Negative index of refraction, perfect lenses and transformation optics - some words of caution.

 refraction, perfect lenses andAlberto Favaro* and Luzi Bergamin ${ }^{\diamond}$
*Department of Physics, Imperial College London, UK.
${ }^{\diamond}$ Department of Radio Science and Engineering, Aalto University, Finland.

August 18, 2010

Overview: 'Negative refractive index \neq Folding of space '.

From: J.B. Pendry et al., PRL, 90:2, 2003

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts. Right concepts.

Overview: 'Negative refractive index \neq Folding of space '.

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
From: J.B. Pendry et al., PRL, 90:2, 2003

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

- Review why negative index (left) is often compared to folding of space (right) - wrongly so.

Overview: 'Negative refractive index \neq Folding of space '.

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
From: J.B. Pendry et al., PRL, 90:2, 2003

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

- Review why negative index (left) is often compared to folding of space (right) - wrongly so.
- Use conventional transformation optics consistently \Rightarrow 'negative index \neq folding of space'.

Overview: 'Negative refractive index \neq Folding of space '.

From: J.B. Pendry et al., PRL, 90:2, 2003

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010

Negative index of refraction, perfect lenses and

- Review why negative index (left) is often compared to folding of space (right) - wrongly so.
- Use conventional transformation optics consistently \Rightarrow 'negative index \neq folding of space'.
- Folding gives no perfect lensing, as it introduces an extra source, rather than amplifying evanescent fields.

Overview: 'Negative refractive index \neq Folding of space '.

From: J.B. Pendry et al., PRL, 90:2, 2003

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010

- Review why negative index (left) is often compared to folding of space (right) - wrongly so.
- Use conventional transformation optics consistently \Rightarrow 'negative index \neq folding of space'.
- Folding gives no perfect lensing, as it introduces an extra source, rather than amplifying evanescent fields.
- Other ways to get a negative index do work, but is it really worth it?

Often negative index is (wrongly) linked to Folding. Why?

Negative index of refraction, perfect lenses and transformation optics - some
words of caution.

Introduction.

Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

1. Start with vacuum.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Atternatives.
Thank-you.

1. Start with vacuum.
2. Perform the folding.

Often negative index is (wrongly) linked to Folding. Why?

Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.
Right concepts. -

Thank

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.

Often negative index is (wrongly) linked to Folding. Why?
Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.
Right concepts.

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.

Often negative index is (wrongly) linked to Folding. Why?
Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.
Right concepts.

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.
Right concepts.

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
4. Remove folding.

Often negative index is (wrongly) linked to Folding. Why?

Negative index of refraction, perfect lenses and

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
4. Remove folding.

Impression: a negative index slab in vacuum...

Usual Space Tr. Optics: a refresher using Pendry's cloak.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives
Thank-you.

Usual Space Tr. Optics: a refresher using Pendry's cloak.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives
Thank-you.

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

Right concepts.

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.
\diamond Permittivity: $\epsilon^{i^{\prime} j^{\prime}}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i^{\prime} j^{\prime}}\right)\right]^{-\frac{1}{2}} \gamma^{i^{\prime} j^{\prime}}$.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.
\diamond Permittivity: $\epsilon^{i^{\prime} j^{\prime}}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i^{\prime} j^{\prime}}\right)\right]^{-\frac{1}{2}} \gamma^{i^{\prime} j^{\prime}}$.
\diamond Interpretation as a material: Grid (x, y).

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.
\diamond Permittivity: $\epsilon^{i^{\prime} j^{\prime}}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i^{\prime} j^{\prime}}\right)\right]^{-\frac{1}{2}} \gamma^{i^{\prime} j^{\prime}}$.
\diamond Interpretation as a material: $\operatorname{Grid}(x, y)$.
\diamond Distance: Ruler $\gamma^{i j}$, Light $\bar{\gamma}^{i j} \sim \gamma^{i^{\prime} j^{\prime}}$.

Negative index of refraction, perfect lenses and

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.
\diamond Permittivity: $\epsilon^{i^{\prime} j^{\prime}}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i^{\prime} j^{\prime}}\right)\right]^{-\frac{1}{2}} \gamma^{i^{\prime} j^{\prime}}$.
\diamond Interpretation as a material: Grid (x, y).
\diamond Distance: Ruler $\gamma^{i j}$, Light $\bar{\gamma}^{i j} \sim \gamma^{i^{\prime} j^{\prime}}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\frac{\operatorname{det}\left(\bar{\gamma}^{j}\right)}{\operatorname{det}\left(\gamma^{i j}\right)}\right]^{-\frac{1}{2}} \bar{\gamma}^{i j}$.

Negative index of refraction, perfect lenses and

Figure: J.B. Pendry et al., Science 312 (5781), 2006.

