holes would then be that the past event horizon never

increases. I also emphasise that the area law only holds in the classical

theory, not in the quantum theory (see section 1.3).

The area law seems to exhibit a close formal analogy to the Second

Law of thermodynamics { there the entropy can never decrease with time

(for a closed system). However, the conceptual di�erence could not be more

drastic: while the Second Law is related to statistical behaviour, the area

law is just a theorem in di�erential geometry. That the area law is in fact

directly related to the Second Law will become clear in the course of this

section.

Further support for this analogy is given by the existence of analo-

gies to the other laws of thermodynamics. The Zeroth Law states that

there is a quantity, the temperature, that is constant on a body in thermal

equilibrium. Does there exist an analogous quantity for a black hole?

We introduced in (1.28) the Killing �eld �

a

that is null and future-

directed on the horizon. Since then in particular �

a

�

a

is constant (zero)

on the horizon, its gradient is normal to the horizon and therefore parallel

to �

a

. One has

r

a

(�

b

�

b

) = �2��

a

; (1.32)

where � is the so-called surface gravity that plays an important role in both

classical and quantum black-hole physics. For a Kerr black hole, � is given

by

� =

p

(GM)

2

� a

2

2GMr

+

a!0

�!

1

4GM

=

GM

R

2

0

; (1.33)

and one recognises in the Schwarzschild limit the well-known expression for

the Newtonian gravitational acceleration. Note that � also sets the time

scale for the redshift during collapse, see (1.18). One can show that � is

the limiting force that must be exerted at in�nity to hold a unit test mass

in place when approaching the horizon. This justi�es the name surface

gravity.

It is now possible to prove (see Wald 1984) that � is in fact constant

on the event horizon. This is the desired formal analogy to the constancy

of temperature on a body in thermal equilibrium.

The surface gravity also enters the relation between two important pa-

rameters: The horizon is generated by null geodesics that are conveniently
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parametrised by their a�ne parameter �. On the other hand, there ex-

ists the so-called Killing parameter, v, that parametrises the orbits of the

Killing �eld (1.28). Both parameters are related by

� / e

�v

; (1.34)

a relation that will be of crucial relevance in the discussion of the Hawking

e�ect in section 1.3.

With a tentative formal relation between surface gravity and temper-

ature, and between area and entropy, the question arises whether a First

Law of thermodynamics can be proved. This can in fact be done and the

result for a Kerr-Newman black hole is

dM =

�

8�G

dA+


H

dJ +�dq ; (1.35)

where � denotes the electrostatic potential. As Wald (1994) emphasises,

this relation can be obtained by conceptually di�erent methods: A physi-

cal process version whereby a stationary black hole is altered by in�nitesi-

mal physical processes, and an equilibrium state version whereby the areas

of two in�nitesimally nearby stationary black-hole solutions to Einstein's

equations are compared. Both methods lead to the same result (1.35).

Since M is the energy of the black hole, (1.35) is the analogue to the

First Law of thermodynamics given by

dE = TdS � pdV + �dN : (1.36)

`Modern' derivations of (1.35) make use of both Hamiltonian and La-

grangian methods of general relativity (Wald 1998). For example, a First

Law follows from an arbitrary di�eomorphism invariant theory of gravity

whose �eld equations can be derived from a Lagrangian.

What about the Third Law of thermodynamics? A `physical process

version' was proved by Israel { it is impossible to reach � = 0 in a �nite

number of steps. This corresponds to the `Nernst version' of the Third

Law. Whether the stronger `Planck version' holds, is a matter of dispute

and will be discussed at some length in section 1.5. The `Planck version'

states that the entropy goes to zero (or a material-dependent constant) if

the temperature approaches zero. The above analogies are summarised in

table 1.1.

The identi�cation of the horizon area with an entropy can be obtained

from a conceptually di�erent point of view. If a box with, say, thermal

radiation of entropy S is thrown into the black hole, it seems as if the

Second Law could be violated, since the black hole is characterised only by

mass, angular momentum, and charge, and nothing else. The rescue of the

Second Law immediately leads to the concept of a black-hole entropy, as

will be discussed now (Bekenstein 1980; Sexl and Urbantke 1983).
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Law Thermodynamics Stationary Black Holes

Zeroth

T constant on a body in

thermal equilibrium

� constant on the

horizon of a black hole

First dE = TdS � pdV + �dN dM =

�

8�G

dA+


H

dJ +�dq

Second dS � 0 dA � 0

Third T = 0 cannot be reached � = 0 cannot be reached

Table 1.1.

Consider a box with thermal radiation of mass m and temperature T

lowered from a spaceship far away from a spherically-symmetric black hole

towards the hole (�gure 1.13). As an idealisation, both the rope and the

walls are assumed to have negligible mass. At a coordinate distance r from

the black hole, the energy of the box is given by

E

r

= m

r

1�

2GM

r

r!R

0

�! 0 : (1.37)

If the box is lowered down to the horizon, the energy gain is thus given by

m. The box is then opened and thermal radiation of mass �m escapes into

the hole. It the box is then closed and heightened again to the spaceship,

the energy loss is m� �m. In total the energy �m of the thermal radiation

can be transformed into work with a degree of e�ciency � = 1 . This looks

as if one possessed a perpetuum mobile of the second kind.

The key to the resolution of this apparent paradoxe lies in the obser-

vation that the box must be big enough to contain the wavelength of the

enclosed radiation. This, in turn, leads to a lower limit on the distance

that the box can approach the horizon. Therefore, only part of �m can be

transformed into work, as I shall show now.

According to Wien's law, one must have a linear extension of the box

of at least

�

max

�

~

k

B

T

: (1.38)

I emphasise that at this stage Planck's constant ~ comes into play. The

box can then be lowered down to the coordinate distance �r (assumed to

be � 2GM) from the black hole, where according to the Schwarzschild

metric (1.3) the relation between �r and �

max

is

�

max

�

2GM+�r

Z

2GM

�

1�

2GM

r

�

�

1

2

dr � 2

p

2GM�r =) �r �

�

2

max

8GM

:
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r 

T >> TBH

with mass M

(nonrotating) 
black hole

Figure 1.13. Gedankenexperiment to demonstrate the Second Law of thermo-

dynamics for black holes

According to (1.37), the energy of the box at r = 2GM + �r is

E

2GM+�r

= m

r

1�

2GM

2GM + �r

�

m�

max

4GM

�

m~

4Gk

B

TM

:

Recalling that according to (1.35) the formal temperature of the black

hole, T

BH

, is proportional to the surface gravity � = 1=(4GM), the energy

of the box before opening is

E

(before)

2GM+�r

� m

T

BH

T

;
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while after opening it is

E

(after)

2GM+�r

� (m� �m)

T

BH

T

:

The degree of e�ciency of transforming thermal radiation into work is thus

given by

� �

�

�m� �m

T

BH

T

��

�m = 1�

T

BH

T

< 1 ;

which is just the well-known Carnot limit for the e�ciency of heat engines.

From the First Law (1.35) one then �nds for the entropy of the black

hole S

BH

/ A = 16�(GM)

2

: It is this agreement of conceptually di�erent

approaches to black-hole thermodynamics that gives rise to the con�dence

into the results. In the next section I shall show how all these formal results

can be physically interpreted in the context of quantum theory.
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1.3 Hawking radiation

We have already seen in the gedankenexperiment discussed in the last sec-

tion that ~ enters the scene, see (1.38). That Planck's constant has to

play a role, can be seen also from the First Law (1.35). Since T

BH

dS

BH

=

�=(8�G) dA, one must have

T

BH

=

�

G�

; S

BH

=

�A

8�

with an undetermined factor �. What is the dimension of �? Since S

BH

has the dimension of Boltzmann's constant k

B

, k

B

=� must have the dimen-

sion of a length squared. There is, however, only one fundamental length

available, the Planck length

l

p

=

p

G~ � 10

�33

cm: (1.39)

(We do not yet consider string theory, see section 6).

2

Therefore,

T

BH

/

~�

k

B

; S

BH

/

k

B

A

G~

: (1.40)

The determination of the precise factors in (1.40) is the content of this

section. To this purpose, it is necessary to brie
y introduce the frame-

work of quantum theory in curved spacetime. A standard reference for

this is Birrell and Davies (1982), see also Wald (1994). An excellent brief

introduction is Wipf (1998). Before entering this topic, I want to brie
y

recapitulate some basic notions of quantum �eld theory in 
at Minkowski

space. There, the Poincar�e symmetry { together with Wightman axioms

{ select an invariant vacuum state and therefore a well-de�ned notion of

particles. All inertial observers agree on these notions.

Consider for simplicity a free massive scalar �eld �(x) satisfying the

Klein-Gordon equation (�+ (m=~)

2

)�(x) = 0. It can be decomposed into

positive and negative frequencies with respect to the distinguished Killing

time t according to

�(x) =

1

(2�)

3=2

Z

d

3

k

p

2!

k

h

a

k

exp(ikx� i!

k

t) + a

y

k

exp(�ikx+ i!

k

t)

i

� �

(+)

(x) + �

(�)

(x) ; (1.41)

where !

k

=

p

k

2

+ (m=~)

2

. In quantum theory, �(x) is a �eld operator

that satis�es

[�(x; t); �

�

(y; t)] = i~ �

(3)

(x� y) ; (1.42)

2

It is amusing to note that Planck found this length before the `invention' of ~, since

~ is implicitly contained in Wien's law, cf. (1.38).
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where �

�

is the canonical momentum operator. From (1.41) and (1.42) one

has

[a

k

; a

y

k

0

] = �

(3)

(k � k

0

) ; (1.43)

the well-known relations for the annihilation and creation operators of har-

monic oscillators. From these relations the standard Fock space can be

constructed; the vacuum state j0i is de�ned by

a

k

j0i = 0; 8

k

; (1.44)

and excited states are found through application of the creation operators

a

y

k

. In the presence of interactions, these concepts only hold in asymptotic

`free' regions. Since I shall be concerned with linear quantum �elds only,

it will not be necessary to elaborate on this.

