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I Dispersionless linear (meta)materials and vacuum. Find
3 components: principal part, skewon part & axion part.

I Bateman’s treatment of dispersionless linear media
(1910). Seemingly first to include non-zero axion part.

I Geometrical optics results in a quartic Fresnel surface.

I Bateman relates geometrical optics and lines in real
projective space. For dispersionless linear media with no
skewon part, the Fresnel surface is a Kummer surface.

I What if the medium has non-zero skewon part? Does
the Fresnel surface still coincide with Kummer one? If
not, is Fresnel surface a K3 or a Calabi-Yau manifold?
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Dispersionless linear (meta)materials and vacuum

I EM fields: 1-form H, 2-form D, 1-form E and 2-form B.

I Dispersionless linear (meta)materials and vacuum: field
excitations H and D at a point p in space and time
related linearly to field strengths E and B at same p,

Ha = β c
a Ec + 1

2(µ−1) cd
a Bcd ,

Dab = ε′ab
cEc + 1

2α
cd

ab Bcd .

Latin indices range from 1 to 3. Observe that ε′ab
c is

the permittivity, (µ−1) cd
a is the inverse permeability,

while β c
a and α cd

ab describe magneto-electric effects.

I Using 2-forms H =dσ∧H+D and F =−dσ∧E + B get

H = κ(F ), that is, Hαβ = 1
2κ

µν
αβ Fµν .

Greek indices go from 0 to 3. Constitutive law in 4-dim.
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Principal-Skewon-Axion split of constitutive law

I To decompose medium response translate κ µν
αβ into:

χαβµν := 1
2ε
αβρσκ µν

ρσ ,

where εαβγδ = {+1, 0,−1} is the Levi-Civita symbol.
I Split χ in principal part, skewon part and axion part:

χαβµν = (1)χαβµν + (2)χαβµν + (3)χαβµν .

Note: (1)χ is the symmetric-traceless component, (2)χ
is the antisymmetric component and (3)χ is the trace.

I Derive equivalent split for κ. Finite axion part observed
in nature (Hehl et al. 2008). Finite skewon part not yet.
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H. Bateman, Proc. Lond. Math. Soc., s2–8, 1910

I Harry Bateman (Manchester 1882 – New York 1946).
Students: Murnaghan (@Hopkins), Truesdell (@Caltech).

I In a modern notation, Bateman’s constitutive law reads

F̌αβ = −1
2θ
αβµνHµν ,

with F̌αβ := 1
2ε
αβµνFµν . In terms of 3-dim. fields obtain

B̌a = −θ0a0cHc − 1
2θ

0acdDcd ,

Ě ab = +θab0cHc + 1
2θ

abcdDcd .

I Bateman only requires (Preview: this means no skewon)

θαβµν = θµναβ .

It is not demanded that fully antisymmetric part of
θαβµν is zero. Preview: axion component is allowed.
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Bateman: no skewon part, but axion part allowed
I Link Bateman’s medium tensor θ to inverse of κ and χ:

θαβµν = −1
2ε
αβρσκ−1ρσ

µν = −1
4ε
αβρσεµνηθχ−1ρσηθ.

I Inverse of a symmetric “matrix” is symmetric. Thereby,

θαβµν = θµναβ implies χαβµν = χµναβ .

Condition on Bateman’s θ imposes that χ is symmetric.
Skewon part vanishes: (2)χ=0, or equivalently (2)κ=0.

I The fact that no further conditions imposed on medium
θ entails that axion part need not be zero. Bateman is
seemingly first author to allow for (3)χ 6= 0 i.e. (3)κ 6= 0.

I “These conditions [constitutive laws] may not correspond to

anything occurring in nature; nevertheless, their investigation

was thought to be of some mathematical interest on account

of the connection which is established between line geometry

and the theory of partial differential equations”, ibid. (1910).
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Geometrical optics & the Fresnel surface

I 4-dimensional Maxwell’s equations with exterior calculus

dH = J, dF = 0.

I Below, current density 3-form J is zero. Geometrical
optics describes the propagation of fast varying fields.

