Coordinate-free Negative Phase Velocity (NPV).

Important insight on dispersionless bianisotropic media.

A. Favaro*, M.W. McCall and P. Kinsler

> Department of Physics
> Imperial College London
*alberto.favaro04@imperial.ac.uk
February 24, 2010

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Overview

introduction.

Overview

Coordinate-free

Negative Phase
Velocity (NPV).
A. Favaro*, M.W.

McCall and P .
Kinsler

Overview
Introduction.
Covariant NPV.
Local linear media
Review $U<0$.
It's not NPV!
No heg. Peflaction.

Conclusion

Thank-You!
Acknowledgements.

Overview

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.

Overview
Introduction.
Covariant NPV.
Local Hinear media.
Review $U<0$.
it's not Nov!
No neg. refraction.

Conclusion

Thank-You!

Overview

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.
- Generalise $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and relativistic. Useful for moving media and gas flows.

Overview

Introduction
Covariant NPV. Local linear media

Overview

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.
- Generalise $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and relativistic. Useful for moving media and gas flows.
- Apply the new techniques to media with no dispersion, no loss/gain (but still bi-anistropic). Find $U<0$.

Overview

Introduction

Overview

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.
- Generalise $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and relativistic. Useful for moving media and gas flows.
- Apply the new techniques to media with no dispersion, no loss/gain (but still bi-anistropic). Find $U<0$.
- Analyse various situations with energy density $U<0$. Moving media and rotating black-holes.

Overview

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.
- Generalise $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and relativistic. Useful for moving media and gas flows.
- Apply the new techniques to media with no dispersion, no loss/gain (but still bi-anistropic). Find $U<0$.
- Analyse various situations with energy density $U<0$. Moving media and rotating black-holes.
- $U<0$ is not NPV and gives no negative refraction. This implies a flaw in $\vec{P} \cdot \vec{k}<0$ criterion.

Overview

- Define NPV as the mechanism behind the Pendry-Veselago lens. Discuss $\vec{P} \cdot \vec{k}<0$.
- Generalise $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and relativistic. Useful for moving media and gas flows.
- Apply the new techniques to media with no dispersion, no loss/gain (but still bi-anistropic). Find $U<0$.
- Analyse various situations with energy density $U<0$. Moving media and rotating black-holes.
- $U<0$ is not NPV and gives no negative refraction. This implies a flaw in $\vec{P} \cdot \vec{k}<0$ criterion.
- Thesis, dispersion is the only way to get NPV.

What is Negative Phase Velocity (NPV)?

Coordinate-free

 Negative Phase Velocity (NPV).A. Favaro*, M.W. McCall and P .

Kinsler

Overview

Introduction.

Covariant NPV.
Local linear media

Review $U<0$
It's not NPV!

No neg. refraction

Conclusion

Thank-You!

What is Negative Phase Velocity (NPV)?

- Wave-fronts propagate opposite to the wave-packet.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P .

Kinsler

Overview

Introduction.
Covariant NPV
Local linear media.
Review $U<0$
It's not NPV!
No neg. refraction

Conclusion

What is Negative Phase Velocity (NPV)?

- Wave-fronts propagate opposite to the wave-packet.

- Real mechanism of Pendry's lens (Figure: J.B. Pendry and D.R. Smith, Phys. Rev. Lett. 90:2, 2003).

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Introduction.
Covariant NPV
Local Inear media
Review $U<0$.
It's not NPV!
No neg. refraction
Conclusion
Thank-You!

What is Negative Phase Velocity (NPV)?

- Wave-fronts propagate opposite to the wave-packet.

- Real mechanism of Pendry's lens (Figure: J.B. Pendry and D.R. Smith, Phys. Rev. Lett. 90:2, 2003).
- Consensus on NPV criterion based on Poynting vector:

$$
\vec{P} \cdot \vec{k} / \omega<0,
$$

McCall and P .
Kinsler

Introduction.

What is Negative Phase Velocity (NPV)?

- Wave-fronts propagate opposite to the wave-packet.

- Real mechanism of Pendry's lens (Figure: J.B. Pendry and D.R. Smith, Phys. Rev. Lett. 90:2, 2003).
- Consensus on NPV criterion based on Poynting vector:

$$
\vec{P} \cdot \vec{k} / \omega<0,
$$

... but not set in stone.
A. Favaro*, M.W. McCall and P . Kinsler

Introduction.

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.

