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Introduction

Electromagnetic Media with no Dispersion Equation
URSI EM Theory Symposium, Hiroshima, May 2013

Page 3 (21)



Plane Wave in Linear Medium

I Time-harmonic plane wave in a linear, homogeneous, time
invariant medium is defined by fields of the form

E(r) = E exp(−jk · r), H(r) = H exp(−jk · r)

I Eliminating fields, Maxwell equations yield

D(k) ·E = 0

I For E 6= 0 wave vector k is restricted by dispersion equation

D(k) = detD(k) = 0

I Algebraic equation of the 4th order in general, coefficients
depend on the medium parameters
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Classifying Dispersion Equations

I Dispersion equation defines a surface in the wave-vector k
space as a function of the unit vector u

D(k) = 0 ⇒ k = uk(u)

I Nature of the surface k = k(u) depends on the medium
1. General medium: quartic surface
2. Special case: two quadratic surfaces ("decomposable medium")
3. More special case: single quadratic surface ("nonbirefringent

medium")
4. D(k) = 0 satisfied identically for any k, no dispersion equation.

Choice of wave vector k is not restricted.

I Item 4 is associated to "media with no dispersion equation"
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Medium with No Dispersion Equation

I As an example, consider a medium defined by

D = (α+ MI) ·B + c×E

H = g×B + (αT −MI) ·E
where α is a dyadic, c and g are two vectors and M is a scalar,

I Equation for field E becomes

D(k) ·E = q(k)×E = 0

q(k) = (g · k− ωtrα)k + ωk · α+ ω2c
I Dispersion equation is satisfied identically:

D(k) = detD(k) = det(q(k)× I) = 0 for all k

I The medium does not have a dispersion equation!
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Boundary Conditions from Interface Conditions

I Special case α = 0,c = 0,g = 0 yields PEMC medium

D = MB, H = −ME

I Also PMC (M = 0) and PEC (|M| → ∞) media do not have a
dispersion equation

I Media with no dispersion equation may define useful boundary
conditions!

I PEMC boundary: n× (H + ME) = 0, n · (D−MB) = 0
I Uniaxial medium yields DB boundary conditions n ·B = 0,

n ·D = 0
I Other: SH (Soft-and-Hard) and SHDB boundary conditions
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Four-Dimensional Formalism
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EM Field Equations

I Maxwell equations outside sources

d ∧Φ = 0, d ∧Ψ = 0

I Field two-forms in spatial and temporal components (ε4 = dct)

Φ = B + E ∧ ε4, Ψ = D−H ∧ ε4

I Plane-wave fields for x = r + e4ct, ν = β + ε4ω/c

Φ(x) = Φ exp(ν|x), Ψ(x) = Ψ exp(ν|x)

I Representation in terms of potential one-form φ

ν ∧Φ = 0 ⇒ Φ = ν ∧ φ

I.V. Lindell Differential Forms in Electromagnetics, IEEE Press 2004.
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Medium Equations

I Medium bidyadic M maps two-forms to two-forms

Ψ = M|Φ

I Corresponds to four spatial dyadics(
D
H

)
=

(
α ε

′

µ−1 β

)
|
(

B
E

)

I Modified medium bidyadic Mm maps two-forms to bivectors

eNbΨ = Mm|Φ, Mm = eNbM

I Quadrivector eN = e1234 = e1 ∧ e2 ∧ e3 ∧ e4
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Plane-Wave Equations in 4D

I Maxwell equation⇒ equation for potential one-form φ

ν ∧Ψ = ν ∧M|Φ = ν ∧M|(ν ∧ φ) = (ν ∧Mbν)|φ = 0

I Dispersion dyadic D(ν) maps one-forms to vectors

D(ν)|φ = 0, D(ν) = Mmbbνν = −νcMmbν

I Because also D(ν)|ν = 0, rank of D(ν) must be < 3:

D(3)(ν) =
1
6

D(ν)∧∧D(ν)∧∧D(ν) = 0

I Equivalent scalar dispersion equation of 4th order in ν

D(ν) =
1
6
εNεN||(Mm

∧
∧(ννcc(Mm

∧
∧(ννccMm)))) = 0
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Media With no Dispersion Equation
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Dispersion Dyadic

I Dispersion dyadic satisfying D(3)(ν) = 0 can be expanded as

D(ν) = Mmbbνν = ac + bd

I Assume D(ν) of rank 2 for all ν ⇒ (a ∧ b)(c ∧ d) 6= 0
I Vectors a,b,c,d are functions of the wave one-form ν