I Have two equivalent approaches to geometrical optics,

• via Hadamard’s method: consider discontinuous fields.
• via characteristic polynomial: approximate plane-waves.

First approach, see Hehl and Obukhov (2003). Second
approach, see Schuller et al. (2010) or Perlick (2011).

I Geometrical optics says amplitude 2-forms {h, f } obey

q ∧ f = 0, q ∧ h = 0.

Here, q =−ωdσ + k is wave-covector. Replacement
d→q similar to ∂t→−iω and ~∇→ i~k with Fourier tr.
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Geometrical optics & the Fresnel surface (contd.)

Determination of electromagnetic medium from the Fresnel surface 14

Proof. Let p be the basepoint of ξ and let {xi}3
i=0 be local coordinates for N around

p such that g = gijdxi ⊗ dxj and gij |p is diagonal with entries ±1. We know that
κ2 = ∗2

g = (−1)σId , where σ is the index of g [18, Proposition 6.2.13]. If α ∈ Λ1
p(N),

equations (37) and (19) imply that

Lξ(α) =
1

2
ξrξsαig

ragibεabcddxs ∧ dxc ∧ dxd

= det g (−1)σαiH
irgrs ∗ dxs,

where ξ = ξidxi|p and α = αidxi|p and

Hir = g(ξ, ξ)gir − ξagaiξbg
br. (48)

For part (i), equations (48) and (38) imply that dim Vξ = dim kerH−1 where H is the
4 × 4 matrix with entries Hij . Let σ(H) denote the spectrum of H with eigenvalues
repeated according to their algebraic multiplicity. With computer algebra we find that

σ(H) =

�
0, C1g(ξ, ξ), C2g(ξ, ξ), C3

3�

i=0

ξ2
i

�
,

where Ci ∈ {±1} are constants that depend only the signature of g. Now part
(i) follows by Proposition 3.4 and since algebraic and geometric multiplicity of an
eigenvalue coincide for symmetric matrices [30, p. 260]. For part (ii), equality
ker Lξ = ξ⊥ follows from the local representation of Lξ in equation (48).

The next example shows that in a biaxial crystal [31, Section 15.3.3] we can have
dim Vξ = 1 in equation (38).

Example 3.6. On N = R × R3, let κ ∈ Ω2
2(N) be defined by

A = −diag (1, 2, 3), B = Id , C = D = 0. (49)

Let S be the projection of the Fresnel surface into R3 when ξ0 = 1. Then S is mirror
symmetric about the ξ1ξ2, ξ1ξ3 and ξ2ξ3 coordinate planes. Figure 1 below illustrates
S in the quadrant ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, and in this quadrant we see that S has one
singular point ξsing ∈ S.

Figure 1. One quadrant in R3 of a Fresnel surface with a singular point illustrated
by a dot.

I Geom. optics laws q ∧ f =0 and q ∧ h =0 equivalent to

f ∧ f = 0, h ∧ f = 0, h ∧ h = 0.

I Assume dispersionless linear (meta)material or vacuum.
Fresnel surface governing light propagation is given by

ε̂αα1α2α3 ε̂ββ1β2β3χ
αα1ββ1χα2ρβ2σχα3τβ3υqρqσqτqυ = 0 ,

that is, by a quartic equation in qα = (−ω, ki ), see
Rubilar (2002). Usually plot the inverse phase velocity
ki/ω. Above, Fresnel s. of biaxial crystal (Dahl 2012).
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Fresnel surfaces of two other biaxial materials

tremely small values of u, are nearly covering the sphere.
But with growing u, the toroids become thin and thinner.
The intermediate situation is actually depicted in Fig. 7.
Since we do not expect large skewon fields in general, we
here limit ourselves to the case of a small u.