Coordinate-free

 Negative Phase Velocity (NPV).A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction
Covariant NPV.
Local linear media.
Review $U<0$
It's not NPV!

No neg. refraction

Conclusion

Thank-You!

Acknowledgements.

- Why relativity? Show that NPV is not seen in moving media or General Relativity.
A. Favaro*, M.W. McCall and P. Kinsler

Overview

introduction.
Covariant NPV.

Local linear media

Review $U<0$
it's not NPV!
No neg. refraction.

Conclusion

Thank-You!

- Why relativity? Show that NPV is not seen in moving media or General Relativity.
- Getting ready: \vec{P} and \vec{k} are dependent on the observer you choose.
A. Favaro*, M.W.

McCall and P. Kinsler

```
Overview
```

```
Introduction
```

Covariant NPV.

Local linear media.

Review $U<0$
It's not NPV!
No neg. refraction
Conclusion
Thank-You!

- Why relativity? Show that NPV is not seen in moving media or General Relativity.
- Getting ready: \vec{P} and \vec{k} are dependent on the observer you choose. (Unfamiliar bit: I do not assume a metric).
A. Favaro*, M.W. McCall and P. Kinsler
- Why relativity? Show that NPV is not seen in moving media or General Relativity.
- Getting ready: \vec{P} and \vec{k} are dependent on the observer you choose. (Unfamiliar bit: I do not assume a metric).
- Pick the observer: single out a "time" direction (basis-vector).
A. Favaro*, M.W.

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.

- Why relativity? Show that NPV is not seen in moving media or General Relativity.
- Getting ready: \vec{P} and \vec{k} are dependent on the observer you choose. (Unfamiliar bit: I do not assume a metric).
- Pick the observer: single out a "time" direction (basis-vector). It's simply the observer's 4-velocity \mathbf{u} !
A. Favaro*, M.W. McCall and P. Kinsler

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.

- Why relativity? Show that NPV is not seen in moving media or General Relativity.
- Getting ready: \vec{P} and \vec{k} are dependent on the observer you choose. (Unfamiliar bit: I do not assume a metric).
- Pick the observer: single out a "time" direction (basis-vector). It's simply the observer's 4 -velocity \mathbf{u} !
- E.g. electric 4-current $\mathcal{J}=(\rho, \mathbf{j}) \Rightarrow \mathcal{J}=\rho \mathbf{u}+\mathbf{j}$.

A. Favaro*, M.W. McCall and P. Kinsler

Covariant NPV.

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P.

Kinsler

Overview

introduction
Covariant NPV.
Local linear media.
Review $U<0$.
It's not NIPV/1
No neg. refraction.

Conclusion

Thank-You!

- In relativity must have vectors and covectors.
\diamond Similar to row and column vectors in linear algebra.

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$
It's not NPV!
No neg. refraction.
Conclusion
Thank-You!

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.
Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

- In relativity must have vectors and covectors.
\diamond Similar to row and column vectors in linear algebra.
- Need a "time" basis for covectors ($\tilde{\mathbf{u}}$, the dual to \mathbf{u}):

$$
\mathbf{K}=(-\omega ; \mathbf{k}) \Rightarrow \mathbf{K}=-\omega \tilde{\mathbf{u}}+\mathbf{k}
$$

- In relativity must have vectors and covectors.
\diamond Similar to row and column vectors in linear algebra.
- Need a "time" basis for covectors ($\tilde{\mathbf{u}}$, the dual to \mathbf{u}):

$$
\mathbf{K}=(-\omega ; \mathbf{k}) \Rightarrow \mathbf{K}=-\omega \tilde{\mathbf{u}}+\mathbf{k}
$$

- A trick to extract one component.
- In relativity must have vectors and covectors.
\diamond Similar to row and column vectors in linear algebra.
- Need a "time" basis for covectors ($\tilde{\mathbf{u}}$, the dual to \mathbf{u}):

$$
\mathbf{K}=(-\omega ; \mathbf{k}) \Rightarrow \mathbf{K}=-\omega \tilde{\mathbf{u}}+\mathbf{k}
$$

- A trick to extract one component.
\diamond For the time component, contract with the time basis:

$$
\mathcal{J} \mid \tilde{\mathbf{u}}=\rho \quad \text { and } \quad \mathbf{K} \mid \mathbf{u}=-\omega .
$$

Relativistic $\vec{P} \cdot \vec{k} / \omega<0$ criterion: setup.

