Pre-metric electrodynamics, electric-magnetic duality \& closure relations.

A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

Respectively at:
\diamond Department of Physics, Imperial College London, UK.
\diamond KB\&P GmbH, Bern, Switzerland.
\diamond Department of Radio Science and Engineering, Aalto University, Finland.
\diamond Institute for Theoretical Physics, University of Cologne, Germany.

February 19-24, 2012

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Examples in which closure relations are used

- 4 closure relations: quadratic eqs. constrain medium.

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Examples in which closure relations are used

- 4 closure relations: quadratic eqs. constrain medium.
- Electric-magnetic reciprocity leads to closure relation of special type. There is only one skewon-free electricmagnetic reciprocal medium: Hodge star metric $(3,1)$.

 Obukiov.

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Examples in which closure relations are used

- 4 closure relations: quadratic eqs. constrain medium.
- Electric-magnetic reciprocity leads to closure relation of special type. There is only one skewon-free electricmagnetic reciprocal medium: Hodge star metric $(3,1)$.
- More general reciprocity (special-linear) leaves energymomentum 3 -form invariant. Also leads to a closure rel.

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Examples in which closure relations are used

- 4 closure relations: quadratic eqs. constrain medium.
- Electric-magnetic reciprocity leads to closure relation of special type. There is only one skewon-free electricmagnetic reciprocal medium: Hodge star metric $(3,1)$.
- More general reciprocity (special-linear) leaves energymomentum 3 -form invariant. Also leads to a closure rel.
- Invariants obeying $H \wedge H=\eta F \wedge F$ implies a closure rel.

Outline

Basics of pre-metric electrodynamics

- Representation of fields as differential forms or tensors.
- Energy-momentum tensor (3-form) and field invariants.
- Assume the medium is local (dispersionless) \& linear.
- Explain principal+skewon+axion split of the medium.

Examples in which closure relations are used

- 4 closure relations: quadratic eqs. constrain medium.
- Electric-magnetic reciprocity leads to closure relation of special type. There is only one skewon-free electricmagnetic reciprocal medium: Hodge star metric $(3,1)$.
- More general reciprocity (special-linear) leaves energymomentum 3-form invariant. Also leads to a closure rel.
- Invariants obeying $H \wedge H=\eta F \wedge F$ implies a closure rel.

Solve two closure relations explicitly (invertible medium)

- Invertible media: solve 2 (out of 4) closures. Re-derive.

Electromagnetic fields as differential forms

Fundamental fields of Electromagnetism as differential forms

$$
\begin{aligned}
J & =-\mathrm{d} \sigma \wedge j+\rho & & \text { twisted 3-form }, \\
H & =\mathrm{d} \sigma \wedge \mathcal{H}+\mathcal{D}, & & \text { twisted 2-form }, \\
F & =-\mathrm{d} \sigma \wedge E+B, & & \text { ordinary 2-form. }
\end{aligned}
$$

Fields $\{j, \rho, \mathcal{H}, \mathcal{D}, E, B\}$ obtained by slicing spacetime X_{4}, as

Electromagnetic fields as antisymmetric tensors

Current density $J_{\alpha \beta \gamma}$, field excitation $H_{\alpha \beta}$, field strength $F_{\alpha \beta}$:

$$
J_{\alpha \beta \gamma}=J_{[\alpha \beta \gamma]}, \quad H_{\alpha \beta}=H_{[\alpha \beta]}, \quad F_{\alpha \beta}=F_{[\alpha \beta]} .
$$

In tensor formalism, the familiar fields $\{j, \rho, \mathcal{H}, \mathcal{D}, E, B\}$ read

$$
\begin{aligned}
J_{0 a b} & =-j_{a b}, & J_{a b c} & =\rho_{a b c}, \\
H_{0 a} & =\mathcal{H}_{a}, & H_{a b} & =\mathcal{D}_{a b}, \\
F_{0 a} & =-E_{a}, & F_{a b} & =B_{a b},
\end{aligned}
$$

with indices $\{\alpha, \beta, \cdots=0,1,2,3\}$ and $\{a, b, \cdots=1,2,3\}$.
Maxwell's equations: use differential forms or tensors
Note: Maxwell's equations require no metric or connection

$$
\begin{aligned}
\mathrm{d} H & =J, & \mathrm{~d} F & =0, \\
\partial_{[\alpha} H_{\beta \gamma]} & =J_{\alpha \beta \gamma}, & \partial_{[\alpha} F_{\beta \gamma]} & =0 .
\end{aligned}
$$

Bergamin, I.V.
Lindell, Y.N. Obukhov.

Pair of antisymmetric indices \rightarrow Collective label

Example: indices of $F_{\alpha \beta}$ and $H_{\alpha \beta}$ are antisymmetric. Hence, $F_{\alpha \beta}$ and $H_{\alpha \beta}$ have 6 independent entries. Label them as

$$
\{[\alpha \beta]=[01],[02],[03],[23],[31],[12]\} \rightarrow\{I=1,2, \ldots, 6\} .
$$

A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

Thereby, represent $H_{\alpha \beta}$ and $F_{\alpha \beta}$ as columns with 6 entries

$$
H_{l}=\left[\begin{array}{l}
H_{01} \\
H_{02} \\
H_{03} \\
H_{23} \\
H_{31} \\
H_{12}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{D}_{23} \\
\mathcal{D}_{31} \\
\mathcal{D}_{12}
\end{array}\right], \quad F_{I}=\left[\begin{array}{l}
F_{01} \\
F_{02} \\
F_{03} \\
F_{23} \\
F_{31} \\
F_{12}
\end{array}\right]=\left[\begin{array}{c}
-E_{1} \\
-E_{2} \\
-E_{3} \\
B_{23} \\
B_{31} \\
B_{12}
\end{array}\right] .
$$

nice separation of electric and magnetic. Summary: pair of antisymmetric indices \rightarrow collective label $\{I, J, \ldots=1, \ldots, 6\}$.

Minkowski (pre-metric) energy-momentum tensor

Using tensors, Minkowski (pre-metric) energy-momentum:

$$
\mathcal{T}_{\alpha}^{\beta}=\frac{1}{4} \epsilon^{\beta \mu \rho \sigma}\left(H_{\alpha \mu} F_{\rho \sigma}-F_{\alpha \mu} H_{\rho \sigma}\right) .
$$

Using differential forms, energy-momentum transfer is encoded by means of a twisted covector-valued 3 -form

$$
\left.\left.\Sigma_{\alpha}=\frac{1}{2}\left[F \wedge\left(e_{\alpha}\right\rfloor H\right)-H \wedge\left(e_{\alpha}\right\rfloor F\right)\right],
$$

where $\left\{e_{\alpha}\right\}$ is the frame. Space+time decomposition leads to

$$
\left[\begin{array}{c|c|c}
\mathcal{T}_{0}{ }^{0} & \mathcal{T}_{0}{ }^{b} \\
\hline \mathcal{T}_{a} 0 & \mathcal{T}_{a}{ }^{b}
\end{array}\right]=\left[\begin{array}{c|c}
u & s^{b} \\
\hline-p_{a} & -S_{a}{ }^{b}
\end{array}\right]
$$

where u is the energy density, s^{b} is the energy flux density, p_{a} is momentum density and $S_{a}{ }^{b}$ is momentum flux density. Similar decomposition found when using differential forms.

Invariants of the electromagnetic field

A 4-form in spacetime has 1 independent component, it encodes an invariant. Use H and F to build the invariants

$$
\begin{aligned}
& I_{1}=F \wedge H=\mathrm{d} \sigma \wedge(B \wedge \mathcal{H}-E \wedge \mathcal{D}), \\
& I_{2}=F \wedge F=-2 \mathrm{~d} \sigma \wedge(B \wedge E), \\
& I_{3}=H \wedge H=2 \mathrm{~d} \sigma \wedge(\mathcal{H} \wedge \mathcal{D})
\end{aligned}
$$

There exists a fourth invariant $I_{4}=A \wedge J$, but leave aside. Setting one of $\left\{I_{1}, I_{2}, I_{3}\right\}$ to be zero, is a statement about the configuration of the fields that holds true in any frame.

4-dim.	3-dim. (pre-metric)	3-dim. (post-metric)
$I_{1}=0$	$\frac{1}{2} B \wedge \mathcal{H}=\frac{1}{2} E \wedge \mathcal{D}$	$\frac{1}{2} \vec{B} \cdot \vec{H}=\frac{1}{2} \vec{E} \cdot \vec{D}$
$I_{2}=0$	$B \wedge E=0$	$\vec{B} \cdot \vec{E}=0$
$I_{3}=0$	$\mathcal{H} \wedge \mathcal{D}=0$	$\vec{D} \cdot \vec{H}=0$

For plane waves, $I_{1}=I_{2}=I_{3}=0$; but not true in general.

Local and linear media

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L.

 Bergamin, I.V.Lindell, Y.N.
Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Local and linear media

- Given a point p in spacetime, the medium response is local if $\left.H\right|_{p}$ is a function of $\left.F\right|_{p}$ only. In other words:

$$
H=\kappa(F), \quad \text { (local constitutive law) }
$$

where κ is a map from ordinary to twisted 2 -forms.

Local and linear media

- Given a point p in spacetime, the medium response is local if $\left.H\right|_{p}$ is a function of $\left.F\right|_{p}$ only. In other words:

$$
H=\kappa(F), \quad \text { (local constitutive law) }
$$

where κ is a map from ordinary to twisted 2-forms.

- In particular, the medium response is linear whenever:

$$
\left.\kappa\left(a \Psi_{1}+b \Psi_{2}\right)=a \kappa\left(\Psi_{1}\right)+b \kappa\left(\Psi_{2}\right), \quad \text { (linear law }\right)
$$

for any 2 -forms $\left\{\Psi_{1}, \Psi_{2}\right\}$ and functions $\{a, b\}$. Then,

$$
\begin{aligned}
H_{\alpha \beta} & =\frac{1}{2} \kappa_{\alpha \beta}{ }^{\mu \nu} F_{\mu \nu}, & & \text { (tensor indices) }, \\
H_{l} & =\kappa_{l}^{J} F_{J}, & & \text { (6-dim indices) } .
\end{aligned}
$$

Clearly, Einstein's summation convention is employed.