In the complementary situation, when ma ! 0, na ! 0,
and the symmetric part is absent in (58), uab ! 0,
we obtain a particular case described in Sec. IVA 1:
Birefringence with the Minkowski light cone and the sec-
ond optical metric

g"2#ij ! c2 0
0 "1$ z2=!2

0#$1"$"ab % zazb=!2
0#

! "
: (87)

Unlike with the symmetric tensor skewon, here the opti-
cal metric is always Lorentzian with the determinant
"detg"2#ij # ! $c2="1$ z2=!2

0#2. This means that the waves
propagate along both light cones (except for a skewon
satisfying z2 ! "abzazb ! !2

0 when the optical metric be-
comes degenerate). A straightforward computation of the
mean speed of the wave propagation now yields

hv2i ! c2
!
1$ z2

3!2
0

"
; (88)

and, accordingly, the upper limit for the skewon field from
the gamma-ray data is again z2 < 7& 10$27!2

0.

V. SKEWON EFFECTS IN MATTER

In the previous section we studied wave propagation on
a vacuum space-time described by the principal part "1##ijkl

of the constitutive tensor (39). We found that the character-

istic effect of the skewon field in that case was the emer-
gence of holes in the wave covector surface. In physical
terms, this means the complete damping of wave propaga-
tion in certain directions. Here we briefly study the wave
propagation in an anisotropic dielectric medium and dem-
onstrate that a similar effect occurs in the presence of a
skewon field.
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FIG. 8 (color online). Fresnel wave covector surface for an
anisotropic dielectric medium with "1 ! 39:7, "2 ! 15:4, "3 !
2:3. There are two branches: the outer part of the surface is cut in
half in order to show the inner branch; we use the dimensionless
variables x :! cq1=q0, y :! cq2=q0, z :! cq3=q0.
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FIG. 10 (color online). Fresnel wave covector surface for an
anisotropic dielectric medium with "1 ! 39:7, "2 ! 15:4, "3 !
2:3 in the presence of a skewon field. The two original branches
(cf. Fig. 8) are now merged into a single surface, with the
wormholes replacing the original four points where the branches
touched. The surface is cut in half; we use the dimensionless
variables x :! cq1=q0, y :! cq2=q0, z :! cq3=q0.
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FIG. 9 (color online). Fresnel ray vector surface for an aniso-
tropic dielectric medium with "1 ! 39:7, "2 ! 15:4, "3 ! 2:3.
There are two branches: 1=4 part of the outer surface is cut off in
order to show the second inner branch; we use the dimensionless
variables x :! s1=s0c, y :! s2=s0c, z :! s3=s0c.

POSSIBLE SKEWON EFFECTS ON LIGHT PROPAGATION PHYSICAL REVIEW D 70, 125015 (2004)

125015-11

Left: generated by Tertychniy, 2004. Right: Schaefer, 1932.
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More on geometric optics: Tamm-Rubilar tensor

I From quartic generating Fresnel surface extract tensor:

G(q) := Gρστυqρqσqτqυ = 0 ,

Gρστυ :=
1

4!
ε̂αα1α2α3 ε̂ββ1β2β3χ

αα1ββ1χα2(ρσ|β2χα3|τυ)β3 .

Note (. . . ) is index mixing: Gρστυ is symmetric under
every index swap and has 35 independent components.

I Name: Tamm (proposed 1925) - Rubilar (derived 2002).

I Principal, skewon and axion parts affect light propag. as:

Gρστυ = G
[
(1)χ

]
ρστυ + (1)χµ(ρ|ν|σ/Sµ

τ /Sν
υ).

G
[
(1)χ

]
ρστυ is Tamm-Rubilar based on principal part.

Skewon field /Sα
β is another representation of (2)κ µν

αβ .

I Axion part does not enter geometrical optics (except at
interfaces). Zero (1)χ implies zero Tamm-Rubilar tensor.
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Bateman’s insight on geometrical optics

I Bateman: for media with (2)κ = 0, the Fresnel surface
coincides exactly with a Kummer surface. Just relate
geometrical optics and lines in the real projective space.

I To define the real projective space RP3 consider as
identical every two points uα and vα in R4−{0} that
are located on same line: uα=λvα for non-zero λ∈R.
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Bateman’s insight on geometrical optics (contd.)

I First step to prove that Fresnel=Kummer is to examine
geometric optics eqs. for skewon-free medium h =κ(f ):

f ∧ f = 0, f ∧ κ(f ) = 0, κ(f ) ∧ κ(f ) = 0.