- In relativity must have vectors and covectors.
\diamond Similar to row and column vectors in linear algebra.
- Need a "time" basis for covectors ($\tilde{\mathbf{u}}$, the dual to \mathbf{u}):

$$
\mathbf{K}=(-\omega ; \mathbf{k}) \Rightarrow \mathbf{K}=-\omega \tilde{\mathbf{u}}+\mathbf{k}
$$

- A trick to extract one component.
\diamond For the time component, contract with the time basis:

$$
\mathcal{J} \mid \tilde{\mathbf{u}}=\rho \quad \text { and } \quad \mathbf{K} \mid \mathbf{u}=-\omega .
$$

\diamond For the space component, contract with the space basis:

$$
\mathcal{J} \mid \tilde{\boldsymbol{\alpha}}_{x}=j_{x} \quad \text { and } \quad \mathbf{K} \mid \boldsymbol{\alpha}_{x}=k_{x} .
$$

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Introduction.
Covariant NPV.

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Covariant NPV. Local linear media Review $U<0$.

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).
- Further contraction with the space covector \mathbf{k} picks only the time-space quantity \mathbf{P} :

$$
\mathbf{u}|\mathcal{T}| \mathbf{k}=\mathbf{P} \mid \mathbf{k}
$$

Coordinate-free
Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Covariant NPV.
Local linear media Review $U<0$.

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).
- Further contraction with the space covector \mathbf{k} picks only the time-space quantity \mathbf{P} :

$$
\mathbf{u}|\mathcal{T}| \mathbf{k}=\mathbf{P} \mid \mathbf{k}
$$

- However, \mathbf{k} is still observer dependent. Need covariant expression $\mathbf{k}=\mathbf{K}+\omega \tilde{\mathbf{u}}$ (Cf. decomposition of \mathbf{K}).

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).
- Further contraction with the space covector \mathbf{k} picks only the time-space quantity \mathbf{P} :

$$
\mathbf{u}|\mathcal{T}| \mathbf{k}=\mathbf{P} \mid \mathbf{k}
$$

- However, \mathbf{k} is still observer dependent. Need covariant expression $\mathbf{k}=\mathbf{K}+\omega \tilde{\mathbf{u}}$ (Cf. decomposition of \mathbf{K}).
- Substitute in and obtain:

$$
\frac{\mathbf{P} \mid \mathbf{k}}{\omega}=\mathbf{u}|\mathcal{T}|\left(\frac{\mathbf{K}}{\omega}+\tilde{\mathbf{u}}\right)
$$

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.
A. Favaro*, M.W. McCall and P . Kinsler

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).
- Further contraction with the space covector \mathbf{k} picks only the time-space quantity \mathbf{P} :

$$
\mathbf{u}|\mathcal{T}| \mathbf{k}=\mathbf{P} \mid \mathbf{k}
$$

- However, \mathbf{k} is still observer dependent. Need covariant expression $\mathbf{k}=\mathbf{K}+\omega \tilde{\mathbf{u}}$ (Cf. decomposition of \mathbf{K}).
- Substitute in and obtain:

$$
\frac{\mathbf{P} \mid \mathbf{k}}{\omega}=\mathbf{u}|\mathcal{T}|\left(\frac{\mathbf{K}}{\omega}+\tilde{\mathbf{u}}\right)=-\mathbf{u}|\mathcal{T}|\left(\frac{\mathbf{K}}{\mathbf{u} \mid \mathbf{K}}-\tilde{\mathbf{u}}\right)<0
$$

where $\omega=-\mathbf{u} \mid \mathbf{K}$.

Extracting \vec{P}, extracting \vec{k} and forming $\vec{P} \cdot \vec{k} / \omega<0$.

- \vec{P} : the time-space part of the energy-momentum tensor.
A. Favaro*, M.W.

$$
\mathcal{T}=\left[\begin{array}{c|c}
\text { time-time }(\text { scalar } U) & \text { time-space }(\text { vector } \mathbf{P}) \\
\hline \text { space-time }(\text { covec }-\mathbf{p}) & \text { space-space }(\text { matrix }-\mathbf{S})
\end{array}\right]
$$

