Skewonless media with no birefringence. A general constitutive relation.

Alberto Favaro* and Luzi Bergamin^o

*Department of Physics, Imperial College London, UK.

[°]Department of Radio Science and Engineering, Aalto University, Finland.

March 21, 2011

Skewonless media with no birefringence.

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

Skewonless media with no birefringence.

Outline.

- Tools. Metho
 - Step 1
 - Hint.
 - Step2.
 - Results
 - Impact.
 - Conclusions
 - Beyond.
 - Thank-you

Basic concepts (Pre-metric Linear-Local Media).

Constitutive rel: tensor {χ^{μναβ}} and 6×6 {χ^{IJ}} form.
 I will explain what is the "skewon" in "skewonless".

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

• Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method.

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

- Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).
- Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Skewonless media with no birefringence.

Outline.

Basics. Fools.

Method.

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

- Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).
- Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

Skewonless media with no birefringence.

Outline.

Basics.

Method.

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

- Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).
- Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

Method: Go numerical, take a hint, repeat analytically.

Skewonless media with no birefringence.

Outline.

3asics. Tools.

Method.

Step 1.

lint.

Step2.

Results

Impact.

Conclusions Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

- Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).
- Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

- Method: Go numerical, take a hint, repeat analytically.
- Constitutive law for skewonless non-birefringent media.

Skewonless media with no birefringence.

Outline.

iasics. iools. lethod. tep 1.

Results

Impact.

Conclusions. Beyond.

Basic concepts (Pre-metric Linear-Local Media).

- Constitutive rel: tensor {χ^{µναβ}} and 6×6 {χ^{IJ}} form. I will explain what is the "skewon" in "skewonless".
- Dispersion rel: a quartic equation in K_μ = (-ω, k_i).
 "No birefringence" means the equation is bi-quadratic.

Essential Tools.

- Schuller's classification of $\chi^{\mu\nu\alpha\beta}$ (caveat: densities).
- Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

- Method: Go numerical, take a hint, repeat analytically.
- Constitutive law for skewonless non-birefringent media.
- Impact: Propels new findings, confirms past ones + Fronts in non-linear media + Inserting skewon.

Skewonless media with no birefringence.

Outline.

asics. Tools. Aethod.

lint.

Step2.

Results

Impact.

Conclusions. Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

[D; H] from [-E; B] at the same <u>local</u> space-time point.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

[D; H] from [-E; B] at the same <u>local</u> space-time point.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

[D; H] from [-E; B] at the same <u>local</u> space-time point.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi^{IJ} F_J ,$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi'{}^J F_J ,$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi' {}^J F_J ,$$

very compact. Glues up 3 dimensional objects, not covariant.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

lint.

Step2.

Results

Impact.

Conclusions.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi' {}^{J} F_{J} ,$$

very compact. Glues up 3 dimensional objects, <u>not</u> covariant. Medium response: tensor form (covariant, relativity). Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results.

mpact.

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi' {}^{J} F_{J} ,$$

very compact. Glues up 3 dimensional objects, <u>not</u> covariant. Medium response: tensor form (covariant, relativity). 4D indices (Greek). Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

lint.

Step2.

esults.

mpact.

Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi' {}^J F_J ,$$

very compact. Glues up 3 dimensional objects, <u>not</u> covariant. Medium response: tensor form (covariant, relativity). 4D indices (Greek). Link: $W^{\mu\nu} = -W^{\nu\mu} \Rightarrow 6$ components. Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

lint.

Step2.

lesults.

Conclusions. Beyond.

$$\begin{bmatrix} \mathbf{D} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} -\overline{\overline{\varepsilon}} & \overline{\overline{\alpha}} \\ -\overline{\overline{\beta}} & \overline{\overline{\mu}}^{-1} \end{bmatrix} \begin{bmatrix} -\mathbf{E} \\ \mathbf{B} \end{bmatrix} ;$$

 $[\mathbf{D}; \mathbf{H}]$ from $[-\mathbf{E}; \mathbf{B}]$ at the same <u>local</u> space-time point. Medium response: 6×6 matrix form (engineering). Get $[W'] = [\mathbf{D}; \mathbf{H}]$ from $[F_J] = [-\mathbf{E}; \mathbf{B}]$ via <u> 6×6 </u> matrix χ^{IJ} :

$$W' = \chi' {}^J F_J ,$$

very compact. Glues up 3 dimensional objects, <u>not</u> covariant. Medium response: tensor form (covariant, relativity). 4D indices (Greek). Link: $W^{\mu\nu} = -W^{\nu\mu} \Rightarrow 6$ components.

$$W^{I} = \chi^{IJ}F_{J} \Rightarrow W^{\mu\nu} = \chi^{\mu\nu J}F_{J} \Rightarrow W^{\mu\nu} = \frac{1}{2}\chi^{\mu\nu\alpha\beta}F_{\alpha\beta}$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

lint.

Step2.

esults.

Conclusions. Beyond.

Relate $W^{\mu\nu}$, $F_{\alpha\beta}$ with respective 6 independent entries:

$$[F_{\alpha\beta}] = \begin{bmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{bmatrix} ,$$
 Tools

$$[W^{\mu\nu}] = \begin{bmatrix} 0 & D_1 & D_2 & D_3 \\ -D_1 & 0 & H_3 & -H_2 \\ -D_2 & -H_3 & 0 & H_1 \\ -D_3 & H_2 & -H_1 & 0 \end{bmatrix} ,$$
 Hint. Step2.

Important symmetry:

$$\chi^{\mu\nu\alpha\beta} = -\chi^{\nu\mu\alpha\beta} = -\chi^{\mu\nu\beta\alpha}$$

(E.J. Post, "Formal Structure of Electromagnetics", 1962).

Skewonless media with no birefringence.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + \chi^{IJ}_{\text{Skew}}.$ Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$ Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.

Skewonless media with no birefringence.

Basics.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ${}^{[2]}\chi^{\mu\nu\alpha\beta}$ has not been observed.

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond. Thank-you.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed.

Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^T$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^T$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^T$.

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions Beyond. Thank-you.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^{T}$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^{T}$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^{T}$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible.

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond. Thank-you.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^T$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^T$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^T$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}.$ Skewonless media with no birefringence.

Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond. Thank-you.

Basics.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^T$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^T$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^T$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}.$ Skewonless media with no birefringence.

Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond. Thank-you.

Basics.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^T$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^T$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^T$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}$. In nature: Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond. Thank-you.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^{T}$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^{T}$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^{T}$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}$. In nature:

Static: de Lange & Raab, J. Opt. A, 2001.

Skewonless media with no birefringence.

Basics.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^{T}$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^{T}$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^{T}$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}$. In nature:

- Static: de Lange & Raab, J. Opt. A, 2001.
- ▶ Waves: Hehl, Obukhov, Rivera & Schmid, PLA, 2008.

Skewonless media with no birefringence.

Basics.
Further symmetries: principal + skewon + axion.

- From 6×6 matrix split symmetric and skewon parts: $\chi^{IJ} \equiv (\chi^{IJ} + \chi^{JI})/2 + (\chi^{IJ} - \chi^{JI})/2 = \chi^{IJ}_{\text{Symm}} + {}^{[2]}\chi^{IJ}.$
- ► Split: $\chi_{\text{Symm}}^{\mu\nu\alpha\beta} = \chi_{\text{Principal}}^{\mu\nu\alpha\beta} + \chi_{\text{Axion}}^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$, axion antisymmetric for any pair of 4D indices swapped.
- Thus: $\chi^{\mu\nu\alpha\beta} = {}^{[1]}\chi^{\mu\nu\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta} + {}^{[3]}\chi^{\mu\nu\alpha\beta}$.

Skewon ^[2] $\chi^{\mu\nu\alpha\beta}$ has not been observed. Finite skewon <u>violates</u> usual $\overline{\overline{\varepsilon}} = \overline{\overline{\varepsilon}}^{T}$, $\overline{\overline{\mu}} = \overline{\overline{\mu}}^{T}$, $\overline{\overline{\alpha}} = -\overline{\overline{\beta}}^{T}$.

Axion ^[3] $\chi^{\mu\nu\alpha\beta}$ is rare but possible. Axion obeys ^[3] $\chi^{\mu\nu\alpha\beta} \propto e^{\mu\nu\alpha\beta} \in \{\pm 1, 0\}$. In nature:

- Static: de Lange & Raab, J. Opt. A, 2001.
- ▶ Waves: Hehl, Obukhov, Rivera & Schmid, PLA, 2008.

Given these considerations the skewon is assumed to vanish.

Skewonless media with no birefringence.

Basics.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

• Quartic in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) with Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

• Quartic in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) with Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

Geometric optics used.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

-1

• <u>Quartic</u> in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) with Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

▶ Geometric optics used. Test spacetime ⇒ sharp fronts and causality. Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

-1

• <u>Quartic</u> in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) <u>with</u> Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

Geometric optics used. Test spacetime ⇒ sharp fronts and causality. Table-top media ⇒ CW laser light, not a probe of causality; speed of fronts is c (Milonni, 2002). Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

-

• <u>Quartic</u> in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) with Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

- Geometric optics used. Test spacetime ⇒ sharp fronts and causality. Table-top media ⇒ CW laser light, not a probe of causality; speed of fronts is c (Milonni, 2002).
- Birefringence is <u>eliminated</u> when f(K) is bi-quadratic:

$$f(\mathbf{K}) \propto (G^{lphaeta} K_{lpha} K_{eta})^2 = 0$$

<u>Define</u> $G^{\alpha\beta}$ in $f(\mathbf{K})$ as optical metric (Gordon, 1923).

Skewonless media with no birefringence.

Outline

Basics.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions. Beyond.

• <u>Quartic</u> in waves' $K_{\mu} = (-\omega, k_i)$, cubic in media's $\chi^{\alpha\beta\mu\nu}$:

$$f(\mathbf{K}) = \frac{1}{4} \hat{\mathbf{e}}_{\alpha\beta\gamma\delta} \hat{\mathbf{e}}_{\eta\theta\kappa\lambda} \chi^{\alpha\beta\eta\theta} \chi^{\gamma\mu\nu\kappa} \chi^{\delta\rho\sigma\lambda} K_{\mu} K_{\nu} K_{\rho} K_{\sigma} = 0 \,,$$

Obukhov, Fukui (2000) with Rubilar (2002). Covariant: Lindell (2005) and Itin (2009). Origin: Tamm (1925).

- Geometric optics used. Test spacetime ⇒ sharp fronts and causality. Table-top media ⇒ CW laser light, not a probe of causality; speed of fronts is c (Milonni, 2002).
- Birefringence is <u>eliminated</u> when f(K) is bi-quadratic:

$$f(\mathbf{K}) \propto (G^{lphaeta} K_{lpha} K_{eta})^2 = 0$$

<u>Define</u> $G^{\alpha\beta}$ in $f(\mathbf{K})$ as <u>optical</u> metric (Gordon, 1923). • Example: vacuum, simplest non-birefringent medium $\chi_0^{\mu\nu\alpha\beta} = \sqrt{-\det(g_{\alpha\beta})}(\mu_0/\varepsilon_0)^{-\frac{1}{2}} (g^{\mu\alpha}g^{\nu\beta} - g^{\mu\beta}g^{\nu\alpha})$. Skewonless media with no birefringence.

Outline

Basics.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions. Beyond.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

• $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (normal forms) classify all.

Skewonless media with no birefringence.

• $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, test all.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{II} is symmetric: can diagonalise.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (normal forms) classify all.
- Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_{\rm C} \sim \chi^{IJ}_{\rm D}.$

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusion: Beyond.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly! Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, <u>test all</u>.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

• Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (normal forms) classify all.
- Preview: test normal forms for no-birefringence, <u>test all</u>.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

- Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).
- Get eigenvalue problem $\kappa_{\mu\nu}{}^{\alpha\beta}X_{\alpha\beta} = 2\eta X_{\mu\nu}$, and solve.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, <u>test all</u>.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

- Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).
- Get eigenvalue problem $\kappa_{\mu\nu}{}^{\alpha\beta}X_{\alpha\beta} = 2\eta X_{\mu\nu}$, and solve.
- Classify ηs: Real-Complex? Multiplicities (geom-algeb)?