Local an linear media (space+time split)

In terms of $\{\mathcal{H}, \mathcal{D}, E, B\}$ the local and linear law is given by:

$$
\begin{aligned}
\mathcal{H}_{a} & =\beta_{a}{ }^{c} E_{c}+\frac{1}{2}\left(\mu^{-1}\right)_{a}{ }^{c d} B_{c d} \\
\mathcal{D}_{a b} & =\varepsilon_{a b}^{\prime}{ }^{c} E_{c}+\frac{1}{2} \alpha_{a b}{ }^{c d} B_{c d} .
\end{aligned}
$$

as seen in Lindell's book (IEEE, 2004). More specifically:

$$
\begin{array}{rlrl}
\beta_{a}{ }^{c}: & =-\kappa_{0 a}{ }^{0 c}, & \left(\mu^{-1}\right)_{a}{ }^{c d} & :=\kappa_{0 a}{ }^{c d}, \\
\varepsilon_{a b}^{\prime}{ }^{c d}:=-\kappa_{a b}{ }^{0 c}, & \alpha_{a b}{ }^{c d}: & =\kappa_{a b}{ }^{c d} .
\end{array}
$$

When $\kappa_{l}{ }^{J}$ represented as 6×6 matrix, one attains that

$$
\left[\begin{array}{ccc|ccc}
-\beta_{1}^{1} & -\beta_{1}^{2} & -\beta_{1}^{3} & \left(\mu^{-1}\right)_{1}^{23} & \left(\mu^{-1}\right)_{1}^{31} & \left(\mu^{-1}\right)_{1}{ }^{12} \\
-\beta_{2}^{1} & -\beta_{2}^{2} & -\beta_{2}^{3} & \left(\mu^{-1}\right)_{2}^{23} & \left(\mu^{-1}\right)_{2}^{31} & \left(\mu^{-1}\right)_{2}^{12} \\
-\beta_{3}^{1} & -\beta_{3}^{2} & -\beta_{3}^{3} & \left(\mu^{-1}\right)_{3}^{23} & \left(\mu^{-1}\right)_{3}^{31} & \left(\mu^{-1}\right)_{3}^{12} \\
\hline-\varepsilon_{23}^{\prime}{ }^{1} & -\varepsilon_{23}^{\prime}{ }^{2} & -\varepsilon_{23}^{\prime}{ }^{3} & \alpha_{23}^{23} & \alpha_{23}^{31} & \alpha_{23}^{12} \\
-\varepsilon_{31}^{\prime} 1 & -\varepsilon_{31}^{\prime}{ }^{23} & -\varepsilon_{31}^{\prime} 3 & \alpha_{31}^{23} & \alpha_{31}^{31} & \alpha_{31}{ }_{31} \\
-\varepsilon_{12}^{\prime} 1 & -\varepsilon_{12}^{\prime}{ }^{2} & -\varepsilon_{12}^{\prime} & \alpha_{12}^{23} & \alpha_{12}^{31} & \alpha_{12}^{12}
\end{array}\right]
$$

A. Favaro, L.

Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Example of magneto-electric metamaterial

- Figure: Tretyakov et al., J. Electromagnet Wave, 1998.
- Idea: Kamenetskii, Microw. Opt. Techn. Lett., 1996.
- Medium: Ellipsoidal ferrite inclusions subject to fixed magnetic \bar{H}_{0}. Each inclusion is fitted with metal strip.
- Magnetic field input \Rightarrow inclusions' magnetic resonance \Rightarrow currents in metal strips \Rightarrow an electric field output.

The "bar conjugate" of the medium response In preparation for decomposing κ, define the "bar conjugate"

$$
\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}=\frac{1}{4} \hat{\epsilon}_{\alpha \beta \rho \sigma}\left(\kappa_{\eta \theta}{ }^{\rho \sigma}\right) \epsilon^{\eta \theta \mu \nu} .
$$

Note: $\kappa_{\alpha \beta}{ }^{\mu \nu}$ and $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ have same domain and co-domain. Now, formulate $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ as a coordinate-free operator. Need:
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

```
EM fields
```

The medium

The "bar conjugate" of the medium response In preparation for decomposing κ, define the "bar conjugate"

$$
\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}=\frac{1}{4} \hat{\epsilon}_{\alpha \beta \rho \sigma}\left(\kappa_{\eta \theta}^{\rho \sigma}\right) \epsilon^{\eta \theta \mu \nu} .
$$

Note: $\kappa_{\alpha \beta}{ }^{\mu \nu}$ and $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ have same domain and co-domain. Now, formulate $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ as a coordinate-free operator. Need:

- The transposed map κ^{t} : bivectors \rightarrow twisted bivectors,

$$
B:=\kappa^{\mathrm{t}}(A) \quad \text { stands for } \quad B^{\alpha \beta}:=\frac{1}{2} \kappa_{\mu \nu}{ }^{\alpha \beta} A^{\mu \nu} .
$$

The "bar conjugate" of the medium response In preparation for decomposing κ, define the "bar conjugate"

$$
\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}=\frac{1}{4} \hat{\epsilon}_{\alpha \beta \rho \sigma}\left(\kappa_{\eta \theta}^{\rho \sigma}\right) \epsilon^{\eta \theta \mu \nu} .
$$

Note: $\kappa_{\alpha \beta}{ }^{\mu \nu}$ and $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ have same domain and co-domain. Now, formulate $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ as a coordinate-free operator. Need:

- The transposed map κ^{t} : bivectors \rightarrow twisted bivectors,

$$
B:=\kappa^{\mathrm{t}}(A) \quad \text { stands for } \quad B^{\alpha \beta}:=\frac{1}{2} \kappa_{\mu \nu}^{\alpha \beta} A^{\mu \nu} .
$$

- Poincaré isomorphism \diamond_{2} : 2-forms \rightarrow bivector densities,

$$
\check{\Gamma}:=\diamond_{2}(\Gamma) \quad \text { stands for } \quad \check{\Gamma}^{\alpha \beta}:=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} \Gamma_{\mu \nu} .
$$ In preparation for decomposing κ, define the "bar conjugate"

$$
\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}=\frac{1}{4} \hat{\epsilon}_{\alpha \beta \rho \sigma}\left(\kappa_{\eta \theta}^{\rho \sigma}\right) \epsilon^{\eta \theta \mu \nu} .
$$

Note: $\kappa_{\alpha \beta}{ }^{\mu \nu}$ and $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ have same domain and co-domain. Now, formulate $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ as a coordinate-free operator. Need:

- The transposed map κ^{t} : bivectors \rightarrow twisted bivectors,

$$
B:=\kappa^{\mathrm{t}}(A) \quad \text { stands for } \quad B^{\alpha \beta}:=\frac{1}{2} \kappa_{\mu \nu}^{\alpha \beta} A^{\mu \nu} .
$$

- Poincaré isomorphism \diamond_{2} : 2-forms \rightarrow bivector densities,

$$
\check{\Gamma}:=\diamond_{2}(\Gamma) \quad \text { stands for } \quad \check{\Gamma}^{\alpha \beta}:=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} \Gamma_{\mu \nu} .
$$

- Poincaré isomorphism $\hat{\diamond}_{2}$: bivectors \rightarrow 2-form densities,

$$
\check{C}:=\hat{\forall}_{2}(C) \quad \text { stands for } \quad \check{C}_{\alpha \beta}:=\frac{1}{2} \hat{\epsilon}_{\alpha \beta \mu \nu} C^{\mu \nu} .
$$

A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov. In preparation for decomposing κ, define the "bar conjugate"

$$
\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}=\frac{1}{4} \hat{\epsilon}_{\alpha \beta \rho \sigma}\left(\kappa_{\eta \theta}{ }^{\rho \sigma}\right) \epsilon^{\eta \theta \mu \nu} .
$$

Note: $\kappa_{\alpha \beta}{ }^{\mu \nu}$ and $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ have same domain and co-domain. Now, formulate $\bar{\kappa}_{\alpha \beta}{ }^{\mu \nu}$ as a coordinate-free operator. Need:

- The transposed map κ^{t} : bivectors \rightarrow twisted bivectors,

$$
B:=\kappa^{\mathrm{t}}(A) \quad \text { stands for } \quad B^{\alpha \beta}:=\frac{1}{2} \kappa_{\mu \nu}^{\alpha \beta} A^{\mu \nu} .
$$

- Poincaré isomorphism \diamond_{2} : 2-forms \rightarrow bivector densities,

$$
\check{\Gamma}:=\diamond_{2}(\Gamma) \quad \text { stands for } \quad \check{\Gamma}^{\alpha \beta}:=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} \Gamma_{\mu \nu} .
$$

- Poincaré isomorphism $\hat{\diamond}_{2}$: bivectors \rightarrow 2-form densities,

$$
\check{C}:=\hat{\forall}_{2}(C) \quad \text { stands for } \quad \check{C}_{\alpha \beta}:=\frac{1}{2} \hat{\epsilon}_{\alpha \beta \mu \nu} C^{\mu \nu} .
$$

A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

For \diamond_{2} and $\hat{\delta}_{2}$ see Greub (1967), Kurz \& Heumann (2010).

The "bar conjugate" (continued)

Bar conjugate is the composition of maps $\bar{\kappa}:=\hat{\delta}_{2} \circ \kappa^{t} \circ \diamond_{2}$,
2-form $\xrightarrow{\widehat{\diamond}_{2}}$ bivector d. $\xrightarrow{\kappa^{\mathrm{t}}}$ tw. bivector d. $\xrightarrow{\hat{\delta}_{2}}$ tw. 2-form where "tw." means twisted and "d." means density. Crucial to note that κ and $\bar{\kappa}$ have the same domain and co-domain. Caveat: \diamond_{2} and $\hat{\diamond}_{2}$ yield opposite density weights, $+1 \&-1$.

