Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum

Alberto Favaro ${ }^{1}$ Friedrich W. Hehl ${ }^{1,2}$
${ }^{1}$ Inst. Theor. Phys., Univ. of Cologne, 50923 Köln, Germany
${ }^{2}$ Dept. Phys. \& Astron., Univ. of Missouri, Columbia, MO 65211, USA
"Electromagnetic Spacetimes", WPI, Vienna, 19-23 November 2012

Email: favaro@thp.uni-koeln.de

Outline

- Dispersionless linear (meta)materials and vacuum. Find 3 components: principal part, skewon part \& axion part.
- Bateman's treatment of dispersionless linear media (1910). Seemingly first to include non-zero axion part.
- Geometrical optics results in a quartic Fresnel surface.
- Bateman relates geometrical optics and lines in real projective space. For dispersionless linear media with no skewon part, the Fresnel surface is a Kummer surface.
- What if the medium has non-zero skewon part? Does the Fresnel surface still coincide with Kummer one? If not, is Fresnel surface a K 3 or a Calabi-Yau manifold?

Dispersionless linear (meta)materials and vacuum

- EM fields: 1-form \mathcal{H}, 2-form \mathcal{D}, 1-form E and 2-form B.

Outline

Linear media
Linear media in
Bateman's work
Geometrical optics
Geometrical optics in Bateman's work

Dispersionless linear (meta)materials and vacuum

- EM fields: 1-form \mathcal{H}, 2-form \mathcal{D}, 1-form E and 2-form B.
- Dispersionless linear (meta)materials and vacuum: field excitations \mathcal{H} and \mathcal{D} at a point p in space and time related linearly to field strengths E and B at same p,

$$
\begin{aligned}
\mathcal{H}_{a} & =\beta_{a}{ }^{c} E_{c}+\frac{1}{2}\left(\mu^{-1}\right)_{a}{ }^{c d} B_{c d}, \\
\mathcal{D}_{a b} & =\varepsilon_{a b}^{\prime}{ }^{c} E_{c}+\frac{1}{2} \alpha_{a b}{ }^{c d} B_{c d} .
\end{aligned}
$$

Latin indices range from 1 to 3 . Observe that $\varepsilon_{a b}^{\prime}{ }^{c}$ is the permittivity, $\left(\mu^{-1}\right)_{a}{ }^{c d}$ is the inverse permeability, while $\beta_{a}{ }^{c}$ and $\alpha_{a b}{ }^{c d}$ describe magneto-electric effects.

Dispersionless linear (meta)materials and vacuum

- EM fields: 1-form \mathcal{H}, 2-form \mathcal{D}, 1-form E and 2-form B.
- Dispersionless linear (meta)materials and vacuum: field excitations \mathcal{H} and \mathcal{D} at a point p in space and time related linearly to field strengths E and B at same p,

$$
\begin{aligned}
\mathcal{H}_{a} & =\beta_{a}{ }^{c} E_{c}+\frac{1}{2}\left(\mu^{-1}\right)_{a}{ }^{c d} B_{c d}, \\
\mathcal{D}_{a b} & =\varepsilon_{a b}^{\prime}{ }^{c} E_{c}+\frac{1}{2} \alpha_{a b}{ }^{c d} B_{c d} .
\end{aligned}
$$

Latin indices range from 1 to 3 . Observe that $\varepsilon_{a b}{ }^{c}$ is the permittivity, $\left(\mu^{-1}\right)_{a}{ }^{c d}$ is the inverse permeability, while $\beta_{a}{ }^{c}$ and $\alpha_{a b}{ }^{c d}$ describe magneto-electric effects.

- Using 2-forms $H=\mathrm{d} \sigma \wedge \mathcal{H}+\mathcal{D}$ and $F=-\mathrm{d} \sigma \wedge E+B$ get

$$
H=\kappa(F), \quad \text { that is, } \quad H_{\alpha \beta}=\frac{1}{2} \kappa_{\alpha \beta}{ }^{\mu \nu} F_{\mu \nu} .
$$

Greek indices go from 0 to 3 . Constitutive law in 4-dim.