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (<u>normal forms</u>) classify all.
- Preview: test normal forms for no-birefringence, <u>test all</u>.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

- Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).
- Get eigenvalue problem $\kappa_{\mu\nu}{}^{\alpha\beta}X_{\alpha\beta} = 2\eta X_{\mu\nu}$, and solve.
- Classify ηs: Real-Complex? Multiplicities (geom-algeb)?

\Rightarrow Strong (Schuller) classification: Segre types, Jordan form.

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (normal forms) classify all.
- Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

- Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).
- Get eigenvalue problem $\kappa_{\mu\nu}{}^{\alpha\beta}X_{\alpha\beta} = 2\eta X_{\mu\nu}$, and solve.
- Classify ηs: Real-Complex? Multiplicities (geom-algeb)?
- \Rightarrow Strong (Schuller) classification: Segre types, Jordan form.

For those like me...

Schuller provides 23 matrices (6×6 normal forms) that encode every skewonless medium. Just use them!

Skewonless media with no birefringence.

- $\chi_A^{\alpha\beta\mu\nu} \approx \chi_B^{\alpha\beta\mu\nu}$ strongly equivalent if <u>linked</u> by change of 4D basis. Find typical reps (normal forms) classify all.
- Preview: test normal forms for no-birefringence, <u>test all</u>.

Heuristics of the classification.

No skewon, 6×6 matrix χ^{IJ} is symmetric: can diagonalise. Same diagonal, $\chi^{IJ}_C \sim \chi^{IJ}_D$. But \sim as 6×6 matrices, weakly!

- Go <u>refined</u>: form $\kappa_{\mu\nu}^{\ \alpha\beta} = \hat{e}_{\mu\nu\rho\sigma}\chi^{\rho\sigma\alpha\beta}/2$, valence (2,2).
- Get eigenvalue problem $\kappa_{\mu\nu}{}^{\alpha\beta}X_{\alpha\beta} = 2\eta X_{\mu\nu}$, and solve.
- Classify ηs: Real-Complex? Multiplicities (geom-algeb)?
- \Rightarrow Strong (Schuller) classification: Segre types, Jordan form.

For those like me...

Schuller provides 23 matrices (6×6 normal forms) that encode every skewonless medium. Just use them!

Skewonless media with no birefringence.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions

Beyond.

• Schuller et al., medium response $\Omega^{\mu\nu\alpha\beta}$ transforms as:

$$\Omega^{\mu'\nu'\alpha'\beta'} = L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\,\Omega^{\mu\nu\alpha\beta}$$

•

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Schuller et al., medium response $\Omega^{\mu\nu\alpha\beta}$ transforms as:

$$\Omega^{\mu'\nu'\alpha'\beta'} = L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\Omega^{\mu\nu\alpha\beta}$$

Pre-metrically, medium response $\chi^{\mu\nu\alpha\beta}$ transforms as:

$$\chi^{\mu'\nu'\alpha'\beta'} = |\det(L^{\rho'}_{\ \rho})|^{-1}L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\chi^{\mu\nu\alpha\beta}$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

Schuller et al., medium response $\Omega^{\mu\nu\alpha\beta}$ transforms as:

$$\Omega^{\mu'\nu'\alpha'\beta'} = L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\Omega^{\mu\nu\alpha\beta}$$

Pre-metrically, medium response $\chi^{\mu\nu\alpha\beta}$ transforms as:

$$\chi^{\mu'\nu'\alpha'\beta'} = |\det(L^{\rho'}_{\rho})|^{-1} L^{\mu'}_{\mu} L^{\nu'}_{\nu} L^{\alpha'}_{\alpha} L^{\beta'}_{\beta} \chi^{\mu\nu\alpha\beta} \ ,$$

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact.

Conclusions

Beyond.

Schuller et al., medium response $\Omega^{\mu\nu\alpha\beta}$ transforms as:

$$\Omega^{\mu'\nu'\alpha'\beta'} = L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\Omega^{\mu\nu\alpha\beta}$$

Pre-metrically, medium response $\chi^{\mu\nu\alpha\beta}$ transforms as:

$$\chi^{\mu'\nu'\alpha'\beta'} = |\det(L^{\rho'}_{\rho})|^{-1}L^{\mu'}_{\mu}L^{\nu'}_{\nu}L^{\alpha'}_{\alpha}L^{\beta'}_{\beta}\chi^{\mu\nu\alpha\beta}$$

► Fix: adapted from Schuller. 4D transform 6×6 dets: $|\det(\Omega^{I'J'})|^{1/6} = |\det(L^{\rho'}_{\rho})|^{+1} |\det(\Omega^{IJ})|^{1/6}$, $|\det(\chi^{I'J'})| = |\det(\chi^{IJ})|$. Skewonless media with no birefringence.

Tools.

Method

Step 1.

lint.

Step2.

Results

Impact

Conclusions

Beyond.

Schuller et al., medium response $\Omega^{\mu\nu\alpha\beta}$ transforms as:

$$\Omega^{\mu'\nu'\alpha'\beta'} = L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\Omega^{\mu\nu\alpha\beta}$$

Pre-metrically, medium response $\chi^{\mu\nu\alpha\beta}$ transforms as:

$$\chi^{\mu'\nu'\alpha'\beta'} = |\det(L^{\rho'}_{\ \rho})|^{-1}L^{\mu'}_{\ \mu}L^{\nu'}_{\ \nu}L^{\alpha'}_{\ \alpha}L^{\beta'}_{\ \beta}\chi^{\mu\nu\alpha\beta}$$

► Fix: adapted from Schuller. 4D transform 6×6 dets: $|\det(\Omega^{I'J'})|^{1/6} = |\det(L^{\rho'}_{\rho})|^{+1} |\det(\Omega^{IJ})|^{1/6}$, $|\det(\chi^{I'J'})| = |\det(\chi^{IJ})|$.

Factors in red can compensate each other. <u>Reconcile</u>:

$$rac{\chi^{\mu
ulphaeta}}{|\det(\chi^{IJ})|^{1/6}} = rac{\Omega^{\mu
ulphaeta}}{|\det(\Omega^{IJ})|^{1/6}} \; ,$$

matches pre-metric well; but how about axiomatics?

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions Beyond. Thank-you.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

► Adapt: Lämmerzahl, Hehl (PRD '04) + Itin (PRD '05).

Skewonless media with no birefringence.