The "bar conjugate" (continued)

Bar conjugate is the composition of maps $\bar{\kappa}:=\hat{\delta}_{2} \circ \kappa^{\mathbf{t}} \circ \diamond_{2}$,
2-form $\xrightarrow{\widehat{\diamond}_{2}}$ bivector d. $\xrightarrow{\kappa^{\mathrm{t}}}$ tw. bivector d. $\xrightarrow{\hat{\delta}_{2}}$ tw. 2-form where "tw." means twisted and "d." means density. Crucial to note that κ and $\bar{\kappa}$ have the same domain and co-domain. Caveat: \diamond_{2} and $\hat{\diamond}_{2}$ yield opposite density weights, $+1 \&-1$. Some properties of the "bar conjugate":

The "bar conjugate" (continued)

Bar conjugate is the composition of maps $\bar{\kappa}:=\hat{\diamond}_{2} \circ \kappa^{\mathbf{t}} \circ \diamond_{2}$,
2-form $\xrightarrow{\widehat{\jmath}_{2}}$ bivector d. $\xrightarrow{\kappa^{\mathrm{t}}}$ tw. bivector d. $\xrightarrow{\hat{\delta}_{2}}$ tw. 2-form where "tw." means twisted and "d." means density. Crucial to note that κ and $\bar{\kappa}$ have the same domain and co-domain. Caveat: \diamond_{2} and $\hat{\diamond}_{2}$ yield opposite density weights, $+1 \&-1$. Some properties of the "bar conjugate":

- Given the sum $\kappa^{\prime}=a \kappa_{1}+b \kappa_{2}$, where a and b are scalars,

$$
\bar{\kappa}^{\prime}=a \bar{\kappa}_{1}+b \bar{\kappa}_{2} .
$$

The "bar conjugate" (continued)

Bar conjugate is the composition of maps $\bar{\kappa}:=\hat{\diamond}_{2} \circ \kappa^{\mathbf{t}} \circ \diamond_{2}$,
2-form $\xrightarrow{\widehat{\Delta}_{2}}$ bivector d. $\xrightarrow{\kappa^{\mathrm{t}}}$ tw. bivector d. $\xrightarrow{\hat{\boldsymbol{\delta}}_{2}}$ tw. 2-form where "tw." means twisted and "d." means density. Crucial to note that κ and $\bar{\kappa}$ have the same domain and co-domain. Caveat: \diamond_{2} and $\hat{\diamond}_{2}$ yield opposite density weights, $+1 \&-1$. Some properties of the "bar conjugate":

- Given the sum $\kappa^{\prime}=a \kappa_{1}+b \kappa_{2}$, where a and b are scalars,

$$
\bar{\kappa}^{\prime}=a \bar{\kappa}_{1}+b \bar{\kappa}_{2} .
$$

- The map $\overline{\bar{\kappa}}=\hat{\forall}_{2} \circ \bar{\kappa}^{\mathbf{t}} \circ \diamond_{2}$ coincides with the original κ,

$$
\overline{\bar{\kappa}}=\kappa
$$

The "bar conjugate" (continued)

Bar conjugate is the composition of maps $\bar{\kappa}:=\hat{\diamond}_{2} \circ \kappa^{\mathbf{t}} \circ \diamond_{2}$,
2-form $\xrightarrow{\widehat{\Delta}_{2}}$ bivector d. $\xrightarrow{\kappa^{\mathrm{t}}}$ tw. bivector d. $\xrightarrow{\hat{\boldsymbol{\delta}}_{2}}$ tw. 2-form where "tw." means twisted and "d." means density. Crucial to note that κ and $\bar{\kappa}$ have the same domain and co-domain. Caveat: $\widehat{\nabla}_{2}$ and $\hat{\diamond}_{2}$ yield opposite density weights, $+1 \&-1$. Some properties of the "bar conjugate":

- Given the sum $\kappa^{\prime}=a \kappa_{1}+b \kappa_{2}$, where a and b are scalars,

$$
\bar{\kappa}^{\prime}=a \bar{\kappa}_{1}+b \bar{\kappa}_{2} .
$$

- The map $\overline{\bar{\kappa}}=\hat{\diamond}_{2} \circ \bar{\kappa}^{\mathbf{t}} \circ \diamond_{2}$ coincides with the original κ,

$$
\overline{\bar{\kappa}}=\kappa .
$$

- If κ^{\prime} is the composition of two operators $\left(\kappa^{\prime}=\kappa_{1} \circ \kappa_{2}\right)$,

$$
\bar{\kappa}^{\prime}=\bar{\kappa}_{2} \circ \bar{\kappa}_{1} .
$$

Principal+Skewon+Axion decomposition

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L.

 Bergamin, I.V.Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Principal+Skewon+Axion decomposition

Symmetric \& Antisymmetric contributions
Split κ in a symmetric and an antisymmetric part with respect to the bar conjugate, $\kappa={ }^{(+)} \kappa+{ }^{(-)} \kappa$. In particular,

$$
\begin{aligned}
& (+) \bar{\kappa}=+^{(+)} \kappa, \\
& (-) \bar{\kappa}=-{ }^{(-)} \kappa .
\end{aligned}
$$

A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

Principal+Skewon+Axion decomposition

Symmetric \& Antisymmetric contributions
Split κ in a symmetric and an antisymmetric part with respect to the bar conjugate, $\kappa={ }^{(+)} \kappa+{ }^{(-)} \kappa$. In particular,

$$
\begin{aligned}
& (+) \bar{\kappa}=+^{(+)} \kappa, \\
& (-) \bar{\kappa}=-{ }^{(-)} \kappa .
\end{aligned}
$$

Principal, Skewon and Axion contributions

Principal+Skewon+Axion decomposition

Symmetric \& Antisymmetric contributions
Split κ in a symmetric and an antisymmetric part with respect to the bar conjugate, $\kappa={ }^{(+)} \kappa+{ }^{(-)} \kappa$. In particular,

$$
\begin{aligned}
& (+) \bar{\kappa}=++^{(+)} \kappa, \\
& (-) \bar{\kappa}=-{ }^{(-)} \kappa .
\end{aligned}
$$

Principal, Skewon and Axion contributions
a) Split the symmetric piece ${ }^{(+)} \kappa$ in a traceless part and a trace contribution. Thereby, obtain ${ }^{(+)} \kappa={ }^{(1)} \kappa+{ }^{(3)} \kappa$.

Principal+Skewon+Axion decomposition

Symmetric \& Antisymmetric contributions
Split κ in a symmetric and an antisymmetric part with respect to the bar conjugate, $\kappa={ }^{(+)} \kappa+{ }^{(-)} \kappa$. In particular,

$$
\begin{aligned}
&(+) \\
&{ }^{(-)}=+^{(+)} \kappa, \\
&()^{(-)} \kappa .
\end{aligned}
$$

Principal, Skewon and Axion contributions
a) Split the symmetric piece ${ }^{(+)} \kappa$ in a traceless part and a trace contribution. Thereby, obtain ${ }^{(+)} \kappa={ }^{(1)} \kappa+{ }^{(3)} \kappa$.
b) Then, rename the antisymmetric part ${ }^{(-)} \kappa={ }^{(2)} \kappa$.

Principal+Skewon+Axion decomposition

Symmetric \& Antisymmetric contributions
Split κ in a symmetric and an antisymmetric part with respect to the bar conjugate, $\kappa={ }^{(+)} \kappa+{ }^{(-)} \kappa$. In particular,

$$
\begin{aligned}
& (+) \bar{\kappa}=+^{(+)} \kappa, \\
& (-) \bar{\kappa}=-{ }^{(-)} \kappa .
\end{aligned}
$$

Principal, Skewon and Axion contributions
a) Split the symmetric piece ${ }^{(+)} \kappa$ in a traceless part and a trace contribution. Thereby, obtain ${ }^{(+)} \kappa={ }^{(1)} \kappa+{ }^{(3)} \kappa$.
b) Then, rename the antisymmetric part ${ }^{(-)} \kappa={ }^{(2)} \kappa$.
c) Principal-Skewon-Axion split $\kappa={ }^{(1)} \kappa+{ }^{(2)} \kappa+{ }^{(3)} \kappa$,

$$
\begin{array}{ll}
{ }^{(1)} \bar{\kappa}=+{ }^{(1)} \kappa, & \operatorname{tr}\left[{ }^{(1)} \kappa\right]=0 \\
{ }^{(2)} \bar{\kappa}=-{ }^{(2)} \kappa, & \operatorname{tr}\left[{ }^{(2)} \kappa\right] \equiv 0 \\
{ }^{(3)} \bar{\kappa}=+{ }^{(3)} \kappa, & \operatorname{tr}\left[{ }^{(3)} \kappa\right]=\operatorname{tr}(\kappa)
\end{array}
$$

Preview: Four closure relations

In solving some electromagnetic problems (examples later), one encounters the so-called closure relations, restricting κ.

Preview: Four closure relations

In solving some electromagnetic problems (examples later), one encounters the so-called closure relations, restricting κ.

Closure relations: Pure and Mixed

- The pure closure relations are:

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \text { Id }, \quad \text { and } \quad \bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \text { Id. }
$$

- The mixed closure relations are:

$$
\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa}) \text { ld }, \quad \text { and } \quad \bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \text { ld. }
$$

Preview: Four closure relations

In solving some electromagnetic problems (examples later), one encounters the so-called closure relations, restricting κ.

Closure relations: Pure and Mixed

- The pure closure relations are:

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \text { Id, } \quad \text { and } \quad \bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \text { Id. }
$$

- The mixed closure relations are:

$$
\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa}) \text { ld }, \quad \text { and } \quad \bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \text { Id. }
$$

Crucially, the true scalars in red are allowed to vanish (at least for the moment), and to take any sign.

Preview: Four closure relations

In solving some electromagnetic problems (examples later), one encounters the so-called closure relations, restricting κ.

Closure relations: Pure and Mixed

- The pure closure relations are:

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \text { Id }, \quad \text { and } \quad \bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \text { Id. }
$$

- The mixed closure relations are:

$$
\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa}) \text { Id, } \quad \text { and } \quad \bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \text { Id. }
$$

Crucially, the true scalars in red are allowed to vanish (at least for the moment), and to take any sign. We consider few physical questions in which closure relations appear.