Principal-Skewon-Axion split of constitutive law

- To decompose medium response translate $\kappa_{\alpha \beta}{ }^{\mu \nu}$ into:

$$
\chi^{\alpha \beta \mu \nu}:=\frac{1}{2} \epsilon^{\alpha \beta \rho \sigma} \kappa_{\rho \sigma}{ }^{\mu \nu}
$$

where $\epsilon^{\alpha \beta \gamma \delta}=\{+1,0,-1\}$ is the Levi-Civita symbol.

- Split χ in principal part, skewon part and axion part:

$$
\chi^{\alpha \beta \mu \nu}={ }^{(1)} \chi^{\alpha \beta \mu \nu}+{ }^{(2)} \chi^{\alpha \beta \mu \nu}+{ }^{(3)} \chi^{\alpha \beta \mu \nu} .
$$

Note: ${ }^{(1)} \chi$ is the symmetric-traceless component, ${ }^{(2)} \chi$ is the antisymmetric component and ${ }^{(3)} \chi$ is the trace.

- Derive equivalent split for κ. Finite axion part observed in nature (Hehl et al. 2008). Finite skewon part not yet.
- Harry Bateman (Manchester 1882 - New York 1946). Students: Murnaghan (@Hopkins), Truesdell (@Caltech).
- In a modern notation, Bateman's constitutive law reads

$$
\check{\digamma}^{\alpha \beta}=-\frac{1}{2} \theta^{\alpha \beta \mu \nu} H_{\mu \nu},
$$

with $\check{F} \check{F}^{\alpha \beta}:=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} F_{\mu \nu}$. In terms of 3 -dim. fields obtain

$$
\begin{aligned}
\check{B}^{a} & =-\theta^{0 a 0 c} \mathcal{H}_{c}-\frac{1}{2} \theta^{0 a c d} \mathcal{D}_{c d}, \\
\check{E}^{a b} & =+\theta^{a b 0 c} \mathcal{H}_{c}+\frac{1}{2} \theta^{a b c d} \mathcal{D}_{c d}
\end{aligned}
$$

- Bateman only requires (Preview: this means no skewon)

$$
\theta^{\alpha \beta \mu \nu}=\theta^{\mu \nu \alpha \beta}
$$

It is not demanded that fully antisymmetric part of $\theta^{\alpha \beta \mu \nu}$ is zero. Preview: axion component is allowed.

Bateman: no skewon part, but axion part allowed

- Link Bateman's medium tensor θ to inverse of κ and χ :

$$
\theta^{\alpha \beta \mu \nu}=-\frac{1}{2} \epsilon^{\alpha \beta \rho \sigma} \kappa_{\rho \sigma}^{-1 \mu \nu}=-\frac{1}{4} \epsilon^{\alpha \beta \rho \sigma} \epsilon^{\mu \nu \eta \theta} \chi_{\rho \sigma \eta \theta}^{-1} .
$$

Bateman: no skewon part, but axion part allowed

- Link Bateman's medium tensor θ to inverse of κ and χ :

$$
\theta^{\alpha \beta \mu \nu}=-\frac{1}{2} \epsilon^{\alpha \beta \rho \sigma} \kappa_{\rho \sigma}^{-1 \mu \nu}=-\frac{1}{4} \epsilon^{\alpha \beta \rho \sigma} \epsilon^{\mu \nu \eta \theta} \chi_{\rho \sigma \eta \theta}^{-1} .
$$

- Inverse of a symmetric "matrix" is symmetric. Thereby,

$$
\theta^{\alpha \beta \mu \nu}=\theta^{\mu \nu \alpha \beta} \quad \text { implies } \quad \chi^{\alpha \beta \mu \nu}=\chi^{\mu \nu \alpha \beta} .
$$

Condition on Bateman's θ imposes that χ is symmetric. Skewon part vanishes: ${ }^{(2)} \chi=0$, or equivalently ${ }^{(2)} \kappa=0$.