- Forming $\mathbf{u} \mid \mathcal{T}$ isolates the time "row", giving (U, \mathbf{P}).
- Further contraction with the space covector \mathbf{k} picks only the time-space quantity \mathbf{P} :

$$
\mathbf{u}|\mathcal{T}| \mathbf{k}=\mathbf{P} \mid \mathbf{k}
$$

- However, \mathbf{k} is still observer dependent. Need covariant expression $\mathbf{k}=\mathbf{K}+\omega \tilde{\mathbf{u}}$ (Cf. decomposition of \mathbf{K}).
- Substitute in and obtain:

$$
\frac{\mathbf{P} \mid \mathbf{k}}{\omega}=\mathbf{u}|\mathcal{T}|\left(\frac{\mathbf{K}}{\omega}+\tilde{\mathbf{u}}\right)=-\mathbf{u}|\mathcal{T}|\left(\frac{\mathbf{K}}{\mathbf{u} \mid \mathbf{K}}-\tilde{\mathbf{u}}\right)<0
$$

where $\omega=-\mathbf{u} \mid \mathbf{K}$. Final result uses covariant quantities only + is pre-metric + useful in gas flows.

Consider media with no dispersion or loss/gain.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
It's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \mathcal{T} \mid \tilde{\mathbf{u}}=U<0
$$

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

```
Overview
```

introduction
Covariant NPV
Local linear media.
Review $U<0$
It's not NPV!
No nes. refraction
Conclusion

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.
- Do not spend time looking for it. Look at dispersion!

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.
- Do not spend time looking for it. Look at dispersion!
- In what follows (no dispersion or loss/gain):

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.
- Do not spend time looking for it. Look at dispersion!
- In what follows (no dispersion or loss/gain):
\diamond Review legitimate observations of $U<0$ both in moving media and in curved vacuum.

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.
- Do not spend time looking for it. Look at dispersion!
- In what follows (no dispersion or loss/gain):
\diamond Review legitimate observations of $U<0$ both in moving media and in curved vacuum.
\diamond Show that these observations are not NPV and reiterate the need for dispersion.

Consider media with no dispersion or loss/gain.

- For a linear medium with no dispersion or loss/gain (but still bi-anistropic), the generalised $\vec{P} \cdot \vec{k} / \omega<0$ reduces to:

$$
\mathbf{P}|\mathbf{k} / \omega=\mathbf{u}| \boldsymbol{T} \mid \tilde{\mathbf{u}}=U<0
$$

- Here, U is the correct energy density for the observer \mathbf{u}.
- Physical $U<0$: easy by cheating, hard in reality.
- Do not spend time looking for it. Look at dispersion!
- In what follows (no dispersion or loss/gain):
\diamond Review legitimate observations of $U<0$ both in moving media and in curved vacuum.
\diamond Show that these observations are not NPV and reiterate the need for dispersion.
\diamond Demonstrate that this $U<0$ regime cannot be used to obtain negative refraction.

Various ways to get $U<0$ in materials and curved vacuum.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
It's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Various ways to get $U<0$ in materials and curved vacuum. $\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
It's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.
- Frame moving w.r.t. the material (4-velocity \mathbf{u}): $\bar{U}=\mathbf{u}|\boldsymbol{T}| \tilde{\mathbf{u}}<0$ can occur in a legitimate way.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.
- Frame moving w.r.t. the material (4-velocity \mathbf{u}): $\bar{U}=\mathbf{u}|\boldsymbol{T}| \tilde{\mathbf{u}}<0$ can occur in a legitimate way.
- Example: Material with constant (ϵ, μ) with $0<v_{p}<c$ as seen by an observer moving faster than $v_{p}=c / n$.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.
- Frame moving w.r.t. the material (4-velocity \mathbf{u}): $U=\mathbf{u}|\boldsymbol{T}| \tilde{\mathbf{u}}<0$ can occur in a legitimate way.
- Example: Material with constant (ϵ, μ) with $0<v_{p}<c$ as seen by an observer moving faster than $v_{p}=c / n$.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in general relativity.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.
- Frame moving w.r.t. the material (4-velocity \mathbf{u}): $\bar{U}=\mathbf{u}|\boldsymbol{T}| \tilde{\mathbf{u}}<0$ can occur in a legitimate way.
- Example: Material with constant (ϵ, μ) with $0<v_{p}<c$ as seen by an observer moving faster than $v_{p}=c / n$.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in general relativity.
- Free falling observer: An observer falling freely under the action of gravity can never see $U=\vec{P} \cdot \vec{k}<0$.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Various ways to get $U<0$ in materials and curved vacuum.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in materials.