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\left.\left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right\} \begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array} ~ . ~ \$\right.
$$

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\left.\left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right\} \begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array} ~ . ~ \$\right.
$$

- Electric-magnetic reciprocity physically crucial because it leaves the energy-momentum 3-form Σ_{α} invariant:

$$
\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]
$$

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\left.\left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right\} \begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array} ~ . ~ \$\right.
$$

- Electric-magnetic reciprocity physically crucial because it leaves the energy-momentum 3-form Σ_{α} invariant:

$$
\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]=\Sigma_{\alpha} .
$$

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right. \\
& \left.\begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array}\right.
\end{aligned}
$$

- Electric-magnetic reciprocity physically crucial because it leaves the energy-momentum 3-form Σ_{α} invariant:

$$
\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]=\Sigma_{\alpha} .
$$

- Require that medium response has this symmetry too

$$
H^{\prime}=\kappa\left(F^{\prime}\right) \Rightarrow \zeta F=\kappa\left(-\zeta^{-1} H\right) \Rightarrow F=-\zeta^{-2} \kappa(H) .
$$

A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Reciprocity
EM invariants
Other motivations

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\left.\left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right\} \begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array} ~ . ~ \$\right.
$$

- Electric-magnetic reciprocity physically crucial because it leaves the energy-momentum 3-form Σ_{α} invariant:

$$
\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]=\Sigma_{\alpha} .
$$

- Require that medium response has this symmetry too

$$
H^{\prime}=\kappa\left(F^{\prime}\right) \Rightarrow \zeta F=\kappa\left(-\zeta^{-1} H\right) \Rightarrow F=-\zeta^{-2} \kappa(H)
$$

The constitutive law is still given by $H=\kappa(F)$, whence

$$
F=-\zeta^{-2} \kappa \circ \kappa(F)
$$

Electric-magnetic reciprocity

- Given a twisted scalar $\zeta \neq 0$, with dimensions of inverse resistance, define the electric-magnetic reciprocity as:

$$
\left.\left.\begin{array}{l}
\mathcal{H}^{\prime} \\
\mathcal{D}^{\prime}
\end{array}\right\}=H^{\prime}=+\zeta F=\left\{\begin{array}{l}
-\zeta E \\
+\zeta B
\end{array}\right\} \begin{array}{l}
E^{\prime} \\
B^{\prime}
\end{array}\right\}=F^{\prime}=-\frac{1}{\zeta} H=\left\{\begin{array}{l}
+\frac{1}{\zeta} \mathcal{H} \\
-\frac{1}{\zeta} \mathcal{D}
\end{array} ~ . ~ \$\right.
$$

- Electric-magnetic reciprocity physically crucial because it leaves the energy-momentum 3-form Σ_{α} invariant:

$$
\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]=\Sigma_{\alpha} .
$$

- Require that medium response has this symmetry too

$$
H^{\prime}=\kappa\left(F^{\prime}\right) \Rightarrow \zeta F=\kappa\left(-\zeta^{-1} H\right) \Rightarrow F=-\zeta^{-2} \kappa(H)
$$

The constitutive law is still given by $H=\kappa(F)$, whence

$$
F=-\zeta^{-2} \kappa \circ \kappa(F) \quad \Rightarrow \quad \kappa \circ \kappa=-\zeta^{2} \mathrm{Id}
$$

Electric-magnetic reciprocity \rightarrow a closure relation

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.
Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Electric-magnetic reciprocity \rightarrow a closure relation

- Electric-magnetic reciprocal media obey $\kappa \circ \kappa=-\zeta^{2}$ Id. That is, they are solutions of the pure closure relation

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{ld}
$$

under the additional restriction $\operatorname{tr}(\kappa \circ \kappa)=-6 \zeta^{2}<0$.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

Electric-magnetic reciprocity \rightarrow a closure relation

- Electric-magnetic reciprocal media obey $\kappa \circ \kappa=-\zeta^{2}$ Id. That is, they are solutions of the pure closure relation

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{ld}
$$

under the additional restriction $\operatorname{tr}(\kappa \circ \kappa)=-6 \zeta^{2}<0$.

- In the skewon-free case $\left({ }^{(2)} \kappa=0\right)$, there is only one electric-magnetic reciprocal medium, the Hodge star:

$$
\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(-\operatorname{det} g^{\eta \theta}\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \rho \sigma} g^{\rho \mu} g^{\sigma \nu},
$$

with $g^{\eta \theta}=g^{\theta \eta}$ and $\operatorname{det}\left(g^{\eta \theta}\right)<0$. The metric $g^{\alpha \beta}$ is derived by imposing conditions, not assumed from start.

Electric-magnetic reciprocity \rightarrow a closure relation

- Electric-magnetic reciprocal media obey $\kappa \circ \kappa=-\zeta^{2}$ Id. That is, they are solutions of the pure closure relation

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{ld}
$$

under the additional restriction $\operatorname{tr}(\kappa \circ \kappa)=-6 \zeta^{2}<0$.

- In the skewon-free case $\left({ }^{(2)} \kappa=0\right)$, there is only one electric-magnetic reciprocal medium, the Hodge star:

$$
\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(-\operatorname{det} g^{\eta \theta}\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \rho \sigma} g^{\rho \mu} g^{\sigma \nu},
$$

with $g^{\eta \theta}=g^{\theta \eta}$ and $\operatorname{det}\left(g^{\eta \theta}\right)<0$. The metric $g^{\alpha \beta}$ is derived by imposing conditions, not assumed from start.

Electric-magnetic reciprocity \rightarrow a closure relation

- Electric-magnetic reciprocal media obey $\kappa \circ \kappa=-\zeta^{2}$ Id. That is, they are solutions of the pure closure relation

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{ld}
$$

under the additional restriction $\operatorname{tr}(\kappa \circ \kappa)=-6 \zeta^{2}<0$.

- In the skewon-free case $\left({ }^{(2)} \kappa=0\right)$, there is only one electric-magnetic reciprocal medium, the Hodge star:

$$
\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(-\operatorname{det} g^{\eta \theta}\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \rho \sigma} g^{\rho \mu} g^{\sigma \nu},
$$

with $g^{\eta \theta}=g^{\theta \eta}$ and $\operatorname{det}\left(g^{\eta \theta}\right)<0$. The metric $g^{\alpha \beta}$ is derived by imposing conditions, not assumed from start.

- See: Peres (1962), Toupin (1965), Schönberg (1971), Obukhov and Hehl (1999), Rubilar (2002), Dahl (2011).

Electric-magnetic reciprocity \rightarrow a closure relation

- Electric-magnetic reciprocal media obey $\kappa \circ \kappa=-\zeta^{2}$ Id. That is, they are solutions of the pure closure relation

$$
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{ld},
$$

under the additional restriction $\operatorname{tr}(\kappa \circ \kappa)=-6 \zeta^{2}<0$.

- In the skewon-free case $\left({ }^{(2)} \kappa=0\right)$, there is only one electric-magnetic reciprocal medium, the Hodge star:

$$
\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(-\operatorname{det} g^{\eta \theta}\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \rho \sigma} g^{\rho \mu} g^{\sigma \nu},
$$

with $g^{\eta \theta}=g^{\theta \eta}$ and $\operatorname{det}\left(g^{\eta \theta}\right)<0$. The metric $g^{\alpha \beta}$ is derived by imposing conditions, not assumed from start.

- See: Peres (1962), Toupin (1965), Schönberg (1971), Obukhov and Hehl (1999), Rubilar (2002), Dahl (2011).
- Consider another physical question leading to above closure relation, but with $\operatorname{tr}(\kappa \circ \kappa)$ entirely arbitrary.

The special linear $\operatorname{SL}(2, \mathbb{R})$ reciprocity

A. Favaro, L

 Bergamin, I.V.Lindell, Y.N.
Obukhov.

EM fields

The medium

Preview

Reciprocity
EM invariants
Other motivations

Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity

Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping $(H ; F)$ into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.

■ $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity

Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity

Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

- Construct: $\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]$

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity

Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{l}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

- Construct: $\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]$
- Arbitrary linear rec: express $\left(H^{\prime}, F^{\prime}\right)$ in terms of (H, F).

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity
Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

- Construct: $\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]$
- Arbitrary linear rec: express $\left(H^{\prime}, F^{\prime}\right)$ in terms of (H, F).
- Obtain that $\Sigma_{\alpha}^{\prime}=\left(C_{00} C_{11}-C_{10} C_{01}\right) \Sigma_{\alpha}=(\operatorname{det} C) \Sigma_{\alpha}$.

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity
Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

- Construct: $\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]$
- Arbitrary linear rec: express $\left(H^{\prime}, F^{\prime}\right)$ in terms of (H, F).
- Obtain that $\Sigma_{\alpha}^{\prime}=\left(C_{00} C_{11}-C_{10} C_{01}\right) \Sigma_{\alpha}=(\operatorname{det} C) \Sigma_{\alpha}$.
- Σ_{α} invariant if and only if $(\operatorname{det} C)=1$, i.e. $C \in \operatorname{SL}(2, \mathbb{R})$.

The special linear $\mathrm{SL}(2, \mathbb{R})$ reciprocity
Start from arbitrary linear reciprocity
Consider an arbitrary matrix mapping ($H ; F$) into $\left(H^{\prime} ; F^{\prime}\right)$ as

$$
\left[\begin{array}{l}
H^{\prime} \\
F^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]\left[\begin{array}{c}
H \\
F
\end{array}\right]
$$

- $\left\{C_{00}, C_{11}\right\}$ twist-free and dimensionless.
- $\left\{C_{01}, C_{10}\right\}$ twisted, with $\left[C_{01}\right]=\left[C_{10}\right]^{-1}=[\text { resistance }]^{-1}$.

Require Σ_{α} is invariant: special linear reciprocity

- Construct: $\left.\left.\Sigma_{\alpha}^{\prime}=\frac{1}{2}\left[F^{\prime} \wedge\left(e_{\alpha}\right\rfloor H^{\prime}\right)-H^{\prime} \wedge\left(e_{\alpha}\right\rfloor F^{\prime}\right)\right]$
- Arbitrary linear rec: express $\left(H^{\prime}, F^{\prime}\right)$ in terms of (H, F).
- Obtain that $\Sigma_{\alpha}^{\prime}=\left(C_{00} C_{11}-C_{10} C_{01}\right) \Sigma_{\alpha}=(\operatorname{det} C) \Sigma_{\alpha}$.
- Σ_{α} invariant if and only if $(\operatorname{det} C)=1$, i.e. $C \in \operatorname{SL}(2, \mathbb{R})$.
- Special linear reciprocity has a physical importance.

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium

Preview

Reciprocity
EM invariants
Other motivations

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium

Preview

Reciprocity
EM invariants
Other motivations

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.