Usual Space Tr. Optics: a refresher using Pendry's cloak.
\diamond Vacuum: Grid (x, y).
\diamond Distance: $\gamma^{i j} \Rightarrow(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i j}\right)\right]^{-\frac{1}{2}} \gamma^{i j} \sim \epsilon_{0}$.
\diamond Permeability: $\mu^{i j}=\left(\mu_{0} / \epsilon_{0}\right) \epsilon^{i j}$, always.
\diamond Transformed vacuum: Grid $\left(x^{\prime}, y^{\prime}\right)$.
\diamond Distance: $\gamma^{\prime} j^{\prime} \Rightarrow$ Min. path appears curved.
\diamond Permittivity: $\epsilon^{i^{\prime} j^{\prime}}=\epsilon_{0}\left[\operatorname{det}\left(\gamma^{i^{\prime} j^{\prime}}\right)\right]^{-\frac{1}{2}} \gamma^{i^{\prime} j^{\prime}}$.
\diamond Interpretation as a material: Grid (x, y).
\diamond Distance: Ruler $\gamma^{i j}$, Light $\bar{\gamma}^{i j} \sim \gamma^{i^{\prime} j^{\prime}}$.
\diamond Permittivity: $\epsilon^{i j}=\epsilon_{0}\left[\frac{\operatorname{det}\left(\bar{z}^{i j}\right)}{\operatorname{det}\left(\gamma^{i j}\right)}\right]^{-\frac{1}{2}} \bar{\gamma}^{i j}$.

Figure: J.B. Pendry et al., Science 312 (5781), 2006.

So, let's fold space. . . but get no negative index!

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts
Right concepts.

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\Lambda}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{\underline{\Lambda}}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{=}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{=}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Stage 1: $\gamma^{i j}$
$\operatorname{Diag}(1,1,1)$

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{\underline{\Lambda}}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.
Stage 1: $\gamma^{i j}$
Stage 2: $\gamma^{\prime \prime j^{\prime}}$
$\operatorname{Diag}(1,1,1) \quad \operatorname{Diag}\left((-1)^{2}, 1,1\right)$

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{=}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.
Stage 1: $\gamma^{i j}$
Stage 2: $\gamma^{i j^{\prime}}$
$\operatorname{Diag}(1,1,1) \quad \operatorname{Diag}(1,1,1)$

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{=}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.
Stage 1: $\gamma^{i j}$
$\operatorname{Diag}(1,1,1)$

Stage 2: $\gamma^{i^{\prime} j^{\prime}}$
Diag(1, 1, 1)
Stage 3: $\bar{\gamma}^{i j}$
$\operatorname{Diag}(1,1,1)$

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{\underline{\Lambda}}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.
Stage 1: $\gamma^{i j}$
$\operatorname{Diag}(1,1,1)$

Stage 2: $\gamma^{\prime \prime j^{\prime}}$
Diag(1, 1, 1)
Stage 3: $\bar{\gamma}^{i j}$
Diag(1, 1, 1)

- Using the master formula: $\epsilon^{i j}=\epsilon_{0}\left[\frac{\operatorname{det}\left(\bar{\gamma}^{i j}\right)}{\operatorname{det}\left(\gamma^{i j}\right)}\right]^{-\frac{1}{2}} \bar{\gamma}^{i j}$

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{\underline{\Lambda}}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.
Stage 1: $\gamma^{i j}$
Diag(1, 1, 1)

Stage 2: $\gamma^{i^{\prime} j^{\prime}}$
$\operatorname{Diag}(1,1,1)$
Stage 3: $\bar{\gamma}^{i j}$
$\operatorname{Diag}(1,1,1)$

- Using the master formula: $\epsilon^{i j}=\epsilon_{0}\left[\frac{\operatorname{det}\left(\bar{\gamma}^{i j}\right)}{\operatorname{det}\left(\gamma^{i j}\right)}\right]^{-\frac{1}{2}} \bar{\gamma}^{i j}$
- Immediately: $\epsilon=\epsilon_{0}$ and $\mu=\mu_{0}$.

So, let's fold space. . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\underline{\underline{\gamma}}^{\prime}=\underline{\underline{\Lambda}}^{\top} \cdot \underline{\underline{\gamma}} \cdot \underline{\underline{\Lambda}}$, for a Jacobian matrix $\underline{\underline{\Lambda}}$.
- Folding is $x \rightarrow-x$, and gives $\underline{\underline{\Lambda}}=\operatorname{Diag}(-1,1,1)$.
Stage 1: $\gamma^{i j}$
$\operatorname{Diag}(1,1,1)$
Stage 2: $\gamma^{\prime \prime} j^{\prime}$
Diag(1, 1, 1)
Stage 3: $\bar{\gamma}^{i j}$
$\operatorname{Diag}(1,1,1)$
- Using the master formula: $\epsilon^{i j}=\epsilon_{0}\left[\frac{\operatorname{det}\left(\bar{\gamma}^{i j}\right)}{\operatorname{det}\left(\gamma^{i j}\right)}\right]^{-\frac{1}{2}} \bar{\gamma}^{i j}$
- Immediately: $\epsilon=\epsilon_{0}$ and $\mu=\mu_{0}$.
- A folding transformation on vacuum does nothing!