I shall now consider quantum �eld theory on a globally hyperbolic

spacetime with metric g

ab

(detg

ab

� g). Restricting again attention to

(minimally coupled) scalar �elds, the curved-space version of the Klein-

Gordon equation reads

�

g

�+ (m=~)

2

� = 0 (1.45a)

with

�

g

=

1

p

�g

@

a

[

p

�gg

ab

@

b

] : (1.45b)

Consider now two solutions, u

1

and u

2

, of (1.45a,1.45b). Their con-

jugate momenta are �

1

= n

a

r

a

u

1

and �

2

= n

a

r

a

u

2

, where n

a

denotes

the normal vector with respect to some spacelike hypersurface �. One can

de�ne the following inner product for such solutions:

(u

1

; u

2

) � i

Z

�

(u

�

1

�

2

� �

�

1

u

2

)d

3

x = (u

2

; u

1

)

�

: (1.46)

The Klein-Gordon equation guarantees that this inner product is indepen-

dent of the choice of � (`independent of time'), but it is not positiv de�nite.

Choose now a complete set of solutions fu

k

; u

�

k

g (k can stand here for

an arbitrary index, not necessarily k) normalised according to

(u

k

; u

k

0

) = �(k; k

0

) ) (u

�

k

; u

�

k

0

) = ��(k; k

0

) (1.47)

and

(u

k

; u

�

k

0

) = 0 : (1.48)
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The fu

k

g are the generalisation of the plane-wave solutions

u

k

=

1

(2�)

3=2

exp(ikx� i!

k

t)

p

2!

k

used in (1.41) to curved spacetime. Since fu

k

; u

�

k

g are a complete set of

solutions, any �eld operator � can { analogous to the 
at-space case (1.41)

{ be expanded with respect to them,

�(x) =

Z

d�(k)

�

a

k

u

k

+ a

y

k

u

�

k

�

: (1.49)

Here, d�(k) is an abbreviation for the used measure. From (1.49) follows

a

k

= (u

k

; �) and a

y

k

= �(u

�

k

; �). As in the 
at case, a Fock space can be

constructed from the vacuum j0i

u

, where

a

k

j0i

u

= 0; 8

k

: (1.50)

The vacuum state is supposed to be normalised according to

u

h0j0i

u

, where

h j i denotes the positive de�nite inner product in the constructed Hilbert

space (not to be confused with the inner product (1.46)).

The crucial point is now that in a general spacetime { in contrast to

inertial coordinates for 
at space { there is no distinguished set of coor-

dinates, in particular no distinguished time, with respect to which (1.49)

can be uniquely de�ned. This is of course a consequence of the `general

covariance' of general relativity. The de�nition of the vacuum therefore

depends on the chosen set of solutions { this fact has already been taken

into account by adjoining the index `u' to j0i in (1.50).

One can therefore expand the �eld into a di�erent set of complete

solutions fv

p

; v

�

p

g,

�(x) =

Z

d�(p)

�

b

p

v

p

+ b

y

p

v

�

p

�

: (1.51)

One can also expand one basis with respect to the other,

v

p

=

Z

d�(k) (�(p; k)u

k

+ �(p; k)u

�

k

) ; (1.52)

where � and � are the so-called Bogolubov coe�cients :

�(p; k) = (u

k

; v

p

); �(p; k) = �(u

�

k

; v

p

) : (1.53)

In an obvious matrix notation (suppressing the indices (p; k)), the Bogol-

ubov coe�cients obey the following conditions

��

y

� ��

y

= 1 ; (1.54)

��

T

� ��

T

= 0 : (1.55)
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Comparing the alternative expressions (1.49) and (1.51), one can also ex-

press the `old' creation and annihilation operators with respect to the `new'

ones,

�

a a

y

�

=

�

b b

y

�

�

� �

�

�

�

�

�

: (1.56)

For a given Fock space, the operator a

y

k

a

k

`measures' the particle content of

type k in a given state and is therefore called the particle number operator.

Its expectation value with respect to the vacuum is of course zero. If,

however, the expectation value of the `new' particle number operator b

y

p

b

p

with respect to the `old' vacuum j0i

u

is calculated, the result does not

vanish in general:

u

h0jb

y

p

b

p

j0i

u

=

Z

d�(k)j�(p; k)j

2

: (1.57)

The `old' vacuum thus contains `new' particles! Note that the integral in

(1.57) may even be divergent, in which case both Fock spaces cannot be

related by a unitary transformation (this is a possibility that exists in the

case of in�nitely many degrees of freedom).

For quantum �eld theory on a curved spacetime (this is also true for

general external �elds) the de�nition of a vacuum { and therefore the whole

particle concept { is ambiguous if �(p; k) is non-vanishing; as Paul Davies

once noted: `Particles don't exist.'

How can one de�ne a sensible vacuum state? In general, no set of

solutions to (1.45a,1.45b) is distinguished. An exception holds if the ex-

ternal spacetime exhibits certain symmetries. For a stationary spacetime

{ a spacetime that has a timelike Killing vector �

a

� (@=@t)

a

{ there are

distinguished modes of positive frequency that obey

@u

k

@t

= �i!

k

u

k

: (1.58)

(Strictly speaking, the left-hand side is the Lie derivative with respect to

�

a

.) Such solutions are a natural generalisation ot the plane waves in

Minkowski space, see (1.41). If a di�erent set of solutions fv

p

g is a linear

combination of the fu

k

g only, i.e. independent of the fu

�

k

g, the Bogolubov

coe�cient �(p; k) is zero and both set of modes share a common vacuum

state. For �(p; k) 6= 0, fv

p

g contains a mixture of positive frequencies fu

k

g

and negative frequencies fu

�

k

g and the `v-vacuum' contains `u-particles'

(and vice versa).

3

3

Even if there are no Killing �elds present, there exists for a globally hyperbolic

spacetime a distinguished vacuum state if the two-point functions obey the so-called

Hadamard condition (Wipf 1998).
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Before discussing the Hawking e�ect, I want to address brie
y an anal-

ogous e�ect discovered by Unruh (1976) that already exists for non-inertial

observers in 
at space. As remarked above, only inertial observers share the

standard Minkowski vacuum. What happens for non-inertial observers?

IV

III

II
acceleration

horizon

I
X

T

    =
 const.

    = const.τ ρ

Figure 1.14. Uniformly accelerated observer in Minkowski space

Consider an observer that is uniformly accelerating along the X-direc-

tion in (1+1)-dimensional Minkowski spacetime (�gure 1.14). To emphasise

the analogy with the Kruskal situation (�gure 1.4), the Minkowski carte-

sian coordinates are labelled here by upper-case letters. The orbit of this

observer is the hyperbola shown in �gure 1.14. One recognises that, as in

the Kruskal situation, the observer encounters a horizon; there is, however,

no singularity behind this horizon. The region I is a globally hyperbolic

spacetime on its own { the so-called Rindler spacetime. This spacetime

can be described by coordinates (�; �) that are connected to the cartesian

coordinates via the coordinate transformation

�

T

X

�

= �

�

sinh a�

cosha�

�

; (1.59)

where a is a constant (the orbit in �gure 1.14 describes an observer with

acceleration a, who has � = 1=a).
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Since

ds

2

= dT

2

� dX

2

= a

2

�

2

d�

2

� d�

2

; (1.60)

the orbits � = constant are also orbits of a timelike Killing �eld @=@� .

It is clear that � corresponds to the external Schwarzschild coordinate t

and that � corresponds to r in �gure 1.4. Like in the Kruskal case, @=@�

becomes spacelike in regions II and IV.

The analogy with Kruskal becomes even more transparent if the

Schwarzschild metric (1.3) is expanded around the horizon at r = 2GM .

Introducing �

2

=(8GM) = r � 2GM and recalling (1.33), one has

ds

2

� �

2

�

2

dt

2

� d�

2

�

1

4�

2

d


2

: (1.61)

Comparison with (1.60) shows that the �rst two terms on the right-hand

side of (1.61) correspond exactly to the Rindler spacetime (1.60) with the

acceleration a replaced by the surface gravity �. The last term in (1.61)

describes a two-sphere with radius (2�)

�1

.

4

An inertial observer in Minkowski spacetime would of course employ

the quantisation of a massless scalar �eld according to (1.41). In (1+1)-

dimensions one has, with !

k

= jkj,

�(T;X) =

Z

dk(a

k

u

k

+ a

y

k

u

�

k

) ; (1.62a)

u

k

(T;X) =

1

p

4�jkj

e

�ijkjT+ikX

: (1.62b)

The accelerated observer is restricted to region I and employs a quantisation

scheme that is adapted to the `Rindler coordinates' � and �. Instead of the

plane waves (1.62b) one has to use the corresponding set of solutions to

(1.45a,1.45b) rewritten in terms of � and �.