- Achieve equation $C_{10} \kappa^{2}+\left(C_{11}-C_{00}\right) \kappa-C_{01}$ ld $=0$.
- Case $C_{10}=0$ leads to trivial results. Assume $C_{10} \neq 0$,

$$
\kappa^{2}+\left(\frac{C_{11}-C_{00}}{C_{10}}\right) \kappa-\left(\frac{C_{01}}{C_{10}}\right) \mathrm{Id}=0
$$

A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.
- Achieve equation $C_{10} \kappa^{2}+\left(C_{11}-C_{00}\right) \kappa-C_{01}$ ld $=0$.
- Case $C_{10}=0$ leads to trivial results. Assume $C_{10} \neq 0$,

$$
\kappa^{2}+\left(\frac{C_{11}-C_{00}}{C_{10}}\right) \kappa-\left(\frac{C_{01}}{C_{10}}\right) \mathrm{Id}=0 .
$$

- Look at first two terms \& complete the square. That is, add and subtract $\left[\left(C_{11}-C_{00}\right) / 2 C_{10}\right]^{2}$ Id, and collect as:

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}-C_{00}\right)^{2}+4 C_{10} C_{01}}{4 C_{10}^{2}}\right] \text { Id. }
$$

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.
- Achieve equation $C_{10} \kappa^{2}+\left(C_{11}-C_{00}\right) \kappa-C_{01}$ ld $=0$.
- Case $C_{10}=0$ leads to trivial results. Assume $C_{10} \neq 0$,

$$
\kappa^{2}+\left(\frac{C_{11}-C_{00}}{C_{10}}\right) \kappa-\left(\frac{C_{01}}{C_{10}}\right) \text { Id }=0 .
$$

- Look at first two terms \& complete the square. That is, add and subtract $\left[\left(C_{11}-C_{00}\right) / 2 C_{10}\right]^{2}$ Id, and collect as:

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}-C_{00}\right)^{2}+4 C_{10} C_{01}}{4 C_{10}^{2}}\right] \text { Id. }
$$

- On right-hand side, use $(\operatorname{det} C)=C_{00} C_{11}-C_{01} C_{10}=1$,

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}+C_{00}\right)^{2}-4}{4 C_{10}^{2}}\right] \mathrm{Id}
$$

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.
- Achieve equation $C_{10} \kappa^{2}+\left(C_{11}-C_{00}\right) \kappa-C_{01}$ ld $=0$.
- Case $C_{10}=0$ leads to trivial results. Assume $C_{10} \neq 0$,

$$
\kappa^{2}+\left(\frac{C_{11}-C_{00}}{C_{10}}\right) \kappa-\left(\frac{C_{01}}{C_{10}}\right) \mathrm{Id}=0 .
$$

- Look at first two terms \& complete the square. That is, add and subtract $\left[\left(C_{11}-C_{00}\right) / 2 C_{10}\right]^{2}$ Id, and collect as:

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}-C_{00}\right)^{2}+4 C_{10} C_{01}}{4 C_{10}^{2}}\right] \mathrm{Id} .
$$

- On right-hand side, use $(\operatorname{det} C)=C_{00} C_{11}-C_{01} C_{10}=1$,

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}+C_{00}\right)^{2}-4}{4 C_{10}^{2}}\right] \mathrm{Id}
$$

- Similar calculations are found in Lindell's work (self-dual media, bi-quadratic BQ media, second-order SD media).

Demand the medium is $\mathrm{SL}(2, \mathbb{R})$ reciprocal

- Start from $H^{\prime}=\kappa\left(F^{\prime}\right)$. Express it in terms of original F.
- Achieve equation $C_{10} \kappa^{2}+\left(C_{11}-C_{00}\right) \kappa-C_{01}$ ld $=0$.
- Case $C_{10}=0$ leads to trivial results. Assume $C_{10} \neq 0$,

$$
\kappa^{2}+\left(\frac{C_{11}-C_{00}}{C_{10}}\right) \kappa-\left(\frac{C_{01}}{C_{10}}\right) \mathrm{Id}=0 .
$$

- Look at first two terms \& complete the square. That is, add and subtract $\left[\left(C_{11}-C_{00}\right) / 2 C_{10}\right]^{2}$ Id, and collect as:

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}-C_{00}\right)^{2}+4 C_{10} C_{01}}{4 C_{10}^{2}}\right] \mathrm{Id} .
$$

- On right-hand side, use $(\operatorname{det} C)=C_{00} C_{11}-C_{01} C_{10}=1$,

$$
\left[\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \mathrm{Id}\right]^{2}=\left[\frac{\left(C_{11}+C_{00}\right)^{2}-4}{4 C_{10}^{2}}\right] \mathrm{Id}
$$

- Similar calculations are found in Lindell's work (self-dual media, bi-quadratic BQ media, second-order SD media).

$\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel.

- $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey the pure closure relation

$$
\kappa^{\prime} \circ \kappa^{\prime}=\frac{1}{6} \operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right) \mathrm{ld},
$$

provided one introduces a "modified" map κ^{\prime} such that

$$
\kappa^{\prime}:=\kappa+\left(\frac{C_{11}-C_{00}}{2 C_{10}}\right) \text { Id } \quad \text { and } \quad \operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)=\frac{\left(C_{11}+C_{00}\right)^{2}-4}{4 C_{10}^{2}} .
$$

- The factor $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$ can take any sign, or even vanish.
electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots
Conclusions
Thank-you:

Mixed closure relation when invariants $I_{3}=\eta I_{2}$

- Look for medium such that, for every choice of $\{H, F\}$,

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

In terms of 3-dimensional fields, for every $\{\mathcal{H}, \mathcal{D}, E, B\}$,

$$
\begin{aligned}
\mathcal{H} \wedge \mathcal{D} & =-\eta B \wedge E, & & \text { (pre-metric) } \\
\vec{H} \cdot \vec{D} & =-\eta \vec{B} \cdot \vec{E}, & & \text { (post-metric) } .
\end{aligned}
$$

- Consequence: if $B \wedge E=0$, one has $\mathcal{H} \wedge \mathcal{D} \equiv 0$ trivially.

From $I_{3}=\eta I_{2}(\forall$ fields $)$ to mixed closure relation.

- Demand $H \wedge H=\eta F \wedge F$ for every choice of H and F. Local \& linear media: $\kappa(F) \wedge \kappa(F)=\eta F \wedge F$ for any F.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations

From $I_{3}=\eta I_{2}(\forall$ fields $)$ to mixed closure relation.

- Demand $H \wedge H=\eta F \wedge F$ for every choice of H and F. Local \& linear media: $\kappa(F) \wedge \kappa(F)=\eta F \wedge F$ for any F.
- "Convert" wedge products in Levi-Civita symbols. Thus,

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}\right) F_{l} F_{J}=\left(\eta \epsilon^{I J}\right) F_{I} F_{J},
$$

for every F_{l}. Grouping the two terms together, achieve

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}-\eta \epsilon^{J J}\right) F_{I} F_{J}=0 .
$$

From $I_{3}=\eta I_{2}(\forall$ fields $)$ to mixed closure relation.

- Demand $H \wedge H=\eta F \wedge F$ for every choice of H and F. Local \& linear media: $\kappa(F) \wedge \kappa(F)=\eta F \wedge F$ for any F.
- "Convert" wedge products in Levi-Civita symbols. Thus,

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}\right) F_{I} F_{J}=\left(\eta \epsilon^{I J}\right) F_{I} F_{J},
$$

for every F_{l}. Grouping the two terms together, achieve

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}-\eta \epsilon^{J J}\right) F_{I} F_{J}=0 .
$$

- Expression in brackets already symmetric under swap of indices $\{I, J\}$. Moreover, it must hold true for all F_{l}, so

$$
\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}-\eta \epsilon^{I J}=0 .
$$

Contract by $\hat{\epsilon}_{L I}$ and recall $\hat{\epsilon}_{L I} \epsilon^{I J}=\delta_{L}^{\prime}$ (Kronecker delta):

$$
\left(\hat{\epsilon}_{L I} \kappa_{M}{ }^{\prime} \epsilon^{M N}\right) \kappa_{N}^{J}=\eta \delta_{L}^{J}, \quad \Rightarrow \quad \bar{\kappa}_{L}^{N} \kappa_{N}^{J}=\eta \delta_{L}^{J} .
$$

From $I_{3}=\eta I_{2}(\forall$ fields $)$ to mixed closure relation.

- Demand $H \wedge H=\eta F \wedge F$ for every choice of H and F. Local \& linear media: $\kappa(F) \wedge \kappa(F)=\eta F \wedge F$ for any F.
- "Convert" wedge products in Levi-Civita symbols. Thus,

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}\right) F_{I} F_{J}=\left(\eta \epsilon^{I J}\right) F_{I} F_{J},
$$

for every F_{l}. Grouping the two terms together, achieve

$$
\left(\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}-\eta \epsilon^{I J}\right) F_{I} F_{J}=0 .
$$

- Expression in brackets already symmetric under swap of indices $\{I, J\}$. Moreover, it must hold true for all F_{l}, so

$$
\epsilon^{M N} \kappa_{M}{ }^{\prime} \kappa_{N}^{J}-\eta \epsilon^{I J}=0 .
$$

Contract by $\hat{\epsilon}_{L I}$ and recall $\hat{\epsilon}_{L I} \epsilon^{I J}=\delta_{L}^{\prime}$ (Kronecker delta):

$$
\left(\hat{\epsilon}_{L I} \kappa_{M}{ }^{\prime} \epsilon^{M N}\right) \kappa_{N}^{J}=\eta \delta_{L}^{J}, \quad \Rightarrow \quad \bar{\kappa}_{L}^{N} \kappa_{N}^{J}=\eta \delta_{L}^{J} .
$$

- Conclude: imposing $I_{3}=\eta I_{2}$ for all field configurations, leads to the mixed closure relation $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id.

Other motivations for studying the mixed closures

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.
Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Other motivations for studying the mixed closures

Generalise the uniaxial TE/TM decomposition

EM fields

Other motivations for studying the mixed closures

Generalise the uniaxial TE/TM decomposition

- Uniaxial medium: 3d fields are split in transverse electric (TE) \& transverse magnetic (TM) with respect to axis.

Other motivations for studying the mixed closures

Generalise the uniaxial TE/TM decomposition

- Uniaxial medium: 3d fields are split in transverse electric (TE) \& transverse magnetic (TM) with respect to axis.
- Generalisation of uniaxial TE/TM split available in the decomposable media. Info in Lindell and Olyslager $(1998,2001)$ or Lindell, Bergamin and Favaro (2012).

Other motivations for studying the mixed closures

- Generalisation of uniaxial TE/TM split available in the decomposable media. Info in Lindell and Olyslager (1998, 2001) or Lindell, Bergamin and Favaro (2012).
- Mixed closure relation plays crucial role in this context.