Bateman: no skewon part, but axion part allowed

- Link Bateman's medium tensor θ to inverse of κ and χ :

$$
\theta^{\alpha \beta \mu \nu}=-\frac{1}{2} \epsilon^{\alpha \beta \rho \sigma} \kappa_{\rho \sigma}^{-1 \mu \nu}=-\frac{1}{4} \epsilon^{\alpha \beta \rho \sigma} \epsilon^{\mu \nu \eta \theta} \chi_{\rho \sigma \eta \theta}^{-1} .
$$

- Inverse of a symmetric "matrix" is symmetric. Thereby,

$$
\theta^{\alpha \beta \mu \nu}=\theta^{\mu \nu \alpha \beta} \quad \text { implies } \quad \chi^{\alpha \beta \mu \nu}=\chi^{\mu \nu \alpha \beta} .
$$

Condition on Bateman's θ imposes that χ is symmetric. Skewon part vanishes: ${ }^{(2)} \chi=0$, or equivalently ${ }^{(2)} \kappa=0$.

- The fact that no further conditions imposed on medium θ entails that axion part need not be zero. Bateman is seemingly first author to allow for ${ }^{(3)} \chi \neq 0$ i.e. ${ }^{(3)} \kappa \neq 0$.

Bateman: no skewon part, but axion part allowed

- Link Bateman's medium tensor θ to inverse of κ and χ :

$$
\theta^{\alpha \beta \mu \nu}=-\frac{1}{2} \epsilon^{\alpha \beta \rho \sigma} \kappa_{\rho \sigma}^{-1 \mu \nu}=-\frac{1}{4} \epsilon^{\alpha \beta \rho \sigma} \epsilon^{\mu \nu \eta \theta} \chi_{\rho \sigma \eta \theta}^{-1} .
$$

- Inverse of a symmetric "matrix" is symmetric. Thereby,

$$
\theta^{\alpha \beta \mu \nu}=\theta^{\mu \nu \alpha \beta} \quad \text { implies } \quad \chi^{\alpha \beta \mu \nu}=\chi^{\mu \nu \alpha \beta} .
$$

Condition on Bateman's θ imposes that χ is symmetric. Skewon part vanishes: ${ }^{(2)} \chi=0$, or equivalently ${ }^{(2)} \kappa=0$.

- The fact that no further conditions imposed on medium θ entails that axion part need not be zero. Bateman is seemingly first author to allow for ${ }^{(3)} \chi \neq 0$ i.e. ${ }^{(3)} \kappa \neq 0$.
- "These conditions [constitutive laws] may not correspond to anything occurring in nature; nevertheless, their investigation was thought to be of some mathematical interest on account of the connection which is established between line geometry and the theory of partial differential equations", ibid. (1910).

Geometrical optics \& the Fresnel surface

- 4-dimensional Maxwell's equations with exterior calculus

$$
\mathrm{d} H=J, \quad \mathrm{~d} F=0
$$

- Below, current density 3-form J is zero. Geometrical optics describes the propagation of fast varying fields.
- Have two equivalent approaches to geometrical optics,
- via Hadamard's method: consider discontinuous fields.
- via characteristic polynomial: approximate plane-waves.

First approach, see Hehl and Obukhov (2003). Second approach, see Schuller et al. (2010) or Perlick (2011).

- Geometrical optics says amplitude 2-forms $\{h, f\}$ obey

$$
q \wedge f=0, \quad q \wedge h=0
$$

Here, $q=-\omega \mathrm{d} \sigma+k$ is wave-covector. Replacement $\mathrm{d} \rightarrow q$ similar to $\partial_{t} \rightarrow-\mathrm{i} \omega$ and $\vec{\nabla} \rightarrow i \vec{k}$ with Fourier tr.

Geometrical optics \& the Fresnel surface (contd.)