- Adapt: Lämmerzahl, Hehl (PRD '04) + Itin (PRD '05).
- Pick component q from K_{μ} . Dispersion relation w.r.t q,

$$M_0q^4 + M_1q^3 + M_2q^2 + M_3q + M_4 = 0 \ ,$$

coeffs dependent on $(-\omega, k_i)$, but not on entry $K_{\nu} = q$.

Skewonless media with no birefringence.

Jutline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

- Adapt: Lämmerzahl, Hehl (PRD '04) + Itin (PRD '05).
- Pick component q from K_{μ} . Dispersion relation w.r.t q,

$$M_0q^4 + M_1q^3 + M_2q^2 + M_3q + M_4 = 0 \ ,$$

coeffs dependent on $(-\omega, k_i)$, but not on entry $K_{\nu} = q$.

Compare w/ biquadratic ⇒ no-birefringence scheme:

Skewonless media with no birefringence.

Desias

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

- Adapt: Lämmerzahl, Hehl (PRD '04) + Itin (PRD '05).
- Pick component q from K_{μ} . Dispersion relation w.r.t q,

$$M_0q^4 + M_1q^3 + M_2q^2 + M_3q + M_4 = 0 \ ,$$

coeffs dependent on $(-\omega, k_i)$, but not on entry $K_{\nu} = q$. • Compare w/ biquadratic \Rightarrow no-birefringence scheme:

Skewonless media with no birefringence.

- ► Adapt: Lämmerzahl, Hehl (PRD '04) + Itin (PRD '05).
- Pick component q from K_{μ} . Dispersion relation w.r.t q,

$$M_0q^4 + M_1q^3 + M_2q^2 + M_3q + M_4 = 0 \ ,$$

coeffs dependent on $(-\omega, k_i)$, but not on entry $K_{\nu} = q$. • Compare w/ biquadratic \Rightarrow no-birefringence scheme:

Skewonless media with no birefringence.

Our method: Computer \Rightarrow "Hint" \Rightarrow Analytics.

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method.

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

Our method: Computer \Rightarrow "Hint" \Rightarrow Analytics.

Step 1: computer search of non-birefringent media.

Skewonless media with no birefringence.

Basics.

Tools.

Method.

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.
Step 1: computer search of non-birefringent media.

• Input: 23 Schuller matrices (\approx all skewonless media).

Outline

Basics.

Tools.

Method.

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method.

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- ▶ Output: 5 matrices (≈ all skewonless non-biref. media).

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

5 matrices: no-birefringence solutions; not intuitive.

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

- 5 matrices: no-birefringence solutions; not intuitive.
- Find one "analytic law" $\chi^{\mu\nu\alpha\beta}$ re-represents 5 matrices.

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

- 5 matrices: no-birefringence solutions; not intuitive.
- Find one "analytic law" $\chi^{\mu\nu\alpha\beta}$ re-represents 5 matrices.

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu ulphaeta}$.

- 5 matrices: no-birefringence solutions; <u>not intuitive</u>.
- Find one "analytic law" $\chi^{\mu\nu\alpha\beta}$ re-represents 5 matrices.
- Trade-off: the analytic law is too coarse; covers 5 matrices, but some birefringent solutions too. Refine!

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

- 5 matrices: no-birefringence solutions; <u>not intuitive</u>.
- Find one "analytic law" $\chi^{\mu\nu\alpha\beta}$ re-represents 5 matrices.
- Trade-off: the analytic law is too coarse; covers 5 matrices, but some birefringent solutions too. Refine!

Step 2: Refine the analytic law, get symbolic result.

Skewonless media with no birefringence.

Step 1: computer search of non-birefringent media.

- Input: 23 Schuller matrices (\approx all skewonless media).
- Program: no-birefringence (Lämmerzahl/Hehl/Itin).
- Output: 5 matrices (\approx all skewonless non-biref. media).

"Hint": matrices hint to one intuitive form of $\chi^{\mu\nu\alpha\beta}$.

- 5 matrices: no-birefringence solutions; <u>not intuitive</u>.
- Find one "analytic law" $\chi^{\mu\nu\alpha\beta}$ re-represents 5 matrices.
- Trade-off: the analytic law is too coarse; covers 5 matrices, but some birefringent solutions too. Refine!

Step 2: Refine the analytic law, get symbolic result.

▶ Non-birefringent = optical metric + (bivectors, axion).

Skewonless media with no birefringence.

Mathematica [®] : 23 matrices in, 5 matrices out. Lämmerzahl/Hehl/Itin birefringence elimination gives 5 χ^{IJ} :										Skewonless media with no birefringence.
$\begin{bmatrix} -\tau & 0 \\ 0 & -\tau \\ 0 & 0 \\ \sigma & 0 \\ 0 & \sigma \\ 0 & 0 \end{bmatrix}$	$\begin{smallmatrix} 0\\0\\-\tau\\0\\\sigma\\\sigma\\\end{smallmatrix}$	$egin{array}{ccc} \sigma & 0 \ 0 & \sigma \ 0 & 0 \ au & 0 \ au & 0 \ 0 & au \ 0 & au \ 0 & au \ 0 & au \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ \sigma \\ 0 \\ 0 \\ \tau \end{bmatrix}$		$\begin{bmatrix} \lambda_5 & 0 \\ 0 & \lambda_3 \\ 0 & 0 \\ \lambda_6 & 0 \\ 0 & \lambda_4 \\ 0 & 0 \end{bmatrix}$	$\begin{array}{ccc} 0 & \lambda_6 \\ 0 & 0 \\ \lambda_1 & 0 \\ 0 & \lambda_5 \\ 0 & 0 \\ \lambda_2 & 0 \end{array}$	$ \begin{array}{ccc} 0 & 0 \\ \lambda_4 & 0 \\ 0 & \lambda_2 \\ 0 & 0 \\ \lambda_3 & 0 \\ 0 & \lambda_1 \end{array} \right] $			Outline. Basics. Tools. Method.
$\begin{bmatrix} 0\\0\\\pm\lambda_1+\lambda_2\\0\\0\end{bmatrix}$	$\begin{matrix} 0\\ -\tau\\ 0\\ 0\\ \sigma\\ 0\end{matrix}$	$egin{array}{ccc} 0 & \pm \ 0 \ \lambda_1 \ 0 \ 0 \ \lambda_2 \end{array}$	$\lambda_1 + \lambda_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{ccc} 0 & 0 \\ \sigma & 0 \\ 0 & \lambda_2 \\ 0 & 0 \\ \tau & 0 \\ 0 & \lambda_1 \end{array}$	$\begin{bmatrix} 0\\0\\\pm\lambda_1+\lambda_2\\0\\0\end{bmatrix}$	$egin{array}{cccc} 0 & 0 \ \lambda_3 & 0 \ 0 & \lambda_1 \ 0 & 0 \ \lambda_4 & 0 \ 0 & \lambda_2 \end{array}$	$\begin{array}{c}\pm\lambda_1+\lambda_2\\0\\0\\0\\0\\0\end{array}$	$\begin{matrix} 0\\\lambda_4\\0\\0\\\lambda_3\\0\end{matrix}$	$\begin{bmatrix} 0\\0\\\lambda_2\\0\\0\\\lambda_1 \end{bmatrix}$	Step 1. Hint. Step2.
		$\begin{bmatrix} 0\\0\\\lambda_3\\0\\0\end{bmatrix}$	$egin{array}{ccc} 0 & & \ 0 & & \ 0 & & \ 0 & \ \lambda_{5} & \ 0 & \end{array}$	$\begin{pmatrix} 0 \\ 0 \\ \lambda_3 - \lambda_5 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ \lambda_1 \end{pmatrix}$	$\begin{array}{ccc} \lambda_1 & 0 \\ 0 & \lambda_5 \\ 0 & 0 \\ \epsilon_1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ \lambda_3 \\ 0 \\ 0 \\ \pm (\lambda_3 - \lambda_5) \end{array}$				Impact. Conclusions. Beyond.