- Rest frame of the material (4-velocity \mathbf{n}): $U=\mathbf{n}|\mathcal{T}| \tilde{\mathbf{n}}<0 \Rightarrow$ your model for the optical response is ill conceived. Includes setting $\epsilon=-1$ and $\mu=-1$.
- Frame moving w.r.t. the material (4-velocity \mathbf{u}): $\bar{U}=\mathbf{u}|\boldsymbol{T}| \tilde{\mathbf{u}}<0$ can occur in a legitimate way.
- Example: Material with constant (ϵ, μ) with $0<v_{p}<c$ as seen by an observer moving faster than $v_{p}=c / n$.
$\vec{P} \cdot \vec{k} / \omega=U<0$ in general relativity.
- Free falling observer: An observer falling freely under the action of gravity can never see $U=\vec{P} \cdot \vec{k}<0$.
- Observer outside rotating black hole:
...similar to moving medium example?

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Review $U<0$.

None of these $U<0$ observations is NPV!

Coordinate-free

 Negative Phase Velocity (NPV).A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction.

Covariant NPV.
Local linear media.
Review $U<0$
It's not NPV!
No neg. refraction

Conclusion

Thank-You!

None of these $U<0$ observations is NPV!

- E.g. propagate with $v_{p}=0.66 c$ in material's frame:

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P.

Kinsler

Overview

introduction
Covariant NPV.
Local limear media
Review $U<0$
It's not NPV!
No neg. refraction.
Conclusion
Thank Youl

None of these $U<0$ observations is NPV!

- E.g. propagate with $v_{p}=0.66 c$ in material's frame:

- Consider observer with speed $v=0.85 c$:

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

None of these $U<0$ observations is NPV!

- E.g. propagate with $v_{p}=0.66 c$ in material's frame:

- Consider observer with speed $v=0.85 c$:

- Wave-packet moves the with wave-fronts. It's not NPV.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

It's not NPV!
No neg. refraction
Conclusion
Thank Youl
Acknowledgements

None of these $U<0$ observations is NPV!

- E.g. propagate with $v_{p}=0.66 c$ in material's frame:

- Consider observer with speed $v=0.85 c$:

- Wave-packet moves the with wave-fronts. It's not NPV.
- Convention forbids \vec{P} to flip sensibly when $U<0$.

Coordinate-free Negative Phase
A. Favaro*, M.W. McCall and P. Kinsler

It's not NPV!
No neg. refraction
Conclusion
Thank Youl
Acknowledgements

None of these $U<0$ observations is NPV!

Coordinate-free Negative Phase
A. Favaro*, M.W. McCall and P. Kinsler

It's not NPV!

No neg. refraction

Conclusion
Thank-Youl
Acknowledgements

None of these $U<0$ observations is NPV!

- E.g. propagate with $v_{p}=0.66 c$ in material's frame:

- Consider observer with speed $v=0.85 c$:

- Wave-packet moves the with wave-fronts. It's not NPV.
- Convention forbids \vec{P} to flip sensibly when $U<0$.
- A flaw in $\vec{P} \cdot \vec{k} / \omega<0$ criterion. NPV needs dispersion!

Coordinate-free Negative Phase
A. Favaro*, M.W. McCall and P. Kinsler

It's not NPV!
No neg. refraction
Conclusion
Thank Youl
Acknowledgements

Can actual $U<0$ give Negative Refraction (NR)? No!

Coordinate-free

 Negative Phase Velocity (NPV).A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
It's not NPV!
No neg. refraction.
Conclusion
Thank-You!
Acknowledgements.

Can actual $U<0$ give Negative Refraction (NR)? No!

- Interface btw. stationary and moving medium. NR?

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Overview

Introduction.
Covariant NPV.
Local "linear media.
Review $U<0$.
it's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Can actual $U<0$ give Negative Refraction (NR)? No!

- Interface btw. stationary and moving medium. NR?
- Notice material cannot move towards the interface:

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$
it's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Can actual $U<0$ give Negative Refraction (NR)? No!

- Interface btw. stationary and moving medium. NR?
- Notice material cannot move towards the interface:
\diamond Material cannot disappear at the boundary
Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Can actual $U<0$ give Negative Refraction (NR)? No!

- Interface btw. stationary and moving medium. NR?
- Notice material cannot move towards the interface:
\diamond Material cannot disappear at the boundary
\diamond Solution requires unphysical extra source.

A. Favaro*, M.W.

McCall and P.
Kinsler

No neg. refraction. Conclusion

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P.

Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
it's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.
- Gregorczyk \& Kong, Phys. Rev. B, 74 (2006).