Aside: Don't believe my formulae? Look at this!

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Introduction.
Wrong concepts
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you

Aside: Don't believe my formulae? Look at this!

Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts

Right concepts.

Aside: Don't believe my formulae? Look at this!
Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})
$$

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts

Right concepts.

Aside: Don't believe my formulae? Look at this!

Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})
$$

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Right concepts.

Aside: Don't believe my formulae? Look at this!
Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Aside: Don't believe my formulae? Look at this!
Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Myself:

$$
\underline{\underline{\epsilon}}(\vec{r}) \neq 0
$$

Aside: Don't believe my formulae? Look at this!
Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Myself:
Opponent:

$$
\underline{\underline{\epsilon}}(\vec{r}) \neq 0
$$

$$
\underline{\underline{\epsilon}}(\vec{r})=0
$$

Aside: Don't believe my formulae? Look at this!
Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Myself:
Opponent:

$$
\underline{\underline{\epsilon}}(\vec{r}) \neq 0
$$

$$
\underline{\underline{\epsilon}}(\vec{r})=0 \text { (Wrong) }
$$

Aside: Don't believe my formulae? Look at this!

Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Myself:

$$
\underline{\underline{\epsilon}}(\vec{r}) \neq 0
$$

$$
\underline{\underline{\epsilon}}(\vec{r})=0 \text { (Wrong) }
$$

\diamond Simple, but true: E.J. Post, North Holland, 1962.

Aside: Don't believe my formulae? Look at this!

Under parity $(\vec{r} \rightarrow-\vec{r})$, given $\underline{\underline{\epsilon}}=\operatorname{Diag}(\epsilon, \epsilon, \epsilon)$:
Myself (element-wise): Opponent (element-wise):

$$
\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r}) \quad \underline{\underline{\epsilon}}(-\vec{r}) \sim-\underline{\underline{\epsilon}}(\vec{r})
$$

Crucially, for a centro-symmetric medium: $\underline{\underline{\epsilon}}(-\vec{r}) \sim \underline{\underline{\epsilon}}(\vec{r})$:

Myself:
Opponent:

$$
\underline{\underline{\epsilon}}(\vec{r}) \neq 0
$$

$$
\underline{\underline{\epsilon}}(\vec{r})=0 \text { (Wrong) }
$$

\diamond Simple, but true: E.J. Post, North Holland, 1962.
\diamond Cf. Cartan's "twist": F.W. Hehl, Birkhäuser, 2003.
'Folding' argument gives no perfect lens (preamble).

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

Right concepts.

Fold \neq Perf. lens

- Fold X-axis into a slab (allegedly, a perfect lens).
'Folding' argument gives no perfect lens (preamble).
Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

Right concepts.

Fold \neq Perf. lens

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point...

'Folding' argument gives no perfect lens (preamble).

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point. . . is replicated at all intersections.

'Folding' argument gives no perfect lens (preamble).

Negative index of refraction, perfect lenses and
transformation optics - some words of caution.

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point. . . is replicated at all intersections.
- Spike of a point source is tripled. Perfect lens?

'Folding' argument gives no perfect lens (preamble).

Negative index of refraction, perfect lenses and
transformation
optics - some words of caution.

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point. . . is replicated at all intersections.
- Spike of a point source is tripled. Perfect lens?
- Contrary common belief: the answer is NO...
'Folding' argument gives no perfect lens!

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.
\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

'Folding' argument gives no perfect lens!

Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.
\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.

'Folding' argument gives no perfect lens!

Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.
\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.

'Folding' argument gives no perfect lens!

\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.
\diamond Similar result can be obtained with traditional tools:
- Maystre and Enoch, JOSA A, 21, (2004).
- Maystre, Enoch and McPhedran, JOSA A, 25, (2008).

'Folding' argument gives no perfect lens!

Negative index of refraction, perfect lenses and

\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.
\diamond Similar result can be obtained with traditional tools:
- Maystre and Enoch, JOSA A, 21, (2004).
- Maystre, Enoch and McPhedran, JOSA A, 25, (2008).
\diamond The middle "active sink"?

'Folding' argument gives no perfect lens!

\diamond Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.
\diamond Similar result can be obtained with traditional tools:
- Maystre and Enoch, JOSA A, 21, (2004).
- Maystre, Enoch and McPhedran, JOSA A, 25, (2008).
\diamond The middle "active sink"? A carefully phased source...