- Geom. optics laws $q \wedge f=0$ and $q \wedge h=0$ equivalent to

$$
f \wedge f=0, \quad h \wedge f=0, \quad h \wedge h=0
$$

- Assume dispersionless linear (meta)material or vacuum. Fresnel surface governing light propagation is given by

$$
\hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2} \rho \beta_{2} \sigma} \chi^{\alpha_{3} \tau \beta_{3} v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0
$$

that is, by a quartic equation in $q_{\alpha}=\left(-\omega, k_{i}\right)$, see Rubilar (2002). Usually plot the inverse phase velocity k_{i} / ω. Above, Fresnel s. of biaxial crystal (Dahl 2012).

Fresnel surfaces of two other biaxial materials

Alberto Favaro \& Friedrich W. Hehl

Outline

Linear media
Linear media in
Bateman's work
Geometrical optics
Geometrical optics in Bateman's work

Skewonic media
Conclusions
Thank-you.

Left: generated by Tertychniy, 2004. Right: Schaefer, 1932.

More on geometric optics: Tamm-Rubilar tensor

- From quartic generating Fresnel surface extract tensor:

$$
\begin{aligned}
\mathcal{G}(q) & :=\mathcal{G}^{\rho \sigma \tau v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0, \\
\mathcal{G}^{\rho \sigma \tau v} & :=\frac{1}{4!} \hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2}\left(\rho \sigma \mid \beta_{2}\right.} \chi^{\left.\alpha_{3} \mid \tau v\right) \beta_{3}} .
\end{aligned}
$$

Note (...) is index mixing: $\mathcal{G}^{\rho \sigma \tau v}$ is symmetric under every index swap and has 35 independent components.

More on geometric optics: Tamm-Rubilar tensor

- From quartic generating Fresnel surface extract tensor:

$$
\begin{aligned}
\mathcal{G}(q) & :=\mathcal{G}^{\rho \sigma \tau v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0, \\
\mathcal{G}^{\rho \sigma \tau v} & :=\frac{1}{4!} \hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2}\left(\rho \sigma \mid \beta_{2}\right.} \chi^{\left.\alpha_{3} \mid \tau v\right) \beta_{3}} .
\end{aligned}
$$

Note (...) is index mixing: $\mathcal{G}^{\rho \sigma \tau v}$ is symmetric under every index swap and has 35 independent components.

- Name: Tamm (proposed 1925) - Rubilar (derived 2002).

More on geometric optics: Tamm-Rubilar tensor

- From quartic generating Fresnel surface extract tensor:

$$
\begin{aligned}
\mathcal{G}(q) & :=\mathcal{G}^{\rho \sigma \tau v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0, \\
\mathcal{G}^{\rho \sigma \tau v} & :=\frac{1}{4!} \hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2}\left(\rho \sigma \mid \beta_{2}\right.} \chi^{\left.\alpha_{3} \mid \tau v\right) \beta_{3}} .
\end{aligned}
$$

Note (...) is index mixing: $\mathcal{G}^{\rho \sigma \tau v}$ is symmetric under every index swap and has 35 independent components.

- Name: Tamm (proposed 1925)- Rubilar (derived 2002).
- Principal, skewon and axion parts affect light propag. as:

$$
\mathcal{G}^{\rho \sigma \tau v}=\mathcal{G}\left[{ }^{(1)} \chi\right]^{\rho \sigma \tau v}+{ }^{(1)} \chi^{\mu(\rho|\nu| \sigma} \$_{\mu}{ }^{\tau} \$_{\nu}{ }^{v)} .
$$

$\mathcal{G}\left[{ }^{(1)} \chi\right]^{\rho \sigma \tau v}$ is Tamm-Rubilar based on principal part. Skewon field $\$_{\alpha}{ }^{\beta}$ is another representation of ${ }^{(2)} \kappa_{\alpha \beta}{ }^{\mu \nu}$.