Full answer, but ugly: decode into analytic law ("Hint").

- Magneto-electric diagonals $\rightarrow \chi^{\mu\nu\alpha\beta}$ has axion $\alpha e^{\mu\nu\alpha\beta}$.
- "Rectangles" $\rightarrow \chi^{\mu\nu\alpha\beta}$ has bivector terms $A^{\mu\nu}A^{\alpha\beta}$.

 $\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho}) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho}) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

• Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0.$

Skewonless media with no birefringence.

Outline.

Basics

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho}) + s_{A} A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

Hodge: metric used becomes optical (G^{αβ}K_αK_β)²=0.
 Bivector terms: A^{αβ}, Ã^{αβ} antisymmetric; s_A, s_Ã signs.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho}) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

• Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2=0$.

- Bivector terms: $A^{\alpha\beta}$, $\tilde{A}^{\alpha\beta}$ antisymmetric; s_A , $s_{\tilde{A}}$ signs.
- <u>Preview</u>: Bivector terms vanish if $G^{\alpha\beta}$ signature (3,1).

Skewonless media with no birefringence.

Skewonless media with no birefringence.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \left[\left(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} \right) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \right] + \alpha e^{\mu\nu\rho}$$

- Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0.$
- Bivector terms: $A^{\alpha\beta}$, $\tilde{A}^{\alpha\beta}$ antisymmetric; s_A , $s_{\tilde{\Delta}}$ signs.
- <u>Preview</u>: Bivector terms vanish if $G^{\alpha\beta}$ signature (3,1).
- Axion term: innocuous, drops from dispersion relation.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \left[\left(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} \right) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \right] + \alpha e^{\mu\nu\rho\sigma}$$

- Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0.$
- Bivector terms: $A^{\alpha\beta}$, $\tilde{A}^{\alpha\beta}$ antisymmetric; s_A , $s_{\tilde{A}}$ signs.
- <u>Preview</u>: Bivector terms vanish if $G^{\alpha\beta}$ signature (3,1).
- Axion term: innocuous, drops from dispersion relation.
- Further stuff: account density and impedance-like *M*.

Skewonless media with no birefringence.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} \mathcal{M} \left[\left(\mathcal{G}^{\mu\rho} \mathcal{G}^{\nu\sigma} - \mathcal{G}^{\mu\sigma} \mathcal{G}^{\nu\rho} \right) + s_{A} \mathcal{A}^{\mu\nu} \mathcal{A}^{\rho\sigma} + s_{\tilde{A}} \tilde{\mathcal{A}}^{\mu\nu} \tilde{\mathcal{A}}^{\rho\sigma} \right] + \alpha e^{\mu\nu}$$

- Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0.$
- Bivector terms: $A^{\alpha\beta}$, $\tilde{A}^{\alpha\beta}$ antisymmetric; s_A , $s_{\tilde{A}}$ signs.
- <u>Preview</u>: Bivector terms vanish if $G^{\alpha\beta}$ signature (3,1).
- Axion term: innocuous, drops from dispersion relation.
- Further stuff: account density and impedance-like *M*.

Too coarse, skewonless: nonbirefringent + some birefringent.

Skewonless media with no birefringence.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[(G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho}) + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} A^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} A^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} \big] + \alpha e^{\mu\nu} A^{\rho\sigma} + \alpha e^{\mu$$

- Hodge: metric used becomes optical $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0.$
- Bivector terms: $A^{\alpha\beta}$, $\tilde{A}^{\alpha\beta}$ antisymmetric; s_A , $s_{\tilde{A}}$ signs.
- <u>Preview</u>: Bivector terms vanish if $G^{\alpha\beta}$ signature (3,1).
- Axion term: innocuous, drops from dispersion relation.
- Further stuff: account density and impedance-like *M*.

Too coarse, skewonless: nonbirefringent + some birefringent.

KILL!

Skewonless media with no birefringence.

Refine analytic law, get necessary & sufficient.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\widetilde{A}} \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\widetilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} = 0 \; . \end{split}$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions.

Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\tilde{A}} \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\tilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} &= 0 \; . \end{split}$$

Birefringent. Become non-birefringent $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0$ if:

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = a_1 \mathbb{1} , \quad \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1} = a_2 \mathbb{1} ,$$
$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1} + \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = 2a_3 \mathbb{1} .$$

Skewonless media with no birefringence.

Basics.

Tools.

Method

Step 1.

lint.

Step2.

Results.

Impact.