The fish-eye lens needs an active sink. . . Physical? Useful?

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.

Negative index of refraction, perfect lenses and

Introduction.

Wrong concepts.

Right concepts.

Fold \neq Perf. lens

The fish-eye lens needs an active sink. . . Physical? Useful?

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.
- Based on active sink: Blaikie, NJP, 12, 2010.

Negative index of refraction, perfect lenses and

The fish-eye lens needs an active sink. . . Physical? Useful?

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.
- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.

The fish-eye lens needs an active sink. . . Physical? Useful?

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.
- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.
- Aside: Leonhardt, causality needs sink (NJP, 12, 2010).

The fish-eye lens needs an active sink. . . Physical? Useful?

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.
- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.
- Aside: Leonhardt, causality needs sink (NJP, 12, 2010).
- Aside: FDTD above is explicitly causal, with no sink.

The fish-eye lens needs an active sink. . . Physical? Useful?

- Pefect tr. optics image: Leonhardt, NJP, 11, 2009.
- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.
- Aside: Leonhardt, causality needs sink (NJP, 12, 2010).
- Aside: FDTD above is explicitly causal, with no sink.
- Hotly debated: active sinks are useful? physical?

Folding fails? Other ways to get a negative index

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

Folding fails? Other ways to get a negative index
Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

```
Introduction.
```

Wrong concepts.

Alternatives.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Introduction.
Whong concepts.

Alternatives.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.

Folding fails? Other ways to get a negative index
Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change.

Negative index of refraction, perfect lenses and

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Negative index of refraction, perfect lenses and

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Using Lorentz transforms (transf. based):

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{\text {Phase }}<c$.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{\text {Phase }}<c$.
- Inertial observer $v_{\text {Phase }}<v<c$: backwards waves.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{\text {Phase }}<c$.
- Inertial observer $v_{\text {Phase }}<v<c$: backwards waves.
- Indeed: Lorentz transf. gives effective $\epsilon<0, \mu<0$.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha \beta}$:

$$
\chi_{0}^{\mu \nu \alpha \beta}=-\left(\mu_{0} / \varepsilon_{0}\right)^{-\frac{1}{2}}\left(g^{\mu \alpha} g^{\nu \beta}-g^{\mu \beta} g^{\nu \alpha}\right)
$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later. . .)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{\text {Phase }}<c$.
- Inertial observer $v_{\text {Phase }}<v<c$: backwards waves.
- Indeed: Lorentz transf. gives effective $\epsilon<0, \mu<0$.
- This could redeem transformation methods...

Transformation optics is the mean, not the end.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.

Introduction.

Wrong concepts.

Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

Transformation optics is the mean, not the end.
Negative index of refraction, perfect lenses and transformation optics - some words of caution.
\diamond Folding provided good 'mental picture' of negative index media.

Transformation optics is the mean, not the end.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.
\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.

Transformation optics is the mean, not the end.

Negative index of refraction, perfect lenses and transformation optics - some words of caution.
\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.
\diamond Lorentz (and maybe other) transforms can give negative index medium.

Transformation optics is the mean, not the end.

\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.
\diamond Lorentz (and maybe other) transforms can give negative index medium.
\diamond This saves the transformation 'path' to negative index.

Transformation optics is the mean, not the end.

\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.
\diamond Lorentz (and maybe other) transforms can give negative index medium.
\diamond This saves the transformation 'path' to negative index.
\diamond But adds nothing to our understanding of the phenomenon!

Transformation optics is the mean, not the end.

\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.
\diamond Lorentz (and maybe other) transforms can give negative index medium.
\diamond This saves the transformation 'path' to negative index.
\diamond But adds nothing to our understanding of the phenomenon!
\diamond Negative index media are already well understood...

Transformation optics is the mean, not the end.

\diamond Folding provided good 'mental picture' of negative index media.
\diamond But careful maths says you should not trust this 'picture'.
\diamond Lorentz (and maybe other) transforms can give negative index medium.
\diamond This saves the transformation 'path' to negative index.
\diamond But adds nothing to our understanding of the phenomenon!
\diamond Negative index media are already well understood...
\diamond Transformation optics is the mean, not the end!

Conclusions.

- Negative index often thought as a folding of space.
- But with this approach:
- Rigorously, $\epsilon<0$ and $\mu<0$ are not obtained.
- Perfect lensing does not occur, rather...
- Carelessness generates extra sources/sinks.
- So... do not argue in terms of 'folding'!
- Other transformations work: but no real advantage.
- Further information:
- Luzi Bergamin and Alberto Favaro, arXiv:1001.4655
- And, of course, the EMTS proceedings!

Negative index of refraction, perfect lenses and
transformation
optics - some
words of caution.

Introduction.

Wrong concepts.

Right concepts.

Thank-you!