A. Favaro*, M.W. McCall and P . Kinsler

Overview

Introduction

Covariant NPV
Local linear media
Review $U<0$.
it's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.
- Gregorczyk \& Kong, Phys. Rev. B, 74 (2006).

- Lower branch $U>0$, upper branch $U<0$ (target).

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Overview

Introduction

Covariant NPV
Local linear media
Review $U<0$.

It's not NPV!

No neg. refraction.

Conclusion

Thank-You!

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.
- Gregorczyk \& Kong, Phys. Rev. B, 74 (2006).

- Lower branch $U>0$, upper branch $U<0$ (target).
- Conservation of k_{x} denoted by horizontal dashed lines.

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler Overview

Introduction

Covariant NPV
Local linear media
Review U <0
It's not NPV!
No neg. refraction.

Conclusion

Thank-You!

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.
- Gregorczyk \& Kong, Phys. Rev. B, 74 (2006).

- Lower branch $U>0$, upper branch $U<0$ (target).
- Conservation of k_{x} denoted by horizontal dashed lines.
- It makes $U<0$ branch and NR inaccessible!

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Introduction.

Covariant NPV
Local linear media
Review $U<0$.
It's not NPV!
No neg. refraction.
Conclusion
Thank-You!
Acknowledgements.

Legitimate $U<0$ used for Negative Refraction (NR)? No!

- Material can only flow parallel to interface.
- Gregorczyk \& Kong, Phys. Rev. B, 74 (2006).

- Lower branch $U>0$, upper branch $U<0$ (target).
- Conservation of k_{x} denoted by horizontal dashed lines.
- It makes $U<0$ branch and NR inaccessible!
- (Lower branch: just "counterposition" $P_{x} k_{x} / \omega<0$).

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P . Kinsler

Introduction

Covariant NP
Local linear media.
Review $U<0$
It's not NPV
No neg. refraction.
Conclusion
Thank-You!
Acknowledgements

Conclusion

Coordinate-free

Negative Phase
Velocity (NPV).
A. Favaro*, M.W. McCall and P .

Kinsler

Overview
Antroduction
Covariant NPV.
Loeal linear media
Review $U<0$
It's not NiPy/4
No neg. refraction
Conclusion
Thank-You

Acknowledgements.

Conclusion

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

- Generalised $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and pre-metric (in the tradition of Cartan).

Overview
introduction
Covariant NPV.
Local linear media.
Review $U<0$.
it's not NPV!
No neg. refraction.
Conclusion
Thank-You!

Conclusion

- Generalised $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and pre-metric (in the tradition of Cartan).
- Proved that with no dispersion $\vec{P} \cdot \vec{k}=U<0$, i.e. the energy-density must be negative.

Conclusion

- Generalised $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and pre-metric (in the tradition of Cartan).
- Proved that with no dispersion $\vec{P} \cdot \vec{k}=U<0$, i.e. the energy-density must be negative.
- This already motivates using dispersion. Furthermore, $U<0$ gives no NPV and no NR.

Conclusion

- Generalised $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and pre-metric (in the tradition of Cartan).
- Proved that with no dispersion $\vec{P} \cdot \vec{k}=U<0$, i.e. the energy-density must be negative.
- This already motivates using dispersion. Furthermore, $U<0$ gives no NPV and no NR.
- Then, $\vec{P} \cdot \vec{k}<0$ is not always a good NPV criterion. Should we favor $\vec{v}_{g} \cdot \vec{k}<0$? Consistent with:

Conclusion

- Generalised $\vec{P} \cdot \vec{k}<0$ to be coordinate-free and pre-metric (in the tradition of Cartan).
- Proved that with no dispersion $\vec{P} \cdot \vec{k}=U<0$, i.e. the energy-density must be negative.
- This already motivates using dispersion. Furthermore, $U<0$ gives no NPV and no NR.
- Then, $\vec{P} \cdot \vec{k}<0$ is not always a good NPV criterion. Should we favor $\vec{v}_{g} \cdot \vec{k}<0$? Consistent with:
- Thesis: NPV always needs dispersion!

Overview

introduction

Thank-you!

Local linear media.
Review $U<0$.
It's not NPV!
No neg. refraction

Conclusion

Thank-You!
Acknowledgements.

Acknowledgements

Coordinate-free Negative Phase Velocity (NPV).
A. Favaro*, M.W. McCall and P. Kinsler

Overview

Introduction.
Covariant NPV.
Local linear media.
Review $U<0$.
it's not NeV!
No neg. refraction.

Conclusion

Thank-You!
Acknowledgements.