Conclusions

Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\tilde{A}} \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\tilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} = 0 \; . \end{split}$$

Birefringent. Become non-birefringent $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0$ if:

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = a_1 \mathbb{1} , \quad \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} = a_2 \mathbb{1} ,$$

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} + \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = 2a_3 \mathbb{1} .$$

Bivect. $A^{\alpha\beta}$ and $\tilde{A}^{\alpha\beta}$ must be (anti-)selfdual w.r.t $G^{\alpha\beta}$ -Hodge:

$$\begin{aligned} \mathcal{A}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon_{G}^{\mu\nu\alpha\beta} (\overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\mathbf{A})^{\mu\nu} ,\\ \tilde{\mathcal{A}}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon_{G}^{\mu\nu\alpha\beta} (\overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\tilde{\mathbf{A}})^{\mu\nu} , \end{aligned}$$

Skewonless media with no birefringence.

Basics. Fools.

Method

Step 1

lint.

Step2.

Results

Impact

Conclusions. Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\tilde{A}} \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\tilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} = 0 \; . \end{split}$$

Birefringent. Become non-birefringent $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0$ if:

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = a_1 \mathbb{1} , \quad \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} = a_2 \mathbb{1} ,$$

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} + \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = 2a_3 \mathbb{1} .$$

Bivect. $A^{\alpha\beta}$ and $\tilde{A}^{\alpha\beta}$ must be (anti-)selfdual w.r.t $G^{\alpha\beta}$ -Hodge:

$$\begin{aligned} \mathcal{A}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon_{G}^{\mu\nu\alpha\beta} (\overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} (^{*}\mathbf{A})^{\mu\nu} ,\\ \tilde{\mathcal{A}}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon_{G}^{\mu\nu\alpha\beta} (\overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} (^{*}\tilde{\mathbf{A}})^{\mu\nu} , \end{aligned}$$

Skewonless media with no birefringence.

Basics. Tools.

Method

Step 1.

lint.

Step2.

Results

Impact

Conclusions. Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\tilde{A}} \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\tilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} &= 0 \; . \end{split}$$

Birefringent. Become non-birefringent $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0$ if:

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = a_1 \mathbb{1} , \quad \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} = a_2 \mathbb{1} ,$$
$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} + \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = 2a_3 \mathbb{1} .$$

Bivect. $A^{\alpha\beta}$ and $\tilde{A}^{\alpha\beta}$ must be (anti-)selfdual w.r.t $G^{\alpha\beta}$ -Hodge:

$$\begin{aligned} A^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon^{\mu\nu\alpha\beta}_{G} (\overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\mathbf{A})^{\mu\nu} , \\ \tilde{A}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon^{\mu\nu\alpha\beta}_{G} (\overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\tilde{\mathbf{A}})^{\mu\nu} , \end{aligned}$$

Density $e^{\mu\nu\alpha\beta}$ converted to tensor $\epsilon_{G}^{\mu\nu\alpha\beta}$ via optical $G^{\alpha\beta}$. Also:

$$^{**}A = A$$
, $^{**}\tilde{A} = \tilde{A}$.

Skewonless media with no birefringence.

Basics. Fools.

Method

Step 1

Hint.

Step2.

Results.

Impact.

Conclusions. Beyond.

$$\begin{split} \left[(\overline{\overline{G}} - s_{A}\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right] \left[(\overline{\overline{G}} - s_{\tilde{A}} \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\rho\sigma} \mathcal{K}_{\rho} \mathcal{K}_{\sigma} \right] \\ - s_{A} s_{\tilde{A}} \left[(\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}})^{\mu\nu} \mathcal{K}_{\mu} \mathcal{K}_{\nu} \right]^{2} = 0 \; . \end{split}$$

Birefringent. Become non-birefringent $(G^{\alpha\beta}K_{\alpha}K_{\beta})^2 = 0$ if:

$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = a_1 \mathbb{1} , \quad \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} = a_2 \mathbb{1} ,$$
$$\mathbf{A} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} + \mathbf{\tilde{A}} \cdot \overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1} = 2a_3 \mathbb{1} .$$

Bivect. $A^{\alpha\beta}$ and $\tilde{A}^{\alpha\beta}$ must be (anti-)selfdual w.r.t $G^{\alpha\beta}$ -Hodge:

$$\begin{aligned} A^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon^{\mu\nu\alpha\beta}_{G} (\overline{\overline{G}}^{-1} \cdot \mathbf{A} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\mathbf{A})^{\mu\nu} , \\ \tilde{A}^{\mu\nu} &= \frac{s_{\chi}}{2} \epsilon^{\mu\nu\alpha\beta}_{G} (\overline{\overline{G}}^{-1} \cdot \tilde{\mathbf{A}} \cdot \overline{\overline{G}}^{-1})_{\alpha\beta} := s_{\chi} ({}^{*}\tilde{\mathbf{A}})^{\mu\nu} , \end{aligned}$$

Density $e^{\mu\nu\alpha\beta}$ converted to tensor $\epsilon_{G}^{\mu\nu\alpha\beta}$ via optical $G^{\alpha\beta}$. Also:

$$^{**}\mathsf{A} = \mathsf{A} \;, \qquad ^{**}\tilde{\mathsf{A}} = \tilde{\mathsf{A}} \;.$$

Skewonless media with no birefringence.

Basics. Tools.

Method

Step 1.

lint.

Step2.

Results.

Impact.

Conclusions. Beyond.

$$\left|\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \left[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} + s_{\mathcal{A}} A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{\mathcal{A}}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma}\right] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = s_X^* \mathbf{A} , \qquad \tilde{\mathbf{A}} = s_X^* \tilde{\mathbf{A}} ,$$

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2

Results.

Impact

Conclusions.

Beyond.

$$\left|\chi^{\mu\nu\rho\sigma} = \left|\det(G_{\alpha\beta}^{-1})\right|^{\frac{1}{2}} M\left[G^{\mu\rho}G^{\nu\sigma} - G^{\mu\sigma}G^{\nu\rho} + s_{\mathcal{A}}A^{\mu\nu}A^{\rho\sigma} + s_{\tilde{\mathcal{A}}}\tilde{A}^{\mu\nu}\tilde{A}^{\rho\sigma}\right] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = s_X^* \mathbf{A} , \qquad \tilde{\mathbf{A}} = s_X^* \tilde{\mathbf{A}} ,$$

When the signature of the optical $G^{\alpha\beta}$ is Lorentzian (3,1).