Other motivations for studying the mixed closures Generalise the uniaxial TE/TM decomposition

- Uniaxial medium: 3d fields are split in transverse electric (TE) \& transverse magnetic (TM) with respect to axis.
- Generalisation of uniaxial TE/TM split available in the decomposable media. Info in Lindell and Olyslager (1998, 2001) or Lindell, Bergamin and Favaro (2012).
- Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media. When skewon vanishes, one has $\kappa=\bar{\kappa}$. Accordingly, all closure relations become the same equation, the closure relation for skewon-free media. To solve it, two methods:

Pre-metric

Other motivations for studying the mixed closures Generalise the uniaxial TE/TM decomposition

- Uniaxial medium: 3d fields are split in transverse electric (TE) \& transverse magnetic (TM) with respect to axis.
- Generalisation of uniaxial TE/TM split available in the decomposable media. Info in Lindell and Olyslager (1998, 2001) or Lindell, Bergamin and Favaro (2012).
- Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media. When skewon vanishes, one has $\kappa=\bar{\kappa}$. Accordingly, all closure relations become the same equation, the closure relation for skewon-free media. To solve it, two methods:

1. Solve pure closure, usually $\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ Id. Then, remove skewon. Good: pure closure \rightarrow physical insight.

Pre-metric

Other motivations for studying the mixed closures Generalise the uniaxial TE/TM decomposition

- Uniaxial medium: 3d fields are split in transverse electric (TE) \& transverse magnetic (TM) with respect to axis.
- Generalisation of uniaxial TE/TM split available in the decomposable media. Info in Lindell and Olyslager (1998, 2001) or Lindell, Bergamin and Favaro (2012).
- Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media. When skewon vanishes, one has $\kappa=\bar{\kappa}$. Accordingly, all closure relations become the same equation, the closure relation for skewon-free media. To solve it, two methods:

1. Solve pure closure, usually $\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ Id. Then, remove skewon. Good: pure closure \rightarrow physical insight.

Pre-metric
2. Solve a mixed closure relation. Then, remove skewon. Good: mixed closures easier to solve. They are useful.

Closure relations and their properties

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Closure relations and their properties

Closure relations at a glance
Pure: $\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ ld , and $\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ ld .
Mixed: $\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa})$ ld , and $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \operatorname{ld}$.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

Closure relations and their properties

Closure relations at a glance
Pure: $\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ ld , and $\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ ld .
Mixed: $\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa})$ ld , and $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \operatorname{ld}$.
Two identities and a property of closure relations

Closure relations and their properties

Closure relations at a glance
Pure: $\quad \kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ ld , and $\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \operatorname{ld}$.
Mixed: $\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa})$ ld, and $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \operatorname{ld}$.
Two identities and a property of closure relations

- The identity $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ true for arbitrary κ.

Closure relations and their properties

Closure relations at a glance
Pure: $\quad \kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ ld, and $\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \operatorname{ld}$.
Mixed: $\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa})$ ld, and $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \operatorname{ld}$.
Two identities and a property of closure relations

- The identity $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ true for arbitrary κ.
- The identity $\operatorname{tr}(\kappa \circ \bar{\kappa}) \equiv \operatorname{tr}(\bar{\kappa} \circ \kappa)$ true for arbitrary κ.

Closure relations and their properties

Closure relations at a glance
Pure: $\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa)$ ld, and $\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ ld.
Mixed: $\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa})$ ld, and $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ ld.
Two identities and a property of closure relations

- The identity $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})$ true for arbitrary κ.
- The identity $\operatorname{tr}(\kappa \circ \bar{\kappa}) \equiv \operatorname{tr}(\bar{\kappa} \circ \kappa)$ true for arbitrary κ.
- If κ is a solution of one closure relation, the respective factor in red vanishes if and only if $\operatorname{det}(\kappa)=0$. In fact,

$$
\begin{array}{ll}
\kappa \circ \kappa=\frac{1}{6} \operatorname{tr}(\kappa \circ \kappa) \mathrm{Id}, & \Rightarrow|\operatorname{tr}(\kappa \circ \kappa)|=6|\operatorname{det}(\kappa)|^{\frac{1}{3}}, \\
\bar{\kappa} \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa}) \mathrm{Id}, & \Rightarrow|\operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})|=6|\operatorname{det}(\kappa)|^{\frac{1}{3}}, \\
\kappa \circ \bar{\kappa}=\frac{1}{6} \operatorname{tr}(\kappa \circ \bar{\kappa}) \mathrm{Id}, & \Rightarrow|\operatorname{tr}(\kappa \circ \bar{\kappa})|=6|\operatorname{det}(\kappa)|^{\frac{1}{3}}, \\
\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \mathrm{Id}, & \Rightarrow|\operatorname{tr}(\bar{\kappa} \circ \kappa)|=6|\operatorname{det}(\kappa)|^{\frac{1}{3}} .
\end{array}
$$

Closure relations and their properties (continued)

Pure closure relations

- If: κ obeys one pure closure relation; Then: $\bar{\kappa}$ satisfies the other pure closure relation.
- If: κ obeys one pure closure relation;

Then: κ satisfies the other pure closure relation.
So: the pure closures have the same solution set.

Closure relations and their properties (continued)

Pure closure relations

- If: κ obeys one pure closure relation; Then: $\bar{\kappa}$ satisfies the other pure closure relation.
- If: κ obeys one pure closure relation; Then: κ satisfies the other pure closure relation. So: the pure closures have the same solution set.

Mixed closure relations

- If: κ obeys one mixed closure relation; Then: $\bar{\kappa}$ satisfies the other mixed closure relation.
- If: κ obeys one mixed closure relation \& κ is invertible. Then: κ satisfies the other mixed closure relation. So: the mixed closures have the same set of invertible solutions. (Not all solutions with $\operatorname{det}(\kappa)=0$ are shared.)
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.

Links between closure relations

PURE

MIXED
A. Favaro, L.

Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ ld, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Preview: P-media and Q-media

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Preview: P-media and Q-media

- P-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}$. In particular, $P_{\alpha}{ }^{\beta}$ is arbitrary $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ tensor of full rank.
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Preview: P-media and Q-media

■ P-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}$. In particular, $P_{\alpha}{ }^{\beta}$ is arbitrary [$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ tensor of full rank.
■ Dispersion equation of P-media trivially zero (\sim axion).

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Preview: P-media and Q-media

- P-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}$. In particular, $P_{\alpha}{ }^{\beta}$ is arbitrary [$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ tensor of full rank.
■ Dispersion equation of P-media trivially zero (\sim axion).
- Q-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=\mathfrak{X} \hat{\epsilon}_{\alpha \beta \rho \sigma} Q^{\rho \mu} Q^{\sigma \nu}$. In particular, $Q^{\alpha \beta}$ is arbitrary $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ tensor of full rank.

Invertible solutions of mixed closures

Find all invertible roots of mixed closure relation.

- If $\operatorname{det}(\kappa) \neq 0$, the mixed closures have same solution set. Hence, it is only necessary to solve one mixed closure.
- Choose to find invertible roots of $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id, say. Assume $\operatorname{tr}(\bar{\kappa} \circ \kappa)$ is positive or negative, but not 0 .
- In what follows: all invertible solutions of the mixed closure relations are calculated - in a covariant way.
- Non-covariant (3-dim.) derivation of all invertible roots of mixed closures: Lindell, Bergamin and Favaro (2012).
- Invertible roots of mixed closures: P-media \& Q-media.

Preview: P-media and Q-media

■ P-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}$. In particular, $P_{\alpha}{ }^{\beta}$ is arbitrary [$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ tensor of full rank.
■ Dispersion equation of P-media trivially zero (\sim axion).

- Q-media have constitutive law $\kappa_{\alpha \beta}{ }^{\mu \nu}=\mathfrak{X} \hat{\epsilon}_{\alpha \beta \rho \sigma} Q^{\rho \mu} Q^{\sigma \nu}$.

Invertible solutions of mixed closures In particular, $Q^{\alpha \beta}$ is arbitrary [${ }_{0}^{2}$] tensor of full rank.

- Q-media are non-birefringent (\sim Hodge star, vacuum).

Find all invertible roots of mixed closure relations

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L.

 Bergamin, I.V.Lindell, Y.N.
Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

Find all invertible roots of mixed closure relations

Choose to solve $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id. In components, write:

$$
\frac{1}{2} \bar{\kappa}_{\alpha \beta}^{\rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{8} \hat{\epsilon}_{\alpha \beta \gamma \delta}\left(\kappa_{\eta \theta}{ }^{\gamma \delta}\right) \epsilon^{\eta \theta \rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \delta_{\alpha \beta}^{\mu \nu}
$$

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions
of mixed closures
Get all invertible
skewon-free roots

Find all invertible roots of mixed closure relations

Choose to solve $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id. In components, write:

$$
\frac{1}{2} \bar{\epsilon}_{\alpha \beta}{ }^{\rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{8} \hat{\epsilon}_{\alpha \beta \gamma \delta}\left(\kappa_{\eta \theta}{ }^{\gamma \delta}\right) \epsilon^{\eta \theta \rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \delta_{\alpha \beta}^{\mu \nu}
$$

First step: contract expression through by $\frac{1}{2} \epsilon^{\lambda \tau \alpha \beta}$, to obtain

$$
\frac{1}{4} \epsilon^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu}
$$

Find all invertible roots of mixed closure relations

Choose to solve $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id. In components, write:

$$
\frac{1}{2} \bar{\kappa}_{\alpha \beta}{ }^{\rho \sigma} \kappa_{\rho \rho \sigma}{ }^{\mu \nu}=\frac{1}{8} \hat{\epsilon}_{\alpha \beta \gamma \delta}\left(\kappa_{\eta \theta}{ }^{\gamma \delta}\right) \epsilon^{\eta \theta \rho \sigma} \kappa_{\rho \sigma \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \delta_{\alpha \beta}^{\mu \nu}
$$

First step: contract expression through by $\frac{1}{2} \epsilon^{\lambda \tau \alpha \beta}$, to obtain

$$
\frac{1}{4} \epsilon^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} .
$$

Hence, multiply both sides by the Levi-Civita symbol $\hat{\epsilon}_{\alpha \beta \gamma \delta}$,

$$
\frac{1}{4} \hat{\epsilon}_{\alpha \beta \gamma \delta} \epsilon^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} \hat{\epsilon}_{\alpha \beta \gamma \delta}
$$