More on geometric optics: Tamm-Rubilar tensor

- From quartic generating Fresnel surface extract tensor:

$$
\begin{aligned}
\mathcal{G}(q) & :=\mathcal{G}^{\rho \sigma \tau v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0, \\
\mathcal{G}^{\rho \sigma \tau v} & :=\frac{1}{4!} \hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2}\left(\rho \sigma \mid \beta_{2}\right.} \chi^{\left.\alpha_{3} \mid \tau v\right) \beta_{3}} .
\end{aligned}
$$

Note (...) is index mixing: $\mathcal{G}^{\rho \sigma \tau v}$ is symmetric under every index swap and has 35 independent components.

- Name: Tamm (proposed 1925) - Rubilar (derived 2002).
- Principal, skewon and axion parts affect light propag. as:

$$
\mathcal{G}^{\rho \sigma \tau v}=\mathcal{G}\left[{ }^{(1)} \chi\right]^{\rho \sigma \tau v}+{ }^{(1)} \chi^{\mu(\rho|\nu| \sigma} \$_{\mu}{ }^{\tau} \$_{\nu}{ }^{v)} .
$$

$\mathcal{G}\left[{ }^{(1)} \chi\right]^{\rho \sigma \tau v}$ is Tamm-Rubilar based on principal part. Skewon field $\$_{\alpha}{ }^{\beta}$ is another representation of ${ }^{(2)} \kappa_{\alpha \beta}{ }^{\mu \nu}$.

- Axion part does not enter geometrical optics (except at interfaces). Zero ${ }^{(1)} \chi$ implies zero Tamm-Rubilar tensor.

Bateman's insight on geometrical optics

- Bateman: for media with ${ }^{(2)} \kappa=0$, the Fresnel surface coincides exactly with a Kummer surface. Just relate geometrical optics and lines in the real projective space.
- To define the real projective space $\mathbb{R} P^{3}$ consider as identical every two points u^{α} and v^{α} in $\mathbb{R}^{4}-\{0\}$ that are located on same line: $u^{\alpha}=\lambda v^{\alpha}$ for non-zero $\lambda \in \mathbb{R}$.

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

Geometrical optics in Bateman's work

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

- $f \wedge f=0$: can regard 2-form f as a line in $\mathbb{R} P^{3}$. Indeed $f=q \wedge a$ is the line specified by points (1-forms) $\{q, a\}$.

Geometrical optics in Bateman's work

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

- $f \wedge f=0$: can regard 2-form f as a line in $\mathbb{R} P^{3}$. Indeed $f=q \wedge a$ is the line specified by points (1-forms) $\{q, a\}$.
- $f \wedge \kappa(f)=0$: line f belongs to quadratic complex given by medium κ. Quadratic complex is "metric" for lines:

$$
f \wedge \kappa(f)=0, \quad \Leftrightarrow \quad \frac{1}{4} \chi^{\alpha \beta \mu \nu} f_{\alpha \beta} f_{\mu \nu}=0 .
$$

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

- $f \wedge f=0$: can regard 2-form f as a line in $\mathbb{R} P^{3}$. Indeed $f=q \wedge a$ is the line specified by points (1-forms) $\{q, a\}$.
- $f \wedge \kappa(f)=0$: line f belongs to quadratic complex given by medium κ. Quadratic complex is "metric" for lines:

$$
f \wedge \kappa(f)=0, \quad \Leftrightarrow \quad \frac{1}{4} \chi^{\alpha \beta \mu \nu} f_{\alpha \beta} f_{\mu \nu}=0
$$

- $\kappa(f) \wedge \kappa(f)=0$: identify 2-form f with singular line of quadratic complex. Wave-covector q is singular point.

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

- $f \wedge f=0$: can regard 2-form f as a line in $\mathbb{R} P^{3}$. Indeed $f=q \wedge a$ is the line specified by points (1-forms) $\{q, a\}$.
- $f \wedge \kappa(f)=0$: line f belongs to quadratic complex given by medium κ. Quadratic complex is "metric" for lines:

$$
f \wedge \kappa(f)=0, \quad \Leftrightarrow \quad \frac{1}{4} \chi^{\alpha \beta \mu \nu} f_{\alpha \beta} f_{\mu \nu}=0
$$

- $\kappa(f) \wedge \kappa(f)=0$: identify 2-form f with singular line of quadratic complex. Wave-covector q is singular point.
- Singular lines are tangent to Fresnel=Kummer surface.