Skewonless media with no birefringence.

Dutline.

Basics

Tools.

Method

Step 1

Hint.

Step2

Results.

Impact.

Conclusions.

Beyond.

$$\left|\chi^{\mu\nu\rho\sigma} = \left|\det(G_{\alpha\beta}^{-1})\right|^{\frac{1}{2}} M\left[G^{\mu\rho}G^{\nu\sigma} - G^{\mu\sigma}G^{\nu\rho} + s_{A}A^{\mu\nu}A^{\rho\sigma} + s_{\tilde{A}}\tilde{A}^{\mu\nu}\tilde{A}^{\rho\sigma}\right] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = \mathbf{s}_{X}^{*} \mathbf{A} , \qquad \tilde{\mathbf{A}} = \mathbf{s}_{X}^{*} \tilde{\mathbf{A}} ,$$

When the signature of the optical $G^{\alpha\beta}$ is Lorentzian (3,1). Both **A = A (above) and **A = -A (Nakahara, '03), hence:

$$\mathbf{A}\equiv \mathbf{0}\;,\qquad \mathbf{ ilde{A}}\equiv \mathbf{0}\;,$$

1

Skewonless media with no birefringence.

Dutline.

Basics

Tools.

Method

Step 1

Hint.

Step2

Results.

mpact. Conclusions Beyond.

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = \mathbf{s}_{X}^{*} \mathbf{A} , \qquad \tilde{\mathbf{A}} = \mathbf{s}_{X}^{*} \tilde{\mathbf{A}} ,$$

When the signature of the optical $G^{\alpha\beta}$ is Lorentzian (3,1). Both **A = A (above) and **A = -A (Nakahara, '03), hence:

$$\mathbf{A}\equiv \mathbf{0}\;,\qquad \mathbf{ ilde{A}}\equiv \mathbf{0}\;,$$

$$\left|\chi_{(3,1)}^{\mu\nu\rho\sigma} = \left|\det(G_{\alpha\beta}^{-1})\right|^{\frac{1}{2}} M \left[G^{\mu\rho}G^{\nu\sigma} - G^{\mu\sigma}G^{\nu\rho}\right] + \alpha e^{\mu\nu\rho\sigma}$$

Skewonless media with no birefringence.

Dutline.

Basics

Tools.

Method

Step 1

Hint.

Step2

Results.

Impact. Conclusions. Beyond. Thank you

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = \mathbf{s}_X^* \mathbf{A} , \qquad \tilde{\mathbf{A}} = \mathbf{s}_X^* \tilde{\mathbf{A}} ,$$

When the signature of the optical $G^{\alpha\beta}$ is Lorentzian (3,1). Both **A = A (above) and **A = -A (Nakahara, '03), hence:

$$\mathbf{A}\equiv \mathbf{0}\;,\qquad \mathbf{ ilde{A}}\equiv \mathbf{0}\;,$$

$$\chi^{\mu\nu\rho\sigma}_{(3,1)} = |\det(G^{-1}_{\alpha\beta})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} \big] + \alpha e^{\mu\nu\rho\sigma}$$

Non-birefringent + Lorentzian \Leftrightarrow Hodge dual + Axion part.

Skewonless media with no birefringence.

Dutline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2

Results.

Impact. Conclusions. Beyond. Thank-you

$$\chi^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} + s_A A^{\mu\nu} A^{\rho\sigma} + s_{\tilde{A}} \tilde{A}^{\mu\nu} \tilde{A}^{\rho\sigma} \big] + \alpha e^{\mu\nu\rho\sigma}$$

$$\mathbf{A} = \mathbf{s}_X^* \mathbf{A} , \qquad \tilde{\mathbf{A}} = \mathbf{s}_X^* \tilde{\mathbf{A}} ,$$

When the signature of the optical $G^{\alpha\beta}$ is Lorentzian (3,1). Both **A = A (above) and **A = -A (Nakahara, '03), hence:

$$\mathbf{A}\equiv \mathbf{0}\;,\qquad \mathbf{ ilde{A}}\equiv \mathbf{0}\;,$$

$$\chi^{\mu\nu\rho\sigma}_{(3,1)} = |\det(G^{-1}_{\alpha\beta})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} \big] + \alpha e^{\mu\nu\rho\sigma}$$

Non-birefringent + Lorentzian \Leftrightarrow Hodge dual + Axion part. Other signatures: only metamaterials, hyperlens (Jacob '06). Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2

Results.

Impact. Conclusions. Beyond. Thank-you.

Ties together previous literature.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.
Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta_I^J.$$

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta_I^J.$$

2. They further eliminate skewon, setting $^{[2]}\chi^{IJ} = 0$.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Bevond

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta^J_I.$$

2. They further eliminate skewon, setting $^{[2]}\chi^{IJ} = 0$.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Skewonless media with no birefringence.

Basics

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta^J_I.$$

2. They further eliminate skewon, setting $^{[2]}\chi^{IJ} = 0$.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Skewonless media with no birefringence.

Destas

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta_I^J.$$

2. They further eliminate skewon, setting $^{[2]}\chi^{IJ} = 0$.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Skewonless media with no birefringence.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta_I^J.$$

2. They further eliminate skewon, setting ${}^{[2]}\chi^{IJ} = 0$. 1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion. Lämmerzahl & Hehl (2004). Skewonless media with no birefringence.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond. Thank-you

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta^J_I.$$

2. They further eliminate skewon, setting ^[2]χ^{IJ} = 0.
1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.
Lämmerzahl & Hehl (2004).

1. Enforce that there is a unique light-cone.

Impact.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta^J_I.$$

They further eliminate skewon, setting ^[2]χ^{IJ} = 0.
and 2. uniquely give Hodge dual [(3,1)-metric] + axion.
Lämmerzahl & Hehl (2004).

- 1. Enforce that there is a unique light-cone.
- 2. Hyperbolic propagation: problem is causally posed.

Skewonless media with no birefringence.

Impact.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{e}_{IK}\tilde{\chi}^{KL}\hat{e}_{LM}\tilde{\chi}^{MJ} = -\lambda^2 \delta^J_I.$$

They further eliminate skewon, setting ^[2]χ^{IJ} = 0.
and 2. uniquely give Hodge dual [(3,1)-metric] + axion.
Lämmerzahl & Hehl (2004).