Can identify each equation with a statement in RP3.

I f ∧ f =0: can regard 2-form f as a line in RP3. Indeed
f =q ∧ a is the line specified by points (1-forms) {q, a}.

I f ∧κ(f )=0: line f belongs to quadratic complex given
by medium κ. Quadratic complex is “metric” for lines:

f ∧ κ(f ) = 0, ⇔ 1
4χ

αβµν fαβfµν = 0.

I κ(f ) ∧ κ(f )=0: identify 2-form f with singular line of
quadratic complex. Wave-covector q is singular point.

I Singular lines are tangent to Fresnel=Kummer surface.
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Bateman’s insight on geometrical optics (contd.)

I First step to prove that Fresnel=Kummer is to examine
geometric optics eqs. for skewon-free medium h =κ(f ):

f ∧ f = 0, f ∧ κ(f ) = 0, κ(f ) ∧ κ(f ) = 0.

Can identify each equation with a statement in RP3.

I f ∧ f =0: can regard 2-form f as a line in RP3. Indeed
f =q ∧ a is the line specified by points (1-forms) {q, a}.

I f ∧κ(f )=0: line f belongs to quadratic complex given
by medium κ. Quadratic complex is “metric” for lines:

f ∧ κ(f ) = 0, ⇔ 1
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quadratic complex. Wave-covector q is singular point.

I Singular lines are tangent to Fresnel=Kummer surface.
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Bateman’s insight on geometrical optics (contd.)
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Bateman’s insight on geometrical optics (contd.)
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Bateman’s insight on geometrical optics (contd.)
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An example of Kummer (Fresnel) surface. . .

Kummer discovered his surfaces by considering ray tracing in
optical instruments (1864). Note: two sheets=birefringence.
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What is to learn in optics from link to RP3?

I Singularities of the Kummer surfaces are well studied
(Hudson 1905). Singularities of the Fresnel surface
(optical axes) usually examined in simple cases only.

I In real projective space, points are dual to planes. In
spacetime, constant phase hypersurfaces are dual to
propagation direction. Understand better interplay of:

wave-covector ↔ ray-vector.

I Use RP3 for geometrical picture of light propagation.
Good complement to algebraic methods often employed.

Algebraic methods are still remarkable. . .

In the literature on Kummer surface apparently no sign of
the algebraic compact formula known for the Fresnel surface:

ε̂αα1α2α3 ε̂ββ1β2β3χ
αα1ββ1χα2ρβ2σχα3τβ3υqρqσqτqυ = 0 .
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Media with skewon: Fresnel=Kummer still true?

Permittivity εab = diag(2.4, 14.8, 54), impermeability

µ−1
ab = µ−1

0 diag(1, 1, 1), spatially isotropic skewon field

!S1
1 = !S2

2 = !S3
3 = − 1

3 !S0
0 = 0.25 λ0 (all other components vanish) [Sergei

Tertychniy].
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I Bateman’s proof that Fresnel=Kummer assumes zero
skewon part. If medium has finite skewon contribution:

Gρστυ = G
[
(1)χ

]
ρστυ + (1)χµ(ρ|ν|σ/Sµ

τ /Sν
υ).

I Effect of skewon (2nd term) appears simpler than that of
principal (1st term). But can yield holes in Fresnel surf!

I Above: biaxial medium with εab = diag(2.4, 14.8, 54)ε0
and skewon /S1

1 = /S2
2 = /S3

3 =−1
3
/S0

0 = 0.25(ε0/µ0)
1
2 .
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Skewon: Fresnel=Kummer still true? (contd.)

wave surface (74) has the same form as the ray surface (82)
and vice versa: The ray surface (75) has the same form as
the wave surface (81). In this sense, Figs. 4–6 show the ray
(wave) surfaces dual to the respective wave (ray) surfaces
depicted in Figs. 1 and 2, with the mentioned replacement
of n $ m and with the interchange between the dimen-
sionless wave covector variables x ! cq1=q0, y ! cq2=q0,
z ! cq3=q0 and the dimensionless ray vector variables x !
s1=s0c, y ! s2=s0c, z ! s3=s0c.

