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Overview: ’Negative refractive index 6= Folding of space ’.

Comment on ‘‘Wave Refraction in Negative-Index
Media: Always Positive and Very Inhomogeneous’’

In a recent Letter [1], Valanju, Walser, and Valanju
(VWV) called into question the basis of work on the so-
called negative index media (NIM). See, for example,
Refs. [2,3]. The key point at issue is ‘‘What is the group
velocity of a wave in NIM?’’ The group velocity is cen-
tral to the unusual properties claimed for these media.
Everyone is in agreement with how the phase velocity re-
fracts at the surface and with the fact that the phase ve-
locity does show a negative index of refraction, as shown
in Fig. 1(a).

Figure 1(b) shows the options for the group velocity: is
the angle of refraction positive as VWV claim, or is it
negative as Veselago claims? The question can speedily
be resolved from the definition of group velocity,

vg ! rk!"k#: (1)

In all cases considered by VWV the NIM medium is iso-
tropic so that ! does not depend on the direction of k,
only on the magnitude. Under these circumstances,

vg ! rk!"jkj# ! kjkj$1d!"jkj#=djkj: (2)

The important point is that there are only two choices in
an isotropic medium: vg is either parallel or antiparallel
to k. Either way this result is not compatible with the con-
clusions of VWV. In fact, we can deduce from Fig. 1 that
vg must be antiparallel to k because energy flow in the
transmitted wave must always be away from the interface.

How did VWV come to a different conclusion? The
problem is with the way they identify group velocity with
an interference pattern. Two waves traveling in the same
direction but at frequencies differing by !! produce
interference traveling with velocity d!=dk ! "g which
is identical in magnitude and direction to the group
velocity; see Fig. 2(a). However, in the calculation made
by VWV the two waves on entering an NIM refract in
slightly different directions, because of dispersion, to
produce interference fronts that slide sideways in a crab-
like motion but with the true group velocity; see Fig. 2(b).
VWV identified a component of vg perpendicular to the
interference fronts as the group velocity; Fig. 3 reconciles
VWV’s observations with the picture laid out by Veselago.
Further details will appear in [4].

To conclude,Veselago’s result that both phase and group
velocities undergo negative refraction at a vacuum/NIM
interface is consistent with causality and with the well
established properties of group velocity in isotropic me-
dia. VWV are correct when they calculate that interfer-
ence fronts are positively refracted at a vacuum/NIM
interface, but are wrong to interpret the normal to the
interference front as the direction of the group velocity.
The discrepancy can be resolved by noting that propaga-
tion of the front is crabwise, and antiparallel to the phase
velocity, as required by Veselago.
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FIG. 1 (color). (a) Refraction of wave fronts at an interface
between vacuum and a NIM. (b) Refraction of the group veloc-
ity at an interface between vacuum and a NIM.

FIG. 2 (color). (a) In an isotropic medium two waves of dif-
ferent frequencies reveal the group velocity through their inter-
ference pattern provided that we choose the wave vectors of the
two waves to be parallel. (b) Two waves of different frequencies
and nonparallel wave vectors result in an interference pattern
moving with velocity vint unrelated to the group velocity.

FIG. 3 (color). A series of pulses changing shape as they
undergo negative refraction.
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I Review why negative index (left) is often compared to
folding of space (right) – wrongly so.

I Use conventional transformation optics consistently ⇒
’negative index 6= folding of space’.

I Folding gives no perfect lensing, as it introduces an
extra source, rather than amplifying evanescent fields.

I Other ways to get a negative index do work, but is it
really worth it?
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Y

X

� Vacuum: Grid (x , y).

� Distance: γ ij ⇒ (∆x)2 + (∆y)2 + (∆z)2.

� Permittivity: εij = ε0[det(γ ij)]−
1
2γij ∼ ε0.

� Permeability: µij = (µ0/ε0)εij , always.

Y’

X’

� Transformed vacuum: Grid (x ′, y ′).

� Distance: γ i
′j ′ ⇒ Min. path appears curved.

� Permittivity: εi
′j ′ = ε0[det(γ i

′j ′)]−
1
2γi
′j ′ .

Y

X

� Interpretation as a material: Grid (x , y).

� Distance: Ruler γ ij , Light γ̄ ij ∼ γi ′j ′ .

� Permittivity: εij = ε0

[
det(γ̄ ij )
det(γ ij )

]− 1
2
γ̄ ij .

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
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So, let’s fold space. . . but get no negative index!