This leads to (Birrell and Davies 1982)

�(�; �) =

Z

dp(b

p

v

p

+ b

y

p

v

�

p

) ; (1.63a)

v

p

(�; �) =

1

p

4�jpj

e

�ijpj�

�

ip=a

: (1.63b)

4

It is this term that is responsible for the non-vanishing curvature of (1.61) compared

to the 
at-space metric (1.60) whose extension into the (neglected) other dimensions

would be just �dY

2

� dZ

2

.
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Calculating the Bogolubov coe�cient �(p; k) = �(u

�

k

; v

p

), see (1.53), one

�nds for the expectation value of the particle number operator b

y

p

b

p

with

respect to the standard Minkowski vacuum j0i

M

the expression

M

h0jb

y

p

b

p

j0i

M

=

Z

dkj�(p; k)j

2

= (volume)�

1

e

2�jpj=a

� 1

:

(1.64)

(The volume term becomes in�nite if the orbit is in�nitely long.) Equation

(1.64) describes a Planckian distribution at a temperature

T

U

=

~a

2�k

B

� 4� 10

�23

a

h

cm

sec

2

i

K : (1.65)

An observer that is accelerating uniformly through Minkowski space thus

sees a thermal distribution of particles. This is an important manifestation

of the non-uniqueness of the vacuum state in quantum �eld theory, even

for 
at spacetime.

A more detailed investigation of an accelerated detector makes use of

the so-called response function F(E) as evaluated along the spacetime path

x(�) � (T (�); X(�)),

F(E) =

1

Z

�1

d�

1

Z

�1

d�

0

e

�iE(���

0

)=~

M

h0j�(x(�))�(x(�

0

))j0i

M

; (1.66)

where E denotes the detector's energy.

For the situation of the uniformly accelerating observer, the two-point

function appearing in (1.66) again contains a Planck factor with the temper-

ature (1.65), see Birrell and Davies (1982). The vacuum two-point function

for a uniformly accelerated detector corresponds to the thermal two-point

function for an inertial detector.

Can the Unruh temperature (1.65) be observed? Although T

U

is tiny

for most accelerations, it might be noticeable for electrons in accelerators

where spin precession is used as `detector'. Unruh (1998) has argued that

the well-known depolarisation e�ect of an electron in a storage ring can be

interpreted as a vacuum e�ect of this kind; however, due to the circular

nature of the acceleration, the e�ect is not a thermal one.

5

I shall now turn to the case of black holes. From the form of the

line element near the horizon, (1.61), one can already anticipate that {

according to the equivalence principle { there is a black hole radiation with

5

A di�erent, but related, e�ect is the radiation produced by an accelerating mirror

through Minkowski space. It has been argued that the observed sonoluminescence is a

manifestation of this e�ect, see e.g. Liberati et al. (1998).



Hawking radiation 35

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

collapsing

singularity

γ

II

γH

γH

horizon

I

future

star

event

-

+

i
o

Figure 1.15. Penrose diagram showing the collapse of a star to form a black

hole; 
 denotes a light ray that is traced back from I

+

through the collapsing

star to I

�

.

temperature (1.65) in which a is replaced by �. This is in fact what we

shall �nd.

The following discussion follows the original calculation performed by

Hawking (1975). We consider a spherically-symmetric star that collapses

to form a black hole, see �gure 1.15. I shall again treat the case of a

scalar �eld, see (1.45). Because the background is spherically symmetric,

a solution of the Klein-Gordon equation may be separated according to

�(x) =

f(t; r)

r

Y

lm

(�; �) : (1.67)

Inserting this ansatz into (1.45) and using the coordinate r

�

, see (1.12),
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one �nds

@

2

f

@t

2

�

@

2

f

@r

2

�

+ V (r

�

)f = 0 : (1.68)

This is just a two-dimensional wave equation with a potential

V (r

�

) =

�

1�

2GM

r

��

l(l+ 1)

r

2

+

2GM

r

3

+

�

m

~

�

2

�

: (1.69)

The task now is to solve this equation with appropriate boundary condi-

tions. For r approaching the horizon, r ! 2GM , the potential vanishes and

(1.68) becomes a free wave equation. For r !1, the potential approaches

(m=~)

2

for m 6= 0 and zero for m = 0. For simplicity, I shall restrict myself

to m = 0, but this qualitatively also re
ects the case m 6= 0.

It is convenient to use the null coordinates

u = t� r

�

; v = t+ r

�

; (1.70)

that play the role of a retarded and an advanced time, respectively. In

�gure 1.15, v runs along I

�

from �1 to +1, and u runs along I

+

from

�1 to +1.

Considering for the moment the full Kruskal spacetime, �gure 1.5, the

solution to (1.68) is for m = 0 uniquely �xed by either specifying f(t; r) on

the union of future horizon and I

+

or on the union of past horizon and I

�

.

On I

+

and I

�

there is a well-de�ned notion of positive frequency in

the sense of (1.58) (f / exp(�i!t)), while there is some ambiguity in this

de�nition on the horizon. One can there, for example, use either the a�ne

parameter or the Killing parameter, which are related by (1.34). The exact

de�nition is, however, irrelevant as long as one restricts attention only to

`measurements' in region I, since the de�nition of creation and annihilation

operators of particles escaping to I

+

is independent of the notion used

(Wald 1984).

We now consider solutions in region I of the full Kruskal manifold that

have positive frequency, f

!

/ exp(�i!t). Since for r ! 2GM(r

�

! �1)

the potential (1.69) vanishes, such solutions approach close to the horizon

`plane waves' in (t; r

�

)-coordinates,

f

!

(t; r

�

) = ae

�i!t

e

i!r

�

+ be

�i!t

e

�i!r

�

= ae

�i!u

+ be

�i!v

� f

(out)

!

+ f

(in)

!

:

(1.71)

The solution f

(out)

!

is referred to as `outgoing', since u = constant cor-

responds to `lightrays' escaping tp I

+

; analogously, the solution f

(in)

!

is
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`ingoing', since v = constant corresponds to `light rays' penetrating the

horizon.

It is now important to notice that close to the horizon u!1 and that

therefore f

(out)

!

rapidly oscillates. This becomes especially transparent by

using Kruskal coordinates: de�ning from the standard coordinates (T;X)

in (1.13) the corresponding null coordinates

U = T �X; V = T +X ; (1.72)

one has

U = � exp

�

�

u

4GM

�

= �e

��u

; (1.73a)

V = exp

�

v

4GM

�

= e

�v

; (1.73b)

and therefore

f

(out)

!

= a e

i!�

�1

ln(�U)

: (1.74)

Note that U ! 0 as the horizon is approached. Because of the rapid oscilla-

tion of f

(out)

!

, the approximation of geometric optics should be excellent for

r ! 2GM ; this is why it is justi�ed to talk of `light rays' (more precisely,

rays corresponding to the scalar �eld).

Consider a null geodesic that is entering the black-hole region II from

region I; be � its a�ne parameter (� = 0 corresponding to the crossing

point with the horizon). Then U = �� (since ds

2

� dUdV + : : : , U is the

a�ne parameter, not u) and one has

f

(out)

!

= a e

i!�

�1

ln�

: (1.75)

The frequency of each mode thus diverges at the horizon { an extreme

manifestation of the gravitational redshift (compare (1.18)) that is also

responsible for the behaviour of the modes of a quantum �eld. In fact, this

redshift lies at the heart of the Hawking e�ect.

Hawking (1975) now noticed that it is most convenient to consider in

the collapse diagram (�gure 1.15) an outgoing ray at I

+

and trace it back to

I

�

; one part is directly scattered back to I

�

, the other part passes through

the collapsing matter and reaches I

�

{ it is this part that is of interest for

our analysis. In �gure 1.15, 
 is an example of such a ray; the passage

through the collapsing star corresponds in the diagram to a re
ection at

the origin. The ray 


H

denotes a limiting ray that stays on the future

horizon and is traced back to I

�

. Since the considered rays (such as 
) are

close to 


H

, the potential V in (1.68) is negligible.

The propagator of 
 back to I

�

reaches I

�

at a distance � in the a�ne

parameter along null geodesics on I

�

(this is because ds

2

= �dudv + : : :
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along I

�

, so that v is there the a�ne parameter). If the crossing of 


H

with

I

�

is at v = 0, 
 reaches I

�

at v = ��.

The propagation of (1.75) therefore leads to the following solution in

the vicinity of v = 0 on I

�

:

f

!

(v) =

�

a e

i!�

�1

ln(�v)

; v < 0

0 ; v > 0 :

(1.76)

Since 


H

is the limiting ray, f

!

(v) vanishes for v > 0. To obtain the

frequency content of (1.76), its Fourier transform is calculated:

~

f

!

(!

0

) =

1

p

2�

1

Z

�1

dv e

i!

0

v

f

!

(v)

�

0

Z

�1

dv e

i!

0

v

e

i!�

�1

ln(�v)

=

1

Z

0

dv e

�i!

0

v

v

i!�

�1

:

(1.77)

(Note the similarity of the integrand to (1.63b) for the Unruh e�ect.) The

integral (1.77) can be evaluated if use is made of the integral formula

1

Z

0

dxx

��1

exp[�(A+ iB)x] =

�(�)(A

2

+B

2

)

��=2

exp

�

�i� arctan

B

A

�

:

(1.78)

One then easily recognises that, taking !

0

> 0,

~

f

!

(�!

0

) = �e

!��

�1

~

f

!

(!

0

) 6= 0; (1.79)

so that a mode of positive frequency on I

+

is a mixture of positive and

negative frequency on I

�

! To �nd the exact amount of particle creation, the

Bogolubov-coe�cient � has to be calculated. Decomposing in the manner

of (1.52) the solution f

!

(v), (1.76), which is of positive frequency on I

+

, into

positive and negative frequencies on I

�

, one has up to numerical factors

f

!

(v) �

1

Z

0

d!

 

�

!!

0

e

�i!

0

v

p

!

0

+ �

!!

0

e

i!

0

v

p

!

0

!

: (1.80)

On the other hand, using (1.79),

f

!

(v) =

1

p

2�

1

Z

�1

d!

0

e

�i!