4. Skewonic magnetoelectric optical activity

Let us now assume that only the tensor part of the
skewon is present in (55), whereas ma ! 0 and na ! 0.
We call this a skewon of the magnetoelectric type, since it
corresponds to the case of the natural optical activity in
matter for the purely imaginary sab; see [7,22,33,34].
Furthermore, we consider the effects of the symmetric
and skew-symmetric parts (58). In the absence of the
skew-symmetric tensor part (zc ! 0), we find Ma ! 0,
Mabc ! 0, and

M ! ""30;

Mabcd ! 1
!0

#""2
0#

$ab#cd% & #$abuecujejd% " u$abucd%';

(83)

Mab ! "0#2"2
0#

ab & $2uab " #abud
d%ucc " ueaujejb%':

(84)

As a check of the consistency of our formalism, we can

verify that the isotropic case uab ! "S#a
b reduces to the

birefringent case (46) and (47) with wi ! "vi !
#i
0

!!!!!!
2S

p
=c.

As to the ray surface, a direct computation yields bMa !
0, bMabc ! 0, and

bM ! !"3
0 ; bMab ! "c2#aa0#bb0Ma0b0 ;

bMabcd ! "c"2#aa0#bb0#cc0#dd0Ma0b0c0d0 :
(85)

Accordingly, the form of the Fresnel ray and wave surfaces
turns out to be exactly the same.

A direct calculation of the mean velocity of the light
propagation now yields

hv2i ! c2
"
1" uabub

a & uaaub
b

6

#
: (86)

As usual, we again introduce the dimensionless skewon
variable uab ! uab="0. Then, similarly to the above cases,
we find as upper value for the symmetric tensor skewon
field from gamma-ray burst data [5] uabub

a < 7(
10"27"2

0.
The Fresnel wave covector surface has now quite a

different form as compared to the two cases above. For
concreteness, let us take a tensor skewon with only one
nontrivial component, uab ! u$#1

a#b
2 & #2

a#b
1%. Then, for

small values of the skewon u < 1, the Fresnel wave surface
is depicted in Fig. 7. As a comment to this figure, let us
recall that for a vanishing skewon u ! 0 we have a pure
vacuum space-time relation, and the Fresnel wave surface
is then a sphere. With u ! 0, this sphere degenerates to a
pair of highly deformed intersecting toroids that, for ex-
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FIG. 6 (color online). Fresnel surface for a skewon of the
magnetic Faraday type. It has two branches that are both pa-
raboloids for a purely imaginary skewon with m2 ! "1 (de-
picted with a cut in half ). Here ma ! m#a

3 ; we use the
dimensionless variables x :! cq1=q0, y :! cq2=q0, z :!
cq3=q0.
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FIG. 7 (color online). Fresnel surface for a skewon of the
magnetoelectric optical activity type. It has two intersecting
toroidal branches for a real skewonic u ! 0:8. We use the
dimensionless variables x :! cq1=q0, y :! cq2=q0, z :!
cq3=q0.
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I Is the Fresnel surface of a medium with finite skewon
part still a Kummer surface? If not, it is more general.

I Look at surfaces types of which Kummer is a subcase:

• K3 surfaces: named after Kummer, Kähler and Kodaira.
• Calabi-Yau manifolds: used in superstring theory to

compactify 6 spatial dimensions and retrieve 10−6 = 4.

I Plot above and in the previous slide: Tertychniy (2004).
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Conclusions (Batemania!)

I Dispersionless linear (meta)materials & vacuum: κ µν
αβ .

Decompose this tensor in principal+skewon+axion part.

I Already in 1910, constitutive law of similar kind found in
Bateman. Seemingly first to have non-zero axion part.

I Fresnel surface describes light propagation in geometric
optics. Generated by quartic equation (Tamm-Rubilar).

I Bateman: if medium has zero skewon, Fresnel surface is
a Kummer surface. The natural electromagnetic space
of geometrical optics is the real projective space RP3.

I What if medium has finite skewon? Is Fresnel surface a
K3 surface? or is it more general Calabi-Yau manifold?
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