Useful things:

I 3 stages: Vacuum, Transformation and Interpretation.

I Coord. change: γ′ = ΛT · γ ·Λ, for a Jacobian matrix Λ .

I Folding is x → −x , and gives Λ = Diag(−1, 1, 1).

Stage 1: γ ij

Diag(1, 1, 1)

Stage 2: γ i ′j ′

Diag(, 1, 1)

Stage 3: γ̄ ij

Diag(1, 1, 1)

I Using the master formula: εij = ε0

[
det(γ̄ ij )
det(γ ij )

]− 1
2
γ̄ ij

I Immediately: ε = ε0 and µ = µ0.

I A folding transformation on vacuum does nothing!
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Diag(1, 1, 1)

Stage 3: γ̄ ij

Diag(1, 1, 1)

I Using the master formula: εij = ε0

[
det(γ̄ ij )
det(γ ij )

]− 1
2
γ̄ ij

I Immediately: ε = ε0 and µ = µ0.

I A folding transformation on vacuum does nothing!
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Aside: Don’t believe my formulae? Look at this!

Under parity (~r → −~r), given ε = Diag(ε, ε, ε)

:

Myself (element-wise):

ε(−~r) ∼ ε(~r)

Opponent (element-wise):

ε(−~r) ∼ −ε(~r)

Crucially, for a centro-symmetric medium: ε(−~r) ∼ ε(~r):

Myself:

ε(~r) 6= 0

Opponent:

ε(~r) = 0

(Wrong)

� Simple, but true: E.J. Post, North Holland, 1962.

� Cf. Cartan’s “twist”: F.W. Hehl, Birkhäuser, 2003.
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’Folding’ argument gives no perfect lens (preamble).
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I Fold X-axis into a slab (allegedly, a perfect lens).

I The field at a point. . .

is replicated at all intersections.

I Spike of a point source is tripled. Perfect lens?

I Contrary common belief: the answer is NO. . .
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’Folding’ argument gives no perfect lens!
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� Compare: ’Fold’ lens (left) with ’Pendry’ lens (right).

• ’Fold’ lens ⇒ Source+Sink+Source
• ’Pendry’ lens ⇒ Amplify evanescent field.

� Similar result can be obtained with traditional tools:

• Maystre and Enoch, JOSA A, 21, (2004).
• Maystre, Enoch and McPhedran, JOSA A, 25, (2008).

� The middle “active sink”?

A carefully phased source. . .
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The fish-eye lens needs an active sink. . . Physical? Useful?

Source

X

Y

I Pefect tr. optics image: Leonhardt, NJP, 11, 2009.

I Based on active sink: Blaikie, NJP, 12, 2010.

I Meep FDTD simulation: no sink, no perfection.

I Aside: Leonhardt, causality needs sink (NJP, 12, 2010).

I Aside: FDTD above is explicitly causal, with no sink.

I Hotly debated: active sinks are useful? physical?

The simulation shown here comes from a collaboration with P. Kinsler.
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Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

I Start: vacuum using space+time metric gαβ:

χµναβ
0 =

−

(µ0/ε0)−
1
2

(
gµαgνβ − gµβgνα

)
I Just see: part is affected by coord-change, part is not.

I Insert a minus sign where unaffected ⇒ Negative index!

I Fundamental minus: not due to a coordinate change.

⇒ Not all optics is transformations! (cf. later. . . )

Using Lorentz transforms (transf. based):

I Start: scalar trivial medium with vPhase < c.

I Inertial observer vPhase < v < c: backwards waves.

I Indeed: Lorentz transf. gives effective ε < 0, µ < 0.

I This could redeem transformation methods. . .
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Transformation optics is the mean, not the end.

� Folding provided good ’mental picture’ of negative
index media.

� But careful maths says you should not trust this
’picture’.

� Lorentz (and maybe other) transforms can give negative
index medium.

� This saves the transformation ’path’ to negative index.

� But adds nothing to our understanding of the
phenomenon!

� Negative index media are already well understood. . .

� Transformation optics is the mean, not the end!
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Conclusions.

I Negative index often thought as a folding of space.
I But with this approach:

• Rigorously, ε < 0 and µ < 0 are not obtained.
• Perfect lensing does not occur, rather. . .
• Carelessness generates extra sources/sinks.

I So. . . do not argue in terms of ’folding’ !

I Other transformations work: but no real advantage.
I Further information:

• Luzi Bergamin and Alberto Favaro, arXiv:1001.4655
• And, of course, the EMTS proceedings!
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