0

v

~

f

!

(!

0

)

�

1

Z

0

d!

0

�

~

f

!

(!

0

)e

�i!

0

v

� e

�!��

�1

~

f

!

(!

0

)e

i!

0

v

�

:

(1.81)
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Comparing (1.80) with (1.81), one �nds

�

!!

0

= �e

�i!��

�1

�

!!

0

: (1.82)

Using (1.76) and (1.80) one can then evaluate � and � in terms of �-

functions. If one now attempted to calculate the particle number expecta-

tion value according to (1.57), one would �nd a diverging result. This is

due to the fact that the collapsing body produces particles in�nitely long,

as can be recognised from �gure 1.15 (again an e�ect of the in�nite redshift

at the horizon). One can instead calculate the number of emitted parti-

cles per unit time (Birrell and Davies 1982) { either by considering wave

packets or con�ning the system into a box { to obtain for the number of

particles per unit time in the frequency range ! to ! + d! the expression

d!

2�

1

e

2!��

�1

� 1

: (1.83)

This is a Planck distribution with the temperature

T

BH

=

~�

2�k

B

: (1.84)

One immediately notes that this `Hawking temperature' follows from the

Unruh temperature in (1.65) through the substitution a ! �, as antici-

pated.

An alternative derivation of this result can be made through the use of

the energy-momentum tensor (DeWitt 1975). This treatment also allows a

straightforward implementation of the back-scattering e�ect: If the poten-

tial (1.69) is fully taken into account, some of the modes are scattered back

into the black hole instead of escaping to I

+

. This leads to the following

expression for the total luminosity of the black hole:

L = �

dM

dt

=

1

2�

1

X

l=0

(2l+ 1)

1

Z

0

d! !

�

!l

e

2!��

�1

� 1

: (1.85)

The term �

!l

{ called `greybody factor' because it encodes a deviation from

the black-body spectrum { is the fraction of the incoming mode that enters

the black hole; it depends explicitly on ! and l. Its calculation requires a

detailed discussion of (1.68,1.69) (and similar equations for higher spins).

For the special case of the Schwarzschild metric, � = (4GM)

�1

, and

(1.84) becomes

T

BH

=

~

8�Gk

B

M

� 10

�6

M

�

M

K : (1.86)
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For solar-mass black holes, this is of course utterly negligible { the black

hole absorbs much more from the ubiquitous 3K-microwave background

radiation than it radiates.

One can, however, estimate the lifetime of a black hole by making

the plausible assumption that the decrease in mass is equal to the energy

radiated to in�nity and using Stefan-Boltzmann's law:

dM

dt

/ �AT

4

BH

/ �M

2

�

�

1

M

�

4

= �

1

M

2

;

which integrated yields

t(M) / (M

3

0

�M

3

) �M

3

0

; (1.87)

where M

0

is the initial mass, and it has been assumed that after the evap-

oration M � M

0

. Very roughly, the lifetime of a black hole is thus given

by

�

BH

�

�

M

0

m

p

�

3

t

p

� 10

65

�

M

0

M

�

�

3

years (1.88)

(m

p

and t

p

denote Planck mass and Planck time: m

p

= ~=l

p

, t

p

= l

p

.)

If in the early universe primordial black holes with M

0

� 5 � 10

14

g were

created, they would evaporate at the present age of the universe.

A very detailed investigation into black-hole evaporation was made by

Page (1977). He found that for M � 10

17

g the power emitted from an

(uncharged, non-rotating) black hole is

P � 2:28� 10

�54

L

�

�

M

M

�

�

�2

;

of which 81:4% is in neutrinos (he considered only electron- and muon-

neutrinos), 16:7% in photons, and 1:9% in gravitons, assuming of course

that there are no other massless particles. Since a black hole evaporates

all existing particles in Nature, this result would of course be changed by

the existence of massless supersymmetric or other particles. In the range

5� 10

14

g�M � 10

17

g, Page found

P � 6:3� 10

16

�

M

10

15

g

�

�2

erg

sec

;

of which 45% is in electrons and positrons, 45% in neutrinos, 9% in photons,

and 1% in gravitons. Massive particles with mass m are only suppressed if

k

B

T

BH

< m. For M < 5� 10

14

g, also higher-mass particles are emitted.
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All of the above derivations use the approximation where the spacetime

background remains classical.

6

In a theory of quantum gravity, however,

such a picture cannot be maintained, see sections 1.5 and 1.6. Since the

black hole becomes hotter while radiating, see (1.86), its mass will eventu-

ally enter the quantum-gravity domain M � m

p

, where the semiclassical

approximation breaks down. The evaporation then enters the realm of

speculation, see the following sections. As an intermediate step one might

consider the heuristic `semiclassical' Einstein equations,

R

ab

�

1

2

g

ab

R = 8�GhT

ab

i ; (1.89)

where on the right-hand side the quantum expectation value of the energy-

momentum tensor appears. The evaluation of hT

ab

i { which requires regu-

larisation and renormalisation { is a di�cult subject on its own (Birrell and

Davies 1982). The renormalised hT

ab

i is essentially unique (its ambiguities

can be absorbed in coupling constants) if certain sensible requirements are

imposed (Wald 1984). Technically, it is most convenient to handle hT

ab

i

through the use of the e�ective action (Wipf 1998). Evaluating the com-

ponents of the renormalised hT

ab

i near the horizon, one �nds that there is

a 
ux of negative energy into the hole. Clearly this leads to a decrease in

the black hole's mass. These negative energies are a typical quantum e�ect

and are well-known from the { accurately measured { Casimir e�ect. This

occurrence of negative energies is also responsible for the breakdown of the

classical area law discussed in the last sections.

The negative 
ux near the horizon lies also at the heart of the `pictorial'

representation of Hawking radiation that is often used (see �gure 1.16): In

vacuum, virtual pairs of particles are created and destroyed. However, close

to the horizon, one partner of this virtual pair might fall into the black hole,

thereby liberating the other partner to become a real particle and escaping

to in�nity as Hawking radiation.

It is interesting to note that the quantum �elds exhibit entanglement

(`EPR-correlations') between the interior and exterior of the event horizon

(Wald 1986). This was shown for both the `eternal hole' (�gure 1.5) and

the Rindler spacetime (�gure 1.14), see Birrell and Davies (1982). The

global vacuum state comprising the regions I and II in these diagrams can

be written in the form

j0i =

Y

!

p

1� e

�2�!�

�1

X

n

e

�n�!�

�1

jn

I

!

i 
 jn

II

!

i ; (1.90)

where jn

I

!

i and jn

II

!

i are n-particle states with frequency ! in regions I

and II, respectively; in the situation of �gure 1.14, � has to be replaced by

6

This limit is referred to as the semiclassical approximation to quantum gravity (see

e.g. Kiefer 1994).
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outside

virtual
pairs of
particles

Hawking 
Radiation

the  other partner
escapes to infinity

Black Hole

inside

event horizon

one partner
falls into the
black hole

Figure 1.16. Heuristic `visualisation' of the Hawking e�ect

a. The expression (1.90) is just the Schmidt expansion for two entangled

quantum states, see e.g. Giulini et al. (1996); note the analogy of (1.90) to

a BCS-state in the theory of superconductivity.

Since in the presence of an event horizon, observations are restricted

to the outside region, the state (1.90) cannot be distinguished by operators

with support in I only from a density matrix that is found from (1.90) by

tracing out all degrees of freedom in region II,

�

I

� Tr

II

j0ih0j

=

Y

!

�

1� e

�2�!�

�1

�

X

n

e

�2�n!�

�1

jn

I

!

ihn

I

!

j :

(1.91)

Note that �

I

describes a canonical ensemble with the temperature (1.84).

The thermal nature of Hawking radiation is thus a consequence of the fact

that observations are restricted to region I { and this is a consequence of

the presence of an event horizon!

I want to end this section by giving the explicit expressions for the

Hawking temperature (1.84) in the case of rotating and charged black holes.
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For the Kerr solution (1.24), one has

k

B

T

BH

=

~�

2�

= 2

�

1 +

M

p

M

2

� a

2

�

�1

~

8�M

<

~

8�M

: (1.92)

Rotation thus reduces the Hawking temperature. The integrand in (1.85)

then becomes

!�

!l

e

2��

�1

(!�m


H

)

� 1

; (1.93)

where 


H

is given by (1.27) and m is here the azimuthal number of the

incident wave. For !�m


H

< 0 and �! 0 (i.e., T

BH

! 0), (1.93) goes to

�!�

!l

: This is just the classical phenomenon of superradiance mentioned

in section 1.2 (see the paragraph above (1.31)), see also DeWitt (1975).

For the Reissner-Nordstr�om solution (1.21) one has

k

B

T

BH

=

~

8�M

�

1�

(Gq)

4

r

4

+

�

<

~

8�M

: (1.94)

Thus, also electric charge reduces the Hawking temperature. For an ex-

tremal black hole, r

+

= GM =

p

Gjqj, and thus T

BH

= 0. The question

whether its entropy is also zero or proportional to A 6= 0 plays a crucial

role in the quantisation of black holes, see sections 1.5 and 1.6.
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1.4 Interpretation of Entropy and the Problem of In-

formation Loss

We have seen in the last section that { if quantum theory is taken into

account { black holes emit thermal radiation with the temperature (1.84).

Consequently, the laws of black-hole mechanics discussed in section 1.2 have

indeed a physical interpretation as thermodynamical laws { black holes are

thermodynamical systems.