- 1. Enforce that there is a unique light-cone.
- 2. Hyperbolic propagation: problem is causally posed.
- 1. and 2. uniquely give optical metric $G^{\alpha\beta}$ signature (3,1).

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions Beyond.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{\mathbf{e}}_{IK}\tilde{\boldsymbol{\chi}}^{KL}\hat{\mathbf{e}}_{LM}\tilde{\boldsymbol{\chi}}^{MJ} = -\lambda^2 \delta_I^J.$$

2. They further eliminate skewon, setting ^[2]χ^{IJ} = 0.
1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.
Lämmerzahl & Hehl (2004).

- 1. Enforce that there is a unique light-cone.
- 2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric $G^{\alpha\beta}$ signature (3,1). (3,1): Hodge + axion $\Rightarrow (G^{\alpha\beta}K_{\alpha}K_{\beta})=0$. CONVERSE? "Note that the vanishing of birefringence is not equivalent to the validity of the reciprocity [closure] relation." (L&H, '04) Impact.

Skewonless media

with no birefringence.

1. EM reciprocity: axionless (tilde) part obeys closure

$$\hat{\mathbf{e}}_{IK}\tilde{\boldsymbol{\chi}}^{KL}\hat{\mathbf{e}}_{LM}\tilde{\boldsymbol{\chi}}^{MJ} = -\lambda^2 \delta_I^J.$$

2. They further eliminate skewon, setting ^[2]χ^{IJ} = 0.
1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.
Lämmerzahl & Hehl (2004).

- 1. Enforce that there is a unique light-cone.
- 2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric $G^{\alpha\beta}$ signature (3,1). (3,1): Hodge + axion $\Rightarrow (G^{\alpha\beta}K_{\alpha}K_{\beta})=0$. CONVERSE! "Note that the vanishing of birefringence IS equivalent to the validity of the reciprocity [closure] relation." (F&B, '11) Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. Conclusions. Beyond.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact.

Conclusions.

Beyond.

Rivera & Schuller, (arXiv:1101.0491).

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1

Hint.

Step2

Results

Impact.

Conclusions.

Thank you

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic $W^{I} = \chi^{IJ} F_{J}$.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond.

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic $W^{I} = \chi^{IJ}F_{J}$. Study general Casimir effect.

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions.

_. .

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic $W^{I} = \chi^{IJ}F_{J}$. Study general Casimir effect. Usual Casimir = no birefringence.

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions

Beyond.

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic $W^{I} = \chi^{IJ}F_{J}$. Study general Casimir effect. Usual Casimir = no birefringence.

Matias Dahl (arXiv:1103.3118).

Confirms the result "(3,1): Hodge + axion \Rightarrow ($G^{\alpha\beta}K_{\alpha}K_{\beta}$)=0. CONVERSE!" using Gröbner bases. Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact.

Conclusions. Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

Skewonless media with no birefringence.

Outline

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact

Conclusions.

Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

Skewonless media with no birefringence.

Outline.

Basics.

Tools.

Method

Step 1.

Hint.

Step2.

Results

Impact

Conclusions.

Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

Reviewed the origin of Schuller's classification.

Basics.

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact

Conclusions.

Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

- Reviewed the origin of Schuller's classification.
- ► Described Lämmerzahl/Hehl/Itin no-birefringence.

Skewonless media with no birefringence.

Basics.

Method

Step 1

Hint.

Step2.

Results

Impact

Conclusions.

Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

- Reviewed the origin of Schuller's classification.
- Described Lämmerzahl/Hehl/Itin no-birefringence.
- Covered all non-birefringent skewonless media.

Skewonless media with no birefringence.

Basics. Tools. Method. Step 1. Hint. Step2. Results. Impact. **Conclusions.** Beyond.

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

- Reviewed the origin of Schuller's classification.
- Described Lämmerzahl/Hehl/Itin no-birefringence.
- Covered all non-birefringent skewonless media.
- ► For signature (3,1), little more than Hodge dual.

Skewonless media with no birefringence.

Conclusions

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

- Reviewed the origin of Schuller's classification.
- Described Lämmerzahl/Hehl/Itin no-birefringence.
- Covered all non-birefringent skewonless media.
- ► For signature (3,1), little more than Hodge dual.
- Haven't talked of other signatures. Please ask!

Skewonless media with no birefringence.

Conclusions

A. Favaro, L. Bergamin, "The non-birefringent limit of all linear, skewonless media and its unique light-cone structure.", Annalen der Physik, 1-19 (2011).

In this talk...

- Reviewed the origin of Schuller's classification.
- Described Lämmerzahl/Hehl/Itin no-birefringence.
- Covered all non-birefringent skewonless media.
- ► For signature (3,1), little more than Hodge dual.
- Haven't talked of other signatures. Please ask!
- Showed how nicely it all fits in the literature.

Skewonless media with no birefringence.

Conclusions

Beyond: Non-Linear or with Skewon.

Obukhov & Rubilar (PRD, '02).

Discuss very general non-linear Lagrangian (Skewon=0):

$$L = L(I_1, I_2)$$
, $I_1 = F_{\mu\nu}F^{\mu\nu}$, $I_2 = F_{\mu\nu}\tilde{F}^{\mu\nu}$,

- Return to linear optics if propagating very sharp front.
- ► For this skewonless medium, no-birefringence if only if

$$\chi_{OR}^{\mu\nu\rho\sigma} = |\det(G_{\alpha\beta}^{-1})|^{\frac{1}{2}} M \big[G^{\mu\rho} G^{\nu\sigma} - G^{\mu\sigma} G^{\nu\rho} \big] + \alpha e^{\mu\nu\rho\sigma}$$

as per this talk. (Made this statement more explicit).

Skewon: divergence from Hodge dual (Bergamin, '10). $\chi^{\mu\nu\alpha\beta} \propto A^{\mu\nu}A^{\alpha\beta} + {}^{[2]}\chi^{\mu\nu\alpha\beta}$ is non-birefringent. Skewonless media with no birefringence.

Bevond.

Skewonless media with no birefringence.

Outline

Basics

Tools.

Method

Step 1

Hint.

Step2.

Results

Impact

Conclusions

Beyond.

Thank-you.

Thank-you!