Bateman's insight on geometrical optics (contd.)

- First step to prove that Fresnel=Kummer is to examine geometric optics eqs. for skewon-free medium $h=\kappa(f)$:

$$
f \wedge f=0, \quad f \wedge \kappa(f)=0, \quad \kappa(f) \wedge \kappa(f)=0
$$

Can identify each equation with a statement in $\mathbb{R} P^{3}$.

- $f \wedge f=0$: can regard 2-form f as a line in $\mathbb{R} P^{3}$. Indeed $f=q \wedge a$ is the line specified by points (1-forms) $\{q, a\}$.
- $f \wedge \kappa(f)=0$: line f belongs to quadratic complex given by medium κ. Quadratic complex is "metric" for lines:

$$
f \wedge \kappa(f)=0, \quad \Leftrightarrow \quad \frac{1}{4} \chi^{\alpha \beta \mu \nu} f_{\alpha \beta} f_{\mu \nu}=0
$$

- $\kappa(f) \wedge \kappa(f)=0$: identify 2-form f with singular line of quadratic complex. Wave-covector q is singular point.
- Singular lines are tangent to Fresnel=Kummer surface.

An example of Kummer (Fresnel) surface...

Outline

Linear media

Linear media in

Bateman's work
Geometrical optics
Geometrical optics in Bateman's work

Kummer discovered his surfaces by considering ray tracing in optical instruments (1864). Note: two sheets=birefringence.

What is to learn in optics from link to $\mathbb{R} P^{3}$?

- Singularities of the Kummer surfaces are well studied (Hudson 1905). Singularities of the Fresnel surface (optical axes) usually examined in simple cases only.

What is to learn in optics from link to $\mathbb{R} P^{3}$?

- Singularities of the Kummer surfaces are well studied (Hudson 1905). Singularities of the Fresnel surface (optical axes) usually examined in simple cases only.
- In real projective space, points are dual to planes. In spacetime, constant phase hypersurfaces are dual to propagation direction. Understand better interplay of:

$$
\text { wave-covector } \quad \leftrightarrow \quad \text { ray-vector. }
$$

What is to learn in optics from link to $\mathbb{R} P^{3}$?

- Singularities of the Kummer surfaces are well studied (Hudson 1905). Singularities of the Fresnel surface (optical axes) usually examined in simple cases only.
- In real projective space, points are dual to planes. In spacetime, constant phase hypersurfaces are dual to propagation direction. Understand better interplay of:

$$
\text { wave-covector } \quad \leftrightarrow \quad \text { ray-vector. }
$$

- Use $\mathbb{R} P^{3}$ for geometrical picture of light propagation. Good complement to algebraic methods often employed.

What is to learn in optics from link to $\mathbb{R} P^{3}$?

- Singularities of the Kummer surfaces are well studied (Hudson 1905). Singularities of the Fresnel surface (optical axes) usually examined in simple cases only.
- In real projective space, points are dual to planes. In spacetime, constant phase hypersurfaces are dual to propagation direction. Understand better interplay of:

$$
\text { wave-covector } \quad \leftrightarrow \quad \text { ray-vector. }
$$

- Use $\mathbb{R} P^{3}$ for geometrical picture of light propagation. Good complement to algebraic methods often employed.

Algebraic methods are still remarkable...
In the literature on Kummer surface apparently no sign of the algebraic compact formula known for the Fresnel surface:

$$
\hat{\epsilon}_{\alpha \alpha_{1} \alpha_{2} \alpha_{3}} \hat{\epsilon}_{\beta \beta_{1} \beta_{2} \beta_{3}} \chi^{\alpha \alpha_{1} \beta \beta_{1}} \chi^{\alpha_{2} \rho \beta_{2} \sigma} \chi^{\alpha_{3} \tau \beta_{3} v} q_{\rho} q_{\sigma} q_{\tau} q_{v}=0
$$

Media with skewon: Fresnel=Kummer still true?