One can therefore from the First Law (1.35) also infer the expression

for the black-hole entropy. From dM = T

BH

dS

BH

one �nds the `Bekenstein-

Hawking entropy'

S

BH

=

k

B

A

4G~

; (1.95)

in which the unknown factor in (1.40) has now been �xed. For the special

case of a Schwarzschild black hole, this yields

S

BH

=

k

B

�R

2

0

G~

: (1.96)

It can easily be estimated that S

BH

is much bigger than the entropy of the

star that collapsed to form the black hole. A physical interpretation of S

BH

must therefore be based on other principles { but on which? Certainly,

up to now the laws of black-hole mechanics are only phenomenological

thermodynamical laws. The central open question is: Can S

BH

be derived

from quantum-statistical considerations? This would mean that S

BH

could

be calculated from a Gibbs-type formula according to

S

BH

?

= �k

B

Tr(� ln �) � S

SM

; (1.97)

where � denotes an appropriate density matrix; S

BH

would then somehow

correspond to the number of quantum microstates that are consistent with

the macrostate of the black hole that is { according to the no-hair theorem

{ uniquely characterised by mass, angular momentum, and charge. Some

important questions are:

� Does S

BH

correspond to states hidden behind the horizon?

� Does S

BH

corresponds to the number of possible initial states?

� Where is S

BH

located (if it is located at all)?

� What happens with S

BH

after the black hole has evaporated?

There have been some attempts to calculate S

BH

by counting inter-

nal states of freedom (see the review in Kiefer 1998). However, although

one could derive S

BH

/ A in this way, the factor of proportionality was

divergent and needed some regularisation. At least these derivations seem
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to indicate that the entropy is somehow located at or near to the event

horizon. Preliminary results in the theory of induced gravity show that a

regularisation can indeed be invoked such that the desired result (1.95) can

be obtained, although at the price of introducing non-minimally coupled

�elds. The only clear-cut microscopic derivation of S

BH

was done in string

theory (see section 1.6), although the applicability is as yet restricted to

extremal (or near-extremal) black holes.

The attempts to calculate S

BH

by state counting are usually done in

the `one-loop limit' of quantum �eld theory in curved spacetime { this is

the limit where gravity is classical but non-gravitational �elds are fully

quantum, and it is the limit where the Hawking radiation (1.84) has been

derived. Surprisingly, however, the expression (1.95) can already be calcu-

lated from the so-called `tree level' of the theory, where only the gravita-

tional degrees of freedom are taken into account (Hawking 1979; Hawking

and Penrose 1996). This is already reviewed in Kiefer (1998), and I shall

be brief on this in the following.

The derivations employ the analogy of euclidean path integrals and

partition sums. Calculating the euclidean path integral to quantum gravity

at highest order (tree-level or saddle-point approximation), one �nds for the

partition sum in the Schwarzschild case

Z � exp

�

�

~�

2

16�G

�

; (1.98)

with � = (k

B

T )

�1

. One can then calculate the standard thermodynamical

quantities in the usual manner. In this way one arrives at the mean energy

E = �

@ lnZ

@�

=

~�

2

8�G

; (1.99)

from which (since E must be equal to the mass M of the black hole) the

Hawking temperature (1.86) can be found, T = T

BH

. For the entropy one

then �nds

S = k

B

(lnZ + �M) =

~�

2

16�G

=

k

B

A

4G~

= S

BH

; (1.100)

and for the speci�c heat

C = ��

@S

@�

= �

~�

2

8�G

< 0 ; (1.101)

whose negativity signals instability; this just expresses the fact that the

black hole in asymptotically 
at space becomes hotter by radiating { a

typical thermodynamical feature of gravitational systems (Zeh 1992). One

can try to stabilise the black hole by putting it into a box or embedding



Interpretation of Entropy and the Problem of Information Loss 46

it into an asymptotically anti-de Sitter space, but I shall not elaborate on

this here.

It is also instructive to see how the Hawking temperature in the

Schwarzschild case can be found from the euclidean line element of the

Schwarzschild metric (1.3). Writing � = it, one obtains

ds

2

=

�

1�

2GM

r

�

d�

2

+

�

1�

2GM

r

�

�1

dr

2

+ r

2

d


2

: (1.102)

Introducing the new radial coordinate

R = 4GM

r

1�

2GM

r

; (1.103)

this assumes the form

ds

2

= R

2

d

�

�

4GM

�

2

+

�

r(R)

2GM

�

4

dR

2

+ r

2

(R)d


2

: (1.104)

This metric has a coordinate singularity at R = 0 (corresponding to r =

2GM). Regularity is obtained if �=(4GM) is interpreted as an angular

coordinate with periodicity 2�; � itself has then periodicity 8�GM (�g-

ure 1.17) which, when set equal to �~, yields the Hawking temperature

(1.86). This result suggests the existence of a thermal equilibrium state on

the eternal black-hole spacetime (�gure 1.5) at a temperature T = T

BH

;

this state is the so-called Hartle-Hawking state (a general formulation is

achieved in terms of KMS-states).

Since R in (1.103) is only de�ned outside the horizon (r > 2GM),

the euclidean Schwarzschild line element (1.102) does not penetrate into

the horizon { this is an expression of the fact that the interior is never

classically forbidden, see section 1.5.

Hawking put forward the conjecture that gravitational entropy is con-

nected with a non-trivial topology of the euclideanised spacetime (see e.g.

his article in Wald 1998). The euclidean line element (1.104) has the

boundaryS

2

� S

1

at in�nity, where S

2

is a large two-sphere at r ! 1

and S

1

corresponds to the periodically identi�ed imaginary time coordi-

nate. In the euclidean Schwarzschild case, the topology is R

2

� S

2

(�gure

1.17), while in the case of �lling this boundary with 
at euclidian space,

one would obtain the topology R

3

� S

1

. A non-vanishing entropy is ob-

tained only in the �rst case. Other examples suggest the same connection

between entropy and topology. Obviously, in this interpretation gravita-

tional entropy would be a truly global concept and cannot be assumed to be

localised near the horizon. The important question, however, is: How fun-

damental are euclidean concepts? An answer can probably only be found

in a quantum theory of gravity, see sections 1.5 and 1.6.
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    = const.

r = 2GM

GMperiod τ = 8π

r

τ = const.

τ = const.

Figure 1.17. Coordinates for the euclidean Schwarzschild solution; the euclidean

time is identi�ed with period � = 8�GM . All slices � = constant meet at the

origin.

If the entropy (1.95) is to make sense, there should be a generalised

Second Law of thermodynamics in the sense that

d

dt

(S

BH

+ S

M

) � 0 ; (1.105)

where S

M

denotes all contributions to non-gravitational entropy. The va-

lidity of (1.105), although far from being proven in general, has been shown

in a variety of gedankenexperiments. One of the most instructive of such

experiments has been devised by Unruh and Wald (see Wald 1994). It

makes use of the box shown in �gure 1.13 that is adiabatically lowered

towards a (spherically symmetric) black hole.

At asymptotic in�nity r ! 1, the black-hole radiation is given by

(1.84). However, for �nite r the temperature is modi�ed by the occurrence

of a redshift factor �(r) � (1� 2GM=r)

1=2

in the denominator. Since the

box is not in free fall, it is accelerated with an acceleration a. From the

relation (Wald 1984)

� = lim

r!R

0

(a�) ; (1.106)

one has

T

BH

(r) =

~�

2�k

B

�(r)

r!R

0

�!

~a

2�k

B

; (1.107)
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which is just the Unruh temperature (1.65)! This means that a freely

falling observer near the horizon observes no radiation at all, and the whole

e�ect (1.107) comes from the observer (or box) being non-inertial with

acceleration a.

The analysis of Unruh and Wald, which is a generalisation of the

gedankenexperiment discussed at the end of section 1.2, shows that the

entropy of the black hole increases at least by the entropy of the Unruh

radiation displaced at the 
oating point { this is the point where the gravi-

tational force (pointing downwards) and the buoyancy force from the Unruh

radiation (1.107) are in equilibrium. Amusingly, it is just the application of

`Archimedes'principle' to this situation that rescues the generalised Second

Law (1.105).

An inertial, i.e. free-falling, observer does not see any Unruh radiation.

How does he interpret the above result? For him the box is accelerated and

therefore the interior of the box �lls up with negative energy and pressure

{ a typical quantum e�ect that occurs if a `mirror' is accelerated through

the vacuum, cf. footnote 5. The `
oating point' is then reached after this

negative energy is so large that the total energy of the box is zero.

I want to conclude this section with some speculations about the �nal

stages of black-hole evolution and the information loss problem. The point

is that { in the semiclassical approximation used by Hawking { the radiation

of a black hole is purely thermal. If the black hole evaporates completely

and leaves only thermal radiation behind, one would have a con
ict with

established principles in quantum theory: Any initial state (in particular a

pure state) would evolve into a mixed state. In ordinary quantum theory,

because of the unitary evolution of the total system,

7

this cannot happen.

Formally, Tr �

2

remains constant under the von Neumann equation; the

same is true for the entropy S

SM

= �k

B

Tr(� ln �): For a unitarily evolving

system, there is no increase in entropy. If these laws are violated during

black-hole evaporation, information would be destroyed. This is indeed the

speculation that Hawking made after his discovery of black-hole radiation.

The attitudes towards this information loss problem can be roughly divided

into the following classes (see e.g. Page 1994 and Preskill 1993 for reviews):

� The information is indeed lost during black-hole evaporation, and the

quantum-mechanical Liouville equation is replaced by an equation of

the form

� �! Sk � 6= S�S

y

: (1.108)

� The full evolution is in fact unitary; the black-hole radiation contains

subtle quantum correlations that cannot be seen in the semiclassical

approximation.

7

For an open quantum system, a state will in general become more mixed and its

entropy will increase (Giulini et al. 1996).
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� The black hole does not evaporate completely, but leaves a `remnant'

with mass in the order of the Planck mass that carries the whole

information.