Find all invertible roots of mixed closure relations

Choose to solve $\bar{\kappa} \circ \kappa=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)$ Id. In components, write:

$$
\frac{1}{2} \bar{\kappa}_{\alpha \beta}{ }^{\rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{8} \hat{\epsilon}_{\alpha \beta \gamma \delta}\left(\kappa_{\eta \theta}{ }^{\gamma \delta}\right) \epsilon^{\eta \theta \rho \sigma} \kappa_{\rho \sigma}^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \delta_{\alpha \beta}^{\mu \nu}
$$

First step: contract expression through by $\frac{1}{2} \epsilon^{\lambda \tau \alpha \beta}$, to obtain

$$
\frac{1}{4} \epsilon^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} .
$$

Hence, multiply both sides by the Levi-Civita symbol $\hat{\epsilon}_{\alpha \beta \gamma \delta}$,

$$
\frac{1}{4} \hat{\epsilon}_{\alpha \beta \gamma \delta} \epsilon^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} \hat{\epsilon}_{\alpha \beta \gamma \delta}
$$

Using generalised Kronecker delta $\delta_{\alpha \beta \gamma \delta}^{\eta \theta \rho \sigma}=\hat{\epsilon}_{\alpha \beta \gamma \delta} \epsilon^{\eta \theta \rho \sigma}$, yields

$$
\frac{1}{4} \delta_{\alpha \beta \gamma \delta}^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} \hat{\epsilon}_{\alpha \beta \gamma \delta}
$$

Invertible roots of mixed closures (continued)

$$
\frac{1}{4} \delta_{\alpha \beta \gamma \delta}^{\eta \theta \rho \sigma} \kappa_{\eta \theta}{ }^{\lambda \tau} \kappa_{\rho \sigma}{ }^{\mu \nu}=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} \hat{\epsilon}_{\alpha \beta \gamma \delta} .
$$

The indices in blue and red are made implicit by defining the twisted bivector-valued 2-form $\kappa^{\mu \nu}$, and the 4-form density $\hat{\epsilon}$:

$$
\begin{aligned}
\kappa^{\mu \nu} & :=\frac{1}{2!} \kappa_{\alpha \beta}{ }^{\mu \nu}\left(\vartheta^{\alpha} \wedge \vartheta^{\beta}\right) \\
\hat{\epsilon} & :=\frac{1}{4!} \hat{\epsilon}_{\alpha \beta \gamma \delta}\left(\vartheta^{\alpha} \wedge \vartheta^{\beta} \wedge \vartheta^{\gamma} \wedge \vartheta^{\delta}\right)
\end{aligned}
$$

where $\left\{\vartheta^{\alpha}\right\}$ is the co-frame. Indeed, by means of $\kappa^{\mu \nu}$ and $\hat{\epsilon}$,

$$
\left(\kappa^{\lambda \tau} \wedge \kappa^{\mu \nu}\right)=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{\lambda \tau \mu \nu} \hat{\epsilon}
$$

Implement 6-dimensional indices $\{I, J, \ldots\}$, obtain equation

$$
\left(\kappa^{\prime} \wedge \kappa^{J}\right)=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa) \epsilon^{I J} \hat{\epsilon}
$$

Represent $\epsilon^{I J}$ as a 6×6 matrix formed of four 3×3 blocks:

Invertible roots of mixed closures (continued)

$$
\left(\kappa^{\prime} \wedge \kappa^{J}\right)=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)\left[\begin{array}{c|c}
\mathbb{O}_{3 \times 3} & \mathbb{I}_{3 \times 3} \\
\hline \mathbb{I}_{3 \times 3} & \mathbb{O}_{3 \times 3}
\end{array}\right] \hat{\epsilon}
$$

The diagonal of the matrix $\epsilon^{I J}$ is all formed of zeroes, and so

$$
\begin{aligned}
& \kappa^{1} \wedge \kappa^{1}=0, \quad \kappa^{2} \wedge \kappa^{2}=0, \quad \kappa^{3} \wedge \kappa^{3}=0, \\
& \kappa^{4} \wedge \kappa^{4}=0, \quad \kappa^{5} \wedge \kappa^{5}=0, \quad \kappa^{6} \wedge \kappa^{6}=0,
\end{aligned}
$$

i.e. the twisted 2-forms $\left\{\kappa^{\mu \nu}\right\}=\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}, \kappa^{23}, \kappa^{31}, \kappa^{12}\right\}$ must be simple ($\Psi=\alpha \wedge \beta$).
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N. Obukhov.

Invertible roots of mixed closures (continued)

$$
\left(\kappa^{\prime} \wedge \kappa^{J}\right)=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)\left[\begin{array}{c|c}
\mathbb{O}_{3 \times 3} & \mathbb{I}_{3 \times 3} \\
\hline \mathbb{I}_{3 \times 3} & \mathbb{O}_{3 \times 3}
\end{array}\right] \hat{\epsilon}
$$

The diagonal of the matrix $\epsilon^{I J}$ is all formed of zeroes, and so

$$
\begin{array}{ll}
\kappa^{1} \wedge \kappa^{1}=0, & \kappa^{2} \wedge \kappa^{2}=0, \\
\kappa^{4} \wedge \kappa^{4}=0, & \kappa^{3} \wedge \kappa^{3}=0 \\
\kappa^{5} \wedge \kappa^{5}=0, & \kappa^{6} \wedge \kappa^{6}=0
\end{array}
$$

i.e. the twisted 2-forms $\left\{\kappa^{\mu \nu}\right\}=\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}, \kappa^{23}, \kappa^{31}, \kappa^{12}\right\}$ must be simple $(\Psi=\alpha \wedge \beta)$. In fact, a closer analysis of the equation to solve indicates that there are 2 alternative cases
A) $\left\{\begin{array}{l}\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}\right\} \text { are simple and all share the same 1-form, } \\ \left\{\kappa^{23}, \kappa^{31}, \kappa^{12}\right\} \text { are simple and pairwise share a different 1-form, }\end{array}\right.$
B) $\left\{\begin{array}{l}\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}\right\} \text { are simple and pairwise share a different } 1 \text {-form, } \\ \left\{\kappa^{23}, \kappa^{31}, \kappa^{12}\right\} \text { are simple and all share the same } 1 \text {-form. }\end{array}\right.$

Invertible roots of mixed closures (continued)

$$
\left(\kappa^{\prime} \wedge \kappa^{J}\right)=\frac{1}{6} \operatorname{tr}(\bar{\kappa} \circ \kappa)\left[\begin{array}{c|c}
\mathbb{O}_{3 \times 3} & \mathbb{I}_{3 \times 3} \\
\hline \mathbb{I}_{3 \times 3} & \mathbb{O}_{3 \times 3}
\end{array}\right] \hat{\epsilon}
$$

The diagonal of the matrix $\epsilon^{I J}$ is all formed of zeroes, and so

$$
\begin{array}{ll}
\kappa^{1} \wedge \kappa^{1}=0, & \kappa^{2} \wedge \kappa^{2}=0, \\
\kappa^{4} \wedge \kappa^{4}=0, & \kappa^{3} \wedge \kappa^{3}=0 \\
\kappa^{5} \wedge \kappa^{5}=0, & \kappa^{6} \wedge \kappa^{6}=0
\end{array}
$$

i.e. the twisted 2-forms $\left\{\kappa^{\mu \nu}\right\}=\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}, \kappa^{23}, \kappa^{31}, \kappa^{12}\right\}$ must be simple ($\Psi=\alpha \wedge \beta$). In fact, a closer analysis of the equation to solve indicates that there are 2 alternative cases
A) $\left\{\begin{array}{l}\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}\right\} \text { are simple and all share the same 1-form, } \\ \left\{\kappa^{23}, \kappa^{31}, \kappa^{12}\right\} \text { are simple and pairwise share a different 1-form, }\end{array}\right.$
B) $\left\{\begin{array}{l}\left\{\kappa^{01}, \kappa^{02}, \kappa^{03}\right\} \text { are simple and pairwise share a different } 1 \text {-form, } \\ \left\{\kappa^{23}, \kappa^{31}, \kappa^{12}\right\} \text { are simple and all share the same } 1 \text {-form. }\end{array}\right.$

Invertible roots of mixed closures (continued)

The cases $A) \& B$) respectively correspond to the structures

$$
\begin{aligned}
& \kappa^{\mu \nu}=Y \pi^{\mu} \wedge \pi^{\nu} \\
& \kappa^{\mu \nu}=\mathfrak{X} \hat{\diamond}_{2}\left(q^{\mu} \wedge q^{\nu}\right),
\end{aligned}
$$

where $\left\{\pi^{\alpha}\right\}$ is a basis of the space of 1 -forms, and $\left\{q^{\alpha}\right\}$ is a basis of the space of vectors.

Invertible roots of mixed closures (continued)

The cases $A) \& B$) respectively correspond to the structures

$$
\begin{aligned}
\kappa^{\mu \nu} & =Y \pi^{\mu} \wedge \pi^{\nu} \\
\kappa^{\mu \nu} & =\mathfrak{X} \hat{\diamond}_{2}\left(q^{\mu} \wedge q^{\nu}\right)
\end{aligned}
$$

where $\left\{\pi^{\alpha}\right\}$ is a basis of the space of 1 -forms, and $\left\{q^{\alpha}\right\}$ is a basis of the space of vectors. Expand in arbitrary (co-)frame:

$$
\begin{array}{lll}
\pi^{\beta}=P_{\alpha}{ }^{\beta} v^{\alpha}, & \Rightarrow & \kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}, \\
q^{\beta}=Q^{\alpha \beta} e_{\alpha}, & \Rightarrow & \kappa_{\alpha \beta}{ }^{\mu \nu}=\mathfrak{X} \hat{\epsilon}_{\alpha \beta \rho \sigma} Q^{\rho \mu} Q^{\sigma \nu} .
\end{array}
$$

All invertible roots of the mixed closure relations are either P-media or Q-media.