- Bateman's proof that Fresnel=Kummer assumes zero skewon part. If medium has finite skewon contribution:

$$
\mathcal{G}^{\rho \sigma \tau v}=\mathcal{G}\left[{ }^{(1)} \chi\right]^{\rho \sigma \tau v}+{ }^{(1)} \chi^{\mu(\rho|\nu| \sigma} \$_{\mu}{ }^{\tau} \$_{\nu}{ }^{v)} .
$$

- Effect of skewon ($2^{\text {nd }}$ term) appears simpler than that of principal ($1^{\text {st }}$ term). But can yield holes in Fresnel surf!
- Above: biaxial medium with $\varepsilon^{a b}=\operatorname{diag}(2.4,14.8,54) \varepsilon_{0}$ and skewon $\$_{1}^{1}=\$_{2}^{2}=\$_{3}^{3}=-\frac{1}{3} \$_{0}^{0}=0.25\left(\varepsilon_{0} / \mu_{0}\right)^{\frac{1}{2}}$.

Skewon: Fresnel=Kummer still true? (contd.)

- Is the Fresnel surface of a medium with finite skewon part still a Kummer surface? If not, it is more general.
- Look at surfaces types of which Kummer is a subcase:
- K3 surfaces: named after Kummer, Kähler and Kodaira.
- Calabi-Yau manifolds: used in superstring theory to compactify 6 spatial dimensions and retrieve $10-6=4$.
- Plot above and in the previous slide: Tertychniy (2004).

Conclusions (Batemania!)

- Dispersionless linear (meta)materials \& vacuum: $\kappa_{\alpha \beta}{ }^{\mu \nu}$. Decompose this tensor in principal+skewon+axion part.

Outline

Linear media
Linear media in
Bateman's work

Conclusions (Batemania!)

- Dispersionless linear (meta)materials \& vacuum: $\kappa_{\alpha \beta}{ }^{\mu \nu}$. Decompose this tensor in principal+skewon+axion part.
- Already in 1910, constitutive law of similar kind found in Bateman. Seemingly first to have non-zero axion part.

Conclusions (Batemania!)

- Dispersionless linear (meta)materials \& vacuum: $\kappa_{\alpha \beta}{ }^{\mu \nu}$. Decompose this tensor in principal+skewon+axion part.
- Already in 1910, constitutive law of similar kind found in Bateman. Seemingly first to have non-zero axion part.
- Fresnel surface describes light propagation in geometric optics. Generated by quartic equation (Tamm-Rubilar).

Conclusions (Batemania!)

- Dispersionless linear (meta)materials \& vacuum: $\kappa_{\alpha \beta}{ }^{\mu \nu}$. Decompose this tensor in principal+skewon+axion part.
- Already in 1910, constitutive law of similar kind found in Bateman. Seemingly first to have non-zero axion part.
- Fresnel surface describes light propagation in geometric optics. Generated by quartic equation (Tamm-Rubilar).
- Bateman: if medium has zero skewon, Fresnel surface is a Kummer surface. The natural electromagnetic space of geometrical optics is the real projective space $\mathbb{R} P^{3}$.

Conclusions (Batemania!)

- Dispersionless linear (meta)materials \& vacuum: $\kappa_{\alpha \beta}{ }^{\mu \nu}$. Decompose this tensor in principal+skewon+axion part.
- Already in 1910, constitutive law of similar kind found in Bateman. Seemingly first to have non-zero axion part.
- Fresnel surface describes light propagation in geometric optics. Generated by quartic equation (Tamm-Rubilar).
- Bateman: if medium has zero skewon, Fresnel surface is a Kummer surface. The natural electromagnetic space of geometrical optics is the real projective space $\mathbb{R} P^{3}$.
- What if medium has finite skewon? Is Fresnel surface a K3 surface? or is it more general Calabi-Yau manifold?

Alberto Favaro \& Friedrich W. Hehl

Outline

Linear media

Linear media in
Bateman's work

Thank-you!