All of these options have advantages and disadvantages that are dis-

cussed at length in the above-cited literature.

8

From a conservative point

of view, it looks reasonable to stick to the second option as long as possi-

ble. In fact, as long as the black hole has not evaporated and there exists

a horizon, it is always possible to assume that the information is `hidden'

behind the horizon. As (1.90) and (1.91) demonstrate, although the global

vacuum state is pure, it appears outside the black hole as a thermal state,

since there are nonlocal correlations with inaccessible states behind the

horizon. The entropy (1.95) would then be just an expression of this lack

of information about the global quantum state. Its appearance would sig-

nal the presence of nonlocal entanglement, and S

BH

would thus be itself a

global quantity.

The relations (1.90) and (1.91) have only been shown for the `eternal

hole' (�gure 1.5) and the Rindler spacetime (�gure 1.14), but not for a

collapse situation. One might, however, expect that { independently of the

unknown details of the �nal stage { all quantum correlations would become

accessible again, demonstrating that the full evolution is unitary.

9

One argument in favour of the �rst option above is the observation

that in the euclideanised spacetime constant time surfaces meet at a com-

mon point, leading to a zero point of the time translation vector �eld (see

Hawking's article in Wald 1998). An example of this can be seen in the

geometry of the euclidean Schwarzschild geometry, see �gure 1.17. In such

a case one cannot use a Hamiltonian to get a unitary evolution from the

initial to the �nal state, and a transition from a pure to a mixed state

can be expected to occur. It is, however, by no means evident that such a

euclidean viewpoint is more fundamental than the lorentzian viewpoint. In

particular, the constant-time surfaces in �gure 1.17 all meet at the origin

{ the place where the horizon sits. Their crossing at this point might be

only an indication for the presence of quantum entanglement behind the

horizon in the lorentzian framework.

8

A recent vote among experts at a meeting in Utrecht showed an overwhelming majority

for the second option and a practical exclusion of the third option.

9

The accelerated observer in �gure 1.14 would only have to go over to inertial motion

in order to gain all quantum correlations again.
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1.5 Black holes in Canonical Quantum Gravity

The framework for the discussion in the last two sections is the limit where

the gravitational background is classical, but all non-gravitational �elds are

quantum. The central results are that black holes radiate with a thermal

spectrum and that they possess an intrinsic gravitational entropy.

According to (1.86), black holes become hotter through emitting ra-

diation, while losing mass. The framework of the �xed gravitational back-

ground is expected to break down if the hole's mass approaches the Planck

mass

m

p

=

r

~

G

� 10

�5

g ; (1.109)

that is related to the Planck length (1.39) bym

p

= ~=l

p

. The reason for this

expectation is that m

p

should set the scale for the occurrence of quantum

gravitational e�ects { e�ects where the classical picture of spacetime breaks

down. (That the approximation of section 1.3 must break down somewhere,

is by itself evident, since otherwise T

BH

!1.)

The �nal stages of black-hole evaporation can thus only be understood

within a quantum theory of gravity. Unfortunately, such a theory is not yet

available. Nevertheless, there exist quite advanced approaches towards

such a theory, within which sensible questions can be asked and partially

answered. The two most popular approaches at present are canonical quan-

tum gravity and superstring theory. I shall devote the last two sections to

them.

Canonical quantum gravity, the topic of this section, is the framework

that is found if standard quantisation rules are applied to the general theory

of relativity. This is a rather conservative approach, since no uni�cation

of fundamental forces is attempted. However, this approach exhibits in a

most transparent way the basic conceptual features that a quantum the-

ory of gravity should contain. Starting point for canonical quantisation

is a Hamiltonian formulation on a classical spacetime M that is globally

hyperbolic, i.e. that can be written in the form

M = �� R ; (1.110)

where � is a three-dimensional manifold (Wald 1984). Depending on the

topological structure of � one obtains di�erent con�guration spaces. In

addition, the canonical framework can be further subdivided into the fol-

lowing classes that are characterised by the con�guration variable that is

used:

� quantum geometrodynamics: three-metric h

ab

on �;

� quantum connection dynamics: SU(2)-connection A

a

i

on �;
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� quantum loop dynamics: the trace of the holonomy of the connection

along a loop 
, trP exp

H




A.

Although much progress has been made in the last two approaches

(Ashtekar 1997), I restrict myself to the �rst approach that uses the three-

dimensional metric as the fundamental variable. The main feature is the

existence of constraints, one Hamiltonian constraint (per space point),

H � 0 ; (1.111)

and three di�eomorphism constraints (per space point),

D

a

� 0 : (1.112)

The sign � denotes weak equality in the sense of Dirac: The constraints

de�ne a subspace in the full phase space.

If � is compact without a boundary (a situation often used in cosmo-

logical models), the total Hamiltonian is a combination of these constraints

only and thus (weakly) vanishes. If � is asymptotically 
at (this is the case

relevant for black holes), the total Hamiltonian has in addition boundary

terms. A comprehensive introduction into all aspects of canonical gravity

can be found in Ehlers and Friedrich (1994).

The crucial feature is the treatment of the constraints (1.111, 1.112) in

the quantum theory. Here I shall follow Dirac's approach and implement

the constraints { at least formally { as constraints on physically allowed

wave functionals:

^

H	 = 0 ; (1.113)

^

D

a

	 = 0 : (1.114)

The wave functional 	 depends (apart from non-gravitational �elds) on

the three-metric h

ab

(x); (1.114) guarantees that 	 remains invariant un-

der coordinate transformations, so it de facto depends only on the three-

dimensional geometry { this is often emphasised by writing 	[

(3)

G], but

one must remember that 	 is always given as 	[h

ab

(x)].

On the fundamental level, there is only a collection of spaces (of three-

dimensional geometries), but no spacetime. The latter has only meaning

in a semiclassical approximation (Kiefer 1994). This lack of spacetime on

a fundamental level is often referred to as the `problem of time in quantum

gravity' (see e.g. Kiefer 1997). Since the event horizon of a black hole plays a

crucial role in the derivation of Hawking radiation, and since the horizon is a

genuine classical spacetime concept, this drastically demonstrates that the

semiclassical picture of section 1.3 must be modi�ed in quantum gravity.

10

10

Figure 21.4 in Misner, Thorne and Wheeler (1973) shows a foliation of the Kruskal

diagram (�gure 1.4) into three-geometries. In quantum gravity, 	 depends on both this

set of three-geometries (classically allowed ones for this case) and other three-geometries

(that are classically not allowed).
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In the following I shall discuss the quantisation of spherically-symme-

tric `eternal' black holes. This can either be interpreted as an exact quan-

tisation of the matter-free case or as the �rst step in the semiclassical

approximation to the case where also matter is present (see Kiefer 1998 for

details and references).

Starting point is the general spherically-symmetric metric,

ds

2

= N

2

(r; t)dt

2

� �

2

(r; t)(dr +N

r

dt)

2

�R

2

(r; t)d


2

; (1.115)

where d


2

is the metric on the unit two-sphere, � and R are the dynamical

variables (the only components that are left in h

ab

(x) after spherical sym-

metry is imposed), and N and N

r

are Lagrange multipliers (the so-called

lapse and shift functions). To encompass also the case of charged black

holes, I shall include a spherically-symmetric electromagnetic one-form

A = �(r; t)dt+ �(r; t)dr : (1.116)

The classical constraints (1.111) and (1.112) then read

H =

G

2

�P

2

�

R

2

�G

P

�

P

R

R

+

�P

2

�

2R

2

+G

�1

�

RR

00

�

�

RR

0

�

0

�

2

+

R

02

2�

�

�

2

�

� 0 ; (1.117)

D

r

= P

R

R

0

� �P

0

�

� �P

0

�

� 0 : (1.118)

In addition, we have Gau�' law,

G = �P

0

�

� 0 : (1.119)

(The explicit form of D

r

is di�erent from Kiefer (1998), since we have

rede�ned in the action � ! � �N

r

�.) The variables P

�

,P

R

, P

�

are the

momenta canonically conjugate to �, R, �, respectively.

I consider for � a three-space that in the classical picture of �gure 1.4

would correspond to a hypersurface that starts at the bifurcation point of

the horizons (taken to be r ! 0) and spatial in�nity (r ! 1). A crucial

role in the whole procedure is played by the careful discussion of boundary

conditions at r ! 0 and r !1.

I shall �rst consider boundary conditions at r ! 1. To avoid the

unwanted conclusion that the Lagrange multipliers N and � vanish there

one has to add the boundary term (Kiefer 1998)

�G

Z

dtN

+

M �

Z

dt�

+

q (1.120)

in the action; N

+

(�

+

) is the limiting value of N (�); M is the ADM mass

and q is the electric charge. A canonical transformation then exhibits that
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(except for variables at r ! 0, see below) the only dynamical variables are

M and q.

What about boundary conditions at the bifurcation point r ! 0? I

wish to adopt boundary conditions that enforce every classical solution

to be (part of ) an exterior region of a Reissner-Nordstr�om black hole,

see (1.21); the constant t hypersurfaces are asymptotic to the constant

Killing time hypersurfaces as r ! 0. It turns out that the extremal case

(

p

GM = jqj) has boundary conditions di�erent from the non-extremal

case (

p

GM > jqj), see Kiefer and Louko (1998).