Invertible roots of mixed closures (continued)

The cases A) \& B) respectively correspond to the structures

$$
\begin{aligned}
\kappa^{\mu \nu} & =Y \pi^{\mu} \wedge \pi^{\nu} \\
\kappa^{\mu \nu} & =\mathfrak{X} \hat{\diamond}_{2}\left(q^{\mu} \wedge q^{\nu}\right)
\end{aligned}
$$

where $\left\{\pi^{\alpha}\right\}$ is a basis of the space of 1 -forms, and $\left\{q^{\alpha}\right\}$ is a basis of the space of vectors. Expand in arbitrary (co-)frame:

$$
\begin{array}{rll}
\pi^{\beta}=P_{\alpha}{ }^{\beta} v^{\alpha}, & \Rightarrow & \kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y P_{[\alpha}{ }^{\mu} P_{\beta]}{ }^{\nu}, \\
q^{\beta}=Q^{\alpha \beta} e_{\alpha}, & \Rightarrow & \kappa_{\alpha \beta}{ }^{\mu \nu}=\mathfrak{X} \hat{\epsilon}_{\alpha \beta \rho \sigma} Q^{\rho \mu} Q^{\sigma \nu} .
\end{array}
$$

All invertible roots of the mixed closure relations are either P-media or Q-media. These two constitutive laws satisfy the mixed closure relations, with right-hand side given by (resp.):

- $\operatorname{tr}(\bar{\kappa} \circ \kappa) \equiv \operatorname{tr}(\kappa \circ \bar{\kappa})=Y^{2}(\operatorname{det} P)$. Consistently with the above, ($\operatorname{det} P$) can take any sign, but it cannot vanish.
- $\operatorname{tr}(\bar{\kappa} \circ \kappa) \equiv \operatorname{tr}(\kappa \circ \bar{\kappa})=\mathfrak{X}^{2}(\operatorname{det} Q)$. Consistently with the above, ($\operatorname{det} Q$) can take any sign, but it cannot vanish.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.

EM fields

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.

EM fields

The medium

Preview

Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible skewon-free roots

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea. . .

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.
- Remove the skewon from P-media and Q-media...

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.
- Remove the skewon from P-media and Q-media...
- This solves the closure relation for skewon-free media, in the case $\operatorname{det}(\kappa) \neq 0$. All invertible roots are found.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.
- Remove the skewon from P-media and Q-media...
- This solves the closure relation for skewon-free media, in the case $\operatorname{det}(\kappa) \neq 0$. All invertible roots are found.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.
- Remove the skewon from P-media and Q-media...
- This solves the closure relation for skewon-free media, in the case $\operatorname{det}(\kappa) \neq 0$. All invertible roots are found.
- The root with $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})=\operatorname{tr}(\kappa \circ \bar{\kappa}) \equiv \operatorname{tr}(\bar{\kappa} \circ \kappa)$ negative is $(3,1)$ Hodge star (Hehl \& Obukhov, 1999). Here, this statement is re-derived in an alternative way.

The closure relation for skewon-free media

- When there is no skewon, one has that $\kappa=\bar{\kappa}$.
- If κ is skewon-free, $\kappa \circ \kappa=\bar{\kappa} \circ \bar{\kappa}=\kappa \circ \bar{\kappa}=\bar{\kappa} \circ \kappa$.
- All closure relations become one and the same equation, namely, the closure relation for skewon-free media.

A useful idea...

- Know all invertible solutions of mixed closure relations.
- Remove the skewon from P-media and Q-media...
- This solves the closure relation for skewon-free media, in the case $\operatorname{det}(\kappa) \neq 0$. All invertible roots are found.
- The root with $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})=\operatorname{tr}(\kappa \circ \bar{\kappa}) \equiv \operatorname{tr}(\bar{\kappa} \circ \kappa)$ negative is $(3,1)$ Hodge star (Hehl \& Obukhov, 1999). Here, this statement is re-derived in an alternative way.
- The roots with $\operatorname{tr}(\kappa \circ \kappa) \equiv \operatorname{tr}(\bar{\kappa} \circ \bar{\kappa})=\operatorname{tr}(\kappa \circ \bar{\kappa}) \equiv \operatorname{tr}(\bar{\kappa} \circ \kappa)$ being positive are an original contribution of this work.

Invertible solutions to the closure with no skewon.

- Solutions of the P-medium type:

P-medium	$P_{\alpha}{ }^{\beta}$	Defining property	$\operatorname{det} P$
$\kappa_{\alpha \beta}{ }^{\mu \nu}=Y L^{2} \delta_{\alpha \beta}^{\mu \nu}$	$P_{\alpha}{ }^{\beta}=L \delta_{\alpha}^{\beta}$	δ_{α}^{ρ} is the identity tensor	$L^{4}>0$
$\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y L^{2} \psi_{[\alpha}^{\mu} \psi_{\beta]}^{\nu}$	$P_{\alpha}{ }^{\beta}=L \psi_{\alpha}{ }^{\beta}$	$\psi_{\alpha}^{\rho} \psi_{\rho}^{\beta}=\delta_{\alpha}^{\beta}, \psi_{\gamma}^{\gamma}=0$	$L^{4}>0$
$\kappa_{\alpha \beta}{ }^{\mu \nu}=2 Y M^{2} J_{[\alpha}{ }^{\mu} J_{\beta]}{ }^{\nu}$	$P_{\alpha}{ }^{\beta}=M J_{\alpha}{ }^{\beta}$	$J_{\alpha}{ }^{\rho} J_{\rho}{ }^{\beta}=-\delta_{\alpha}^{\beta}$	$M^{4}>0$

- Solutions of the Q-medium type (${ }^{[s]} Q^{\alpha \beta}$ is symmetric, while ${ }^{[a]} Q^{\alpha \beta}$ is antisymmetric):

Constitutive relation		$\operatorname{det} Q$
$\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left\|\operatorname{det}{ }^{[s]} Q\right\|^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \beta \sigma}{ }^{[5]} Q^{\rho \mu[s]} Q$	Signature $\left({ }^{[5]} Q\right)=(3,1)$	<0
$\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(\operatorname{det}^{[s]} Q\right)^{-\frac{1}{2}} \hat{E}_{\alpha \beta \beta \rho \sigma}{ }^{[s]} Q^{\rho \mu}[5] Q^{\sigma}$	Signature $\left({ }^{[5]} Q\right)=(2,2)$	>0
$\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left(\operatorname{det}^{[s]} Q\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \text { 份 }}{ }^{[s]} Q^{\rho \mu}{ }^{[s]} Q^{\sigma}$	Signature $\left({ }^{[5]} Q\right)=(4,0)$	>0
$\kappa_{\alpha \beta}{ }^{\mu \nu}=\Upsilon^{-1}\left(\operatorname{det}{ }^{[1]} Q\right)^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \beta \rho \sigma}{ }^{[d]} Q^{\rho \mu}{ }^{[\text {[] }]} Q^{\sigma}$		>0

Get all invertible skewon-free roots Conclusions

Pre-metric
A. Favaro, L.

Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Hodge star based on metric of signature $(3,1)$ easily picked out. More in general, analyse first 3 entries Q-medium table.

Hodge star, analyse various signatures

$$
\kappa_{\alpha \beta}{ }^{\mu \nu}=\Omega^{-1}\left|\operatorname{det}^{[s]} Q\right|^{-\frac{1}{2}} \hat{\epsilon}_{\alpha \beta \rho \sigma}{ }^{[s]} Q^{\rho \mu[s]} Q^{\sigma \nu}
$$

- Signature $\left({ }^{[s]} Q\right)=(3,1)$: Fresnel surface is spherical.
- $\Omega>0$: vacuum or medium with scalar positive ϵ, μ.
- $\Omega<0$: medium with scalar negative ϵ, μ.
- Signature $\left({ }^{[s]} Q\right)=(4,0)$: Have only evanescent waves.
- $\Omega>0$: metal, plasma, metamaterial (metal rods array).
- $\Omega<0$: Metamaterial formed by an array of split rings.
- Signature $\left({ }^{[s]} Q\right)=(2,2)$: Fresnel surface hyperboloid.
. $\Omega>0$: exploited in hyperlens proposed by Jacob, 2006.

Pre-metric
electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V.
Lindell, Y.N.
Obukhov.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).

Pre-metric electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L. Bergamin, I.V. Lindell, Y.N. Obukhov.

EM fields

The medium
Preview
Reciprocity
EM invariants
Other motivations
Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots
Conclusions
Thank-you.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.
\diamond Require that constitutive law gives rise to $I_{3}=\eta I_{2}$ for any field configuration. Mixed closure relation emerges.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.
\diamond Require that constitutive law gives rise to $I_{3}=\eta I_{2}$ for any field configuration. Mixed closure relation emerges.
\diamond Mixed closures easier to solve than pure ones. Yet, pure and mixed merge into the same equation, if no skewon.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.
\diamond Require that constitutive law gives rise to $I_{3}=\eta I_{2}$ for any field configuration. Mixed closure relation emerges.
\diamond Mixed closures easier to solve than pure ones. Yet, pure and mixed merge into the same equation, if no skewon.
\diamond Found all invertible solutions to the mixed closures. Such solutions are the P-media and Q-media only.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.
\diamond Require that constitutive law gives rise to $I_{3}=\eta I_{2}$ for any field configuration. Mixed closure relation emerges.
\diamond Mixed closures easier to solve than pure ones. Yet, pure and mixed merge into the same equation, if no skewon.
\diamond Found all invertible solutions to the mixed closures. Such solutions are the P-media and Q-media only.
\diamond Remove the skewon P-media and Q-media. Obtain all invertible solutions to the skewon-free closure relation.

Conclusions

\diamond Introduced four closure relations (2 pure, 2 mixed).
\diamond A pure closure relation with $\operatorname{tr}(\kappa \circ \kappa)<0$ is found by requiring that medium is electric-magnetic reciprocal. No skewon: unique solution is Hodge star metric $(3,1)$.
\diamond Alike the electric-megnetic subcase, the special linear reciprocity leaves Σ_{α} invariant. $\mathrm{SL}(2, \mathbb{R})$ reciprocal media obey pure closure rel. with arbitrary $\operatorname{tr}\left(\kappa^{\prime} \circ \kappa^{\prime}\right)$.
\diamond Require that constitutive law gives rise to $I_{3}=\eta I_{2}$ for any field configuration. Mixed closure relation emerges.
\diamond Mixed closures easier to solve than pure ones. Yet, pure and mixed merge into the same equation, if no skewon.
\diamond Found all invertible solutions to the mixed closures. Such solutions are the P-media and Q-media only.
\diamond Remove the skewon P-media and Q-media. Obtain all invertible solutions to the skewon-free closure relation.
\diamond Retrieved result concerning Hodge dual, metric $(3,1)$.

Pre-metric

 electrodynamics, electric-magnetic duality \& closure relations.
A. Favaro, L.

 Bergamin, I.V.Lindell, Y.N.
Obukhov.

EM fields

Thank-you!

The medium

Preview

Reciprocity

EM invariants
Other motivations

Closure relations
Invertible solutions of mixed closures

Get all invertible
skewon-free roots