I D(ν) is quadratic function of ν ⇒ Four basic possibilities.
1. a,b,c,d linear functions of ν
2. a,b quadratic functions, c,d independent of ν
3. a,d quadratic, b,c independent of ν
4. a quadratic, b,d linear functions, c independent of ν

I Other possibilities can be reduced to these four cases
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Case 1

I Assume vectors a,b,c,d are linear functions of ν

ν|D(ν) = −(ν ∧ ν)|Mmbν = 0 for all ν

⇒ (ν|a)c + (ν|b)d = 0 for all ν

I Because c,d are linearly independent (c ∧ d 6= 0)

⇒ ν|a = ν|b = 0 for all ν

I Vectors a,b can be expressed in terms of some bivectors A,B
as

a = Abν, b = Bbν
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Case 1 cont’d

I Similarly, vectors c,d can be expressed in terms of some
bivectors C,D as

c = Cbν, d = Dbν

I Dispersion dyadic of Case 1 has the representation

D(ν) = Mmbbνν = (AC + BD)bbνν for all ν

I Apply property: if a bidyadic A satisfies Abbνν = 0 for all ν, it
must be a multiple of the ("unit") bidyadic eNbI(2)T.

I For Case 1 modified medium bidyadic must be of the form

Mm = AC + BD + MeNbI(2)T

I A,B,C,D are arbitrary bivectors and M any scalar.
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Case 2

I Assume a,b are quadratic functions of ν while c,d are
independent of ν

I After some algebraic reasoning one can show that there are two
main Case 2 solutions:

1. "Skewon-axion medium" Mm = A + MeNbI(2)T

where A is any antisymmetric bidyadic
Number of parameters 15(A) + 1(M) = 16

2. "P-axion medium" Mm = P(2)T + MeNbI(2)T

where P is any dyadic mapping vectors to vectors
Number of parameters 16(P) + 1(M) = 17
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Case 2 in Gibbsian form

I Medium equations in terms of Gibbsian 3D vectors and dyadics
1. "Skewon-axion medium"

D = (α+ MI) ·B + c×E

H = g×B + (αT −MI) ·E

Number of parameters 9(α) + 3(c) + 3(g) + 1(M) = 16
2. "P-axion medium"

D = (β(2) + MI) ·B + (q× β) ·E

H = (β × p) ·B + (qp + pβ −MI) ·E

Number of parameters 9(β) + 3(q) + 3(p) + 1(p) + 1(M) = 17
I Skewon-axion medium equals the example in the introduction
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Discussion and Conclusion
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Other Solutions?

I One can show that Case 3 and Case 4 do not yield new
solutions

I The medium equation in the inverse form Φ = N|Ψ yields the
same dispersion equation. No new media without dispersion
equation will emerge because

I the inverse of a Case 1 bidyadic M is a Case 1 bidyadic N
I the inverse of a general P-axion bidyadic M is a general P-axion

bidyadic N
I the inverse of a skewon-axion bidyadic M is a special P-axion

bidyadic N and conversely

I Dispersion dyadic D(ν) of rank 1 yields special cases of the
previous solutions of rank 2

I However, a decisive proof for Case 1 and Case 2 solutions being
the only ones has not (yet) been found
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Conclusion

I Since various studies have shown that there exist media with no
dispersion equation, a more systematic study to define them
was made

I 4D formalism was applied for conciseness of notation
I Three classes of media with no dispersion equation was found

through the analysis
I Case 2 media were known from previous analyses, Case 1

medium class appears to be new
I The solutions may have application as defining novel boundary

conditions at the interface
I More information: I.V. Lindell, A. Favaro "Electromagnetic media

with no dispersion equation, Progress in Electromagnetics
Research PIER B vol.51, pp.269–289, 2013.
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Appendix: Hehl-Obukhov Decomposition

I Consider medium equation in Gibbsian 3D dyadics(
D
H

)
=

(
−ε′ α

−β µ−1

)
·
(
−E
B

)
I Hehl-Obukhov decomposition of medium dyadics in three parts(

−ε′ α

−β µ−1

)
=

(
−ε′1 α1

−β1 µ−1
1

)
+

(
−ε′2 α2

−β2 µ−1
2

)
+α3

(
0 I
I 0

)

1. Principal part: symmetric dyadic matrix, trα1 = 0
2. Skewon part: antisymmetric dyadic matrix,
3. Axion part: α3 = −β3 = α3I, ε′3 = 0, µ−1

3 = 0

F.W. Hehl, Yu.N. Obukhov, Foundations of Classical Electrodynamics,
Boston: Birkhäuser, 2003.
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