Consider �rst the non-extremal case. The variables N , �, R then

exhibit the following asymptotic behaviour at r ! 0:

N(r; t) = N

1

(t)r +O(r

3

) ; (1.121a)

�(r; t) = �

0

(t) +O(r

2

) ; (1.121b)

R(r; t) = R

0

(t) +R

2

(t)r

2

+O(r

4

) : (1.121c)

To avoid the unwanted conclusion that N

1

= 0, a boundary term similar

to (1.120) must be added at r ! 0,

(2G)

�1

Z

dtN

0

R

2

0

; (1.122)

where N

0

� N

1

=�

0

. The quantity

� �

t

Z

t

1

dtN

0

(t) (1.123)

plays the role of a `rapidity' because it boosts the normal vector to the

constant t hypersurfaces at r ! 0.

For the extremal case, one has instead of (1.121) the boundary condi-

tions

N(r; t) = �

�1

R

0

(

~

N

0

(t) +O(r)) ; (1.124a)

�(r; t) = �

�1

(t)r

�1

+O(1) ; (1.124b)

R(r; t) = R

0

(t) +R

1

(t)r +O(r

2

) : (1.124c)

The fallo� (1.124b), in particular, encodes the fact that in the extremal

case the point at r ! 0 is in�nitely far away,

R

r

1

0

g

rr

dr !1. It then turns

out from the action that no term of the form (1.122) has to be added.

The geometrical reason for this lies in the fact that the boundary term is

proportional to the surface gravity �, and one has � = 0 for the extremal

case, cf. (1.94).
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For the canonical formalism, one needs canonical pairs of variables at

the boundaries. This is achieved by the introduction of the variables � , �,

and �, and parametrisation (Kiefer 1998),

N

+

(t) = _�(t) ; (1.125a)

�

+

(t) =

_

�(t) ; (1.125b)

N

0

(t) = _�(t) : (1.125c)

(In the extremal case, the last condition is absent.) The physical inter-

pretation of these variables is as follows: � is the proper time at r ! 1,

� the gauge parameter, and � is the rapidity (1.123). While � and � are

conjugate to mass and charge, respectively, � is conjugate to the area A of

the event horizon. The remaining quantum constraints can than be solved,

and a plane-wave-like solution reads

	(�; �; �) = �(M; q) exp

�

i

~

�

A(M; q)�

8�G

�M� � q�

��

: (1.126)

�(M; q) is an arbitrary function of M and q; one can construct superpo-

sitions of the solutions (1.126) in the standard way by integrating over M

and q.

Varying the phase in (1.126) with respect to M and q yields the clas-

sical equations

� = 8�G

�

@A

@M

�

�1

� = �� ; (1.127)

� =

�

8�G

@A

@q

� = �� : (1.128)

The solution (1.126) holds for non-extremal holes. If one made a similar

quantisation for extremal holes on their own, the �rst term in the exponent

of (1.126) would be absent.

An interesting analogy with (1.126) is the plane-wave solution for a

free nonrelativistic particle,

exp(ikx� !(k)t) : (1.129)

As in (1.126), the number of parameters is one less than the number of ar-

guments, since !(k) = k

2

=2m. A quantisation for extremal holes on their

own would correspond to choosing a particular value for the momentum,

say p

0

, at the classical level, and demanding that no dynamical variables

(x; p) exist for p = p

0

. This is, however, not the usual way to �nd classical

correspondence { this is gained not from the plane-wave solution (1.129)

but from wave packets that are obtained by superposing di�erent wave



Black holes in Canonical Quantum Gravity 55

numbers k. This then yields quantum states that are su�ciently concen-

trated around classical trajectories such as x = p

0

t=m.

It seems therefore appropriate to proceed similarly for black holes {

construct wave packets for non-extremal holes that are concentrated around

the classical values (1.127, 1.128) and then extend them by hand to the ex-

tremal limit. This would correspond to `extremisation after quantisation',

in contrast to the `quantisation after extremisation' made above. Express-

ing in (1.126) M as a function of A and q and using Gaussian weight

functions, one has

	(�; �; �) =

Z

A>4�q

2

dAdq exp

�

�

(A�A

0

)

2

2(�A)

2

�

(q � q

0

)

2

2(�q)

2

�

� exp

�

i

~

�

A�

8�G

�M(A; q)� � q�

��

:

(1.130)

The result of this calculation is given and discussed in Kiefer and Louko

(1998). As expected, one �nds Gaussian packets that are concentrated

around the classical values (1.127, 1.128). As for the free particle, the wave

packets exhibit dispersion with respect to Killing time � . Using for �A

the Planck-length squared, �A / G~ � 2:6� 10

�66

cm

2

, one �nds for the

typical dispersion time in the Schwarzschild case

�

�

=

128�

2

R

3

0

G~

� 10

65

�

M

M

�

�

3

years : (1.131)

Note that this is just of the order of the black-hole evaporation time (1.88)!

The dispersion of the wave packet just gives the time scale after which the

semiclassical approximation breaks down.

Coming back to the charged case, and approaching the extremal limit

p

GM = jqj, one �nds that the widths of the wave packet (1.130) are

independent of � for large � . This is due to the fact that for the extremal

black hole � = 0 and therefore no evaporation takes place. If one takes,

for example, �A / G~ and �q /

p

G~, one �nds for the �-dependence of

(1.130) for � !1 the factor

exp

�

�

�

2

128�

2

�

; (1.132)

which is independent of both � and ~. It is clear that this packet, although

concentrated at the value � = 0 for extremal holes, has support also for � 6=

0 and is qualitatively not di�erent from a wave packet that is concentrated

at a value � 6= 0 close to extremality.

An interesting question is the possible occurrence of a naked singu-

larity (cf. �gure 1.10) for which

p

GM < jqj. Certainly, both the bound-

ary conditions (1.121) and (1.124) do not comprise the case of a singular
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three-geometry. However, the wave packets discussed above also contain

parameter values that would correspond to the `naked' case. Such geome-

tries could be avoided if one imposed the boundary condition that the wave

function vanishes for such values. But then continuity would enforce the

wave function also to vanish on the boundary, i.e. at

p

GM = jqj. This

would mean that extremal black holes could not exist at all in quantum

gravity { an interesting speculation.

A possible thermodynamical interpretation of (1.126) can only be ob-

tained if { analogous to section 1.4 { an appropriate transition into the

euclidean regime is performed. This transition is achieved by the `Wick ro-

tations' � ! �i�~, �! �i�

E

(from (1.123) it is clear that � is connected

to the lapse function and must be treated similarly to �), and �! �i�~�.

With an argument analogous to the one used below (1.103) { regularity of

the euclidean line element { one arrives at the conclusion that �

E

= 2�.

But this means that the euclidean version of (1.127) just reads 2� = ��~,

which with � = (k

B

T

BH

)

�1

, is just the expression for the Hawking temper-

ature (1.84)! Alternatively, one could use (1.84) to derive �

E

= 2�.

The euclidean version of the state (1.126) then reads

	

E

(�; �; �) = �(M; q) exp

�

A

4G~

� �M � ��q

�

: (1.133)

One recognises in the exponent of (1.133) the occurrence of the Bekenstein-

Hawking entropy (1.95). Of course, (1.133) is still a pure state and should

not be confused with a partition sum. However, the transition to a parti-

tion sum is straightforward, and one then �nds indeed from the standard

thermodynamical relations in section 1.4 the expression for S

BH

. Moreover,

the factor exp[A=(4G~)] in (1.133) directly gives the enhancement factor

for the rate of black-hole pair creation relative to ordinary pair creation.

It must be emphasised that S

BH

fully arises form a boundary term at the

horizon (r ! 0). This is similar to the path-integral approaches discussed

in section 1.4 (The entropy arises there from a boundary term at the center

of the disk in �gure 1.17).

It is now clear that a quantisation scheme that treats extremal black

holes as a limiting case gives S

BH

= A=(4G~) also for the extremal case.

On the other hand, quantising extremal holes on their own would yield

S

BH

= 0. From this point of view it is also clear why the extremal (Kerr)

black hole that occurs in the transition from the disk-of-dust solution to

the Kerr-solution has entropy A=(4G~), see Neugebauer's article in Hehl

et al. (1998). If S

BH

6= 0 for the extremal hole (that has temperature

zero), the stronger version of the Third Law of thermodynamics (that would

require S ! 0 for T ! 0) mentioned in section 1.2 apparently does not

hold. This is not particularly disturbing, since many systems in ordinary
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hypersurface

I  r
 =

 G
M

Figure 1.18. Spacelike hypersurface in the extremal Reissner-Nordstr�om solu-

tion

thermodynamics violate the strong form of the Third Law; it just means

that the system does not approach a unique state for T ! 0.

The topological di�erence of the classical charged black-hole solutions

between extremal and non-extremal cases can immediately be inferred from

�gures 1.8 and 1.9. If the extremal case were quantised on its own, the

reason for its vanishing entropy could be understood as follows. Consider

�rst the non-extremal case (�gure 1.8) and a spacelike hypersurface that

starts at one of the bifurcation two-spheres and extends through the right

part of region I up to spatial in�nity i

0

. Initial data on such hypersurfaces

can be evolved only in the right part of region I; one could thus interpret

the occurrence of the entropy A=(4G~) as signalling a `lack of information'

about the left part of region I and region II. (In this interpretation,`full'

knowledge would refer to the evolution up to the Cauchy-horizon at r =

r

�

.) From a hypersurface that extends from the left i

0

up to the right i

0

one could infer the whole evolution up to r

�

; in fact, no boundary term

appears in the canonical analysis that would give rise to a term A=(4G~).

On the other hand, for a hypersurface that passed from point p in

the extremal case (�gure 1.9) through region I up to i

0

one could infer the

whole evolution in region I from initial data on this hypersurface (see �gure

1.18). Consequently, its entropy should be zero since there is no `lack of

information'. However, the situation shown in �gure 1.18 cannot be reached

by any continuous limit from �gure 1.8. Moreover, it must be emphasised

again that spacetime is a classical concept and that in particular a singular

case such as the extremal hole may play no role in quantum gravity.
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singularity

singularity

X = 0

T = 0

Figure 1.19. Spacelike hypersurface in the RP

3

geon

An interesting example that I want to mention only in passing is the

RP

3

geon (Louko and Marolf 1998). This is an eternal black hole that is

locally isometric to the Kruskal spacetime (�gure 1.4), but contains only

one exterior region. For this spacetime it was found that it possesses an

entropy that is half of the Bekenstein-Hawking value, i.e. A=(8G~). The

Penrose diagram for the RP

3

geon is shown in �gure 1.19; in which sense

the result S

BH

=2 is related to some `lack of information' is not yet clear.

In the case where additional �elds are present, the above-discussed

quantisation of black holes is only valid at the highest order of a semiclas-

sical approximation (Kiefer 1998). Even at that order, the solution (1.126)

is augmented by a factor exp(iS

0

=(G~)), where S

0

is a solution to the func-

tional Hamilton-Jacobi equation that follows from the constraints (1.113,

1.114) in this limit. From a discussion of S

0

one can also infer that the

interior of the black hole horizon is always a classically allowed region { this

is why the horizon shrinks to a point in the euclidean version that exhibits

classically forbidden regions, see �gure 1.17.

The next order of the semiclassical approximation makes it clear why

the system can no longer be reduced to a system with �nitely many de-

grees of freedom { �eld theoretic aspects play an important role. It is the

level where Hawking radiation becomes manifest in quantum gravity. Un-
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fortunately, the equations are much too complicated (in particular a viable

regularisation is needed) for being solved. Therefore, the full evolution of

black holes in canonical gravity remains unknown.

Even at the semiclassical level, non-classical black-hole quantum states

can easily be constructed by using the superposition principle. However,

most of such states decohere, i.e. become indistinguishable from a classi-

cal stochastic ensemble, through their own Hawking radiation (Giulini et

al. 1996). Such a decoherence only follows for macroscopic (semiclassical)

black holes; it does not occur for microscopic (virtual) black holes (more

properly called black-and-white holes). The time symmetry of such micro-

scopic states remains thus unbroken, and the loss of quantum coherence

that is claimed to happen by scattering o� vacuum 
uctuations in which

virtual black-and-white holes appear and disappear (see Hawking's arti-

cle in Wald 1998) is spurious: As for the corresponding situation in QED

(Giulini et al. 1996), no loss of quantum coherence should occur.

As far as the quantum state (1.126) is concerned, all variables and

parameters are of a continuous nature, like for the free particle. It is,

however, often speculated that mass and area are quantised (Bekenstein

1998). This can be found heuristically from (1.126) if it is assumed that

the range of �(or �) is compact { in a similar way one can �nd momentum

quantisation on �nite spaces, e.g. on a circle. Since 	(�; �; �) = 	(�; � +

��; �), one arrives at (Kastrup 1996)

M��

~

= 2�n : (1.134)

Restricting to vanishing charge, one can assume that �� is proportional to

the Schwarzschild radius,

�� = 
R

0

= 2
GM (1.135)

with an unknown constant 
 that is probably of order unity. This then

yields for mass and area, respectively,

M

n

=

r

�n




m

p

) A =

16�

2




nl

2

p

: (1.136)

Since one would expect that then also � has a �nite range, one is led to

A��

8�G~

= 2� ) �� = 
 (1.137)

and therefore �� = 2��GM (which apart from a factor 2 would follow

from the classical relation (1.127)).
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A similar quantisation would follow if one imposed an ad hoc Bohr-

Sommerfeld quantisation rule in the euclidean version (recall �

E

= 2� = 
)

nh =

I

�

�

E

d�

E

=

2�

Z

0

Ad�

E

8�G

=

A

4G

: (1.138)

Whether these results survive a rigorous derivation, remains at present

open. If true, however, this area quantisation would modify the thermal

spectrum of black hole radiation found in the semiclassical limit { even for

black holes much bigger than the Planck length (Bekenstein 1998)!

I want to emphasise �nally that canonical quantum gravity can also

address the issue of black holes in quantum cosmology (Kiefer and Zeh

1995), but this goes beyond the scope of this review.
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1.6 Black holes in string theory

A much more ambitious framework for a quantum theory of gravity is

superstring theory. In fact, this theory is not constructed through the ap-

plication of standard quantisation rules to well-known classical theories,

but through the use of a very di�erent route that leads directly to a funda-

mental uni�ed quantum theory. The various interactions { such as gravity

{ can then only be distinguished within this theory in certain limits.

The role of black holes in string theory has been extensively discussed

in the lectures by Dijkgraaf and D'Auria. For this reason I shall be rather

brief in this section and try mainly to discuss how this topic �ts into the

general scheme outlined in my earlier sections; for details I refer to the other

lectures as well as to reviews such as Horowitz (1998) and Peet (1998).

Superstring theory (or `M-theory') on its most fundamental level does

not know any notion of spacetime, although it contains one fundamen-

tal length scale, l

s

=

p

�

0

~ (�

0

being the inverse string tension). Space-

time only emerges in a semiclassical approximation, very similar to canon-

ical quantum gravity (Kiefer 1994). This is most conveniently expressed

through an e�ective action that is found by an expansion with respect to

l

s

(or

p

~); it is also a low-energy expansion since higher orders in l

s

lead

to higher order spacetime derivatives in the e�ective action. Usually, only

low-energy e�ective actions are considered in which terms of l

s

and higher

are neglected; their classical solutions correspond to a gravitational theory

including novel �elds such as a dilaton, axion �elds, etc. The presence of

the dilaton �eld, in particular, gives rise to the e�ective string coupling

constant g

s

that connects Planck length and string scale,

l

p

/ g

s

l

s

: (1.139)

In the low-energy approximation, one can in particular address either the

weak-coupling (g

s

� 1) or the strong-coupling limits (g

s

� 1). As has been

shown in recent years, dualities connect these limits in di�erent (or even

the same) string theories. For g

s

� 1, perturbation theory can be applied.

For g

s

� 1 one can (still on the semi-classical level!) �nd nonperturbative

classical solutions to the e�ective actions { in particular black holes with

various charges that are generalisations of the Reissner-Nordstr�om solution

(1.21). For g

s

� 1 one has l

p

� l

s

and one would thus expect that canonical

quantum gravity should be a good approximation.

The presence of dualities, together with (1.139), allows to address the

issue of black-hole entropy in string theory. A special role is played by

BPS-states, states where mass is equal to charge (in a precise sense). Cer-

tain `nonrenormalisation theorems' guarantee that, while the coupling g

s

is varied, this relation and the degeneracy of the states remain unchanged.

Now, in the weak-coupling limit l

p

! 0 and one is e�ectively in a 
at space-

time; the theory predicts the existence of bound states of certain extended
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objects (`D-branes') in 
at space whose degeneracy can easily be calculated

from standard considerations. A corresponding entropy is then de�ned as

the logarithm of this degeneracy.

As g

s

increases, the (e�ective) theory yields extremal black-hole so-

lutions. They have nonvanishing horizon area, and the interesting result

is that S

BH

= A=(4G~) is exactly equal to the D-brane entropy. It is in

this sense that a `microscopic derivation' of S

BH

has been provided; one

must, however, emphasise that this is merely a consistency check, since the

D-brane state has no resemblance to a black hole (there is, in particular, no

horizon), and the connection is established only via duality arguments. Per-

haps more surprising is the fact that for non-extremal black holes (but close

to extremality), the full spectrum including the greybody factor �

!l

, see

(1.85), is recovered for the corresponding D-brane states. Unfortunately,

for the general case (black holes far from extremality) no rigorous calcu-

lation exists as yet; in particular, the case of the ordinary Schwarzschild

black hole remains elusive.

In the string calculations, unitarity is always preserved. This seems to

indicate that no information would be lost during black-hole evaporation.

Since Hawking radiation corresponds, in the string picture, to the emission

of closed strings from D-branes, the mixed character of Hawking radia-

tion would solely result form decoherence (Giulini et al. 1996) { the closed

strings are quantum entangled with the D-brane states and integrating out

the latter would then lead to a mixed state. It would be an interesting

exercise to �nd out how the thermal nature of Hawking radiation arises in

this picture.

I must emphasise again that the string calculations are only made on

the semiclassical level { the same level as the canonical treatment in section

1.5. Going beyond would need taking higher order corrections in l

s

into

account; this is, however, up to now as untractable as the treatment of

the higher order l

p

-corrections in section 1.5. In particular, the full black-

hole evaporation and the �nal decision about the information-loss problem

remains elusive.

Can anything of the quantum aspects of black holes be observed in

the foreseeable future? As was mentioned after (1.88), Hawking radiation

can only be measured for primordial black holes (PBH) that were created

with initial mass � 5 � 10

14

g in the early Universe. Black holes that

result from stellar collapse are much too heavy to show noticeable radiation.

Still, attempts have been and are still being done to look for the existence

from a contribution of PBH distribution to the di�use 
-background and

by looking directly for the �nal evaporation of a single PBH (Halzen et

al. 1991). The �rst method yields an upper limit onto the density of PBH of

N . 10

4

pc

�3

, while the second method yields a (conservative) evaporation

rate dn=dt < 4:4�10

5

pc

�3

yr

�1

(Funk 1997). PBH explosions could in the
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future be observed, for example, by the MILAGRO project

11

that measures

secondary showers arising from primary 
-rays. If the �nal evaporation of

black holes could be observed, this would open the �rst window towards

an experimental test of quantum gravity.
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