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Abstract
I investigate the question whether Gödel’s undecidability theorems play a crucial role in the
search for a unified theory of physics. I conclude that unless the structure of space-time is
fundamentally discrete we can never decide whether a given theory is the final one or not.
This is relevant for both canonical quantum gravity and string theory. Slightly elaborated
version of a Prize winning essay awarded by the Kurt Gödel Circle of Friends Berlin with the
support of the University of Wuppertal, first published in https://kurtgoedel.de/kurt-goedel-
award-2023/

Keywords Unified physical theories · Gödel’s undecidability theorems · Quantum gravity ·
Microstructure of space and time

Was mich ursprünglich interessiert hat, ist die Erklärung der Erscheinungen des All-
tagslebens aus höheren Begriffen und allgemeinen Gesetzmäßigkeiten, daher Physik.
(Gödel, [13], p. 81).

English translation: I have been originally interested in explaining the phenomena of
everyday life in terms of higher concepts and general regularities, hence physics. Gödel
[13] p. 347

1 The Search for Unification

In his inaugural lecture for theLucasianChair ofMathematics at theUniversity ofCambridge,
the eminent theoretical physicist Stephen Hawking expressed the following vision for the
future [15]:

In this lecture I want to discuss the possibility that the goal of theoretical physics
might be achieved in the not too distant future, say, by the end of the century. By this
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I mean that we might have a complete, consistent, and unified theory of the physical
interactions which would describe all possible observations.

This was in 1979. In retrospect we can say that such a unified theory of the physical inter-
actions was not available in the year 2000, nor is it available today. The “dreams of a final
theory”, in the words of StevenWeinberg [33], have not yet been materialized. In more sober
words, the reductionist programme of physics has not yet come to an end. Whether it will
ever come to an end, is an open issue and is the topic of this essay. As we shall see, Gödel’s
undecidability theorems will play a crucial role in this investigation.

In view of the history of physics, the reductionist programme seems natural and straight-
forward. What have earlier been separate theories (and models) were later recognized as
special cases of a common theory: electricity, magnetism, and geometric optics, for example,
were recovered as particular limits of the theory of electrodynamics, developed in the 19th
century by James Clerk Maxwell. All known effects in these areas could be deduced from
one fundamental set of partial differential equations – Maxwell’s equations. Another exam-
ple is the partial unification of the electromagnetic and weak interactions to the electroweak
interaction that together with the strong interaction forms what is today called the Standard
Model of particle physics.

The Standard Model was constructed at the end of the 1960s and the beginning of the
1970s by Weinberg and others. It is in this context that Hawking’s speech must be seen. As
part of the unification attempts in the 1970s, models of supergravitywere constructed, which
aim at a unification of gravity – so far successfully described by Einstein’s theory of general
relativity (GR) – with the other interactions. The super in this word refers to a hypothetical
symmetry between fermions (to which electrons and protons belong) and bosons (to which
photons and gravitons belong) called supersymmetry. Hawking, in 1979, speculated that the
final theory has the form of a supergravity theory. Later, after it had become clear that this
hope has remained unfulfilled, he favoured string theory and M-theory (a certain extension
of string theory).1.

String theory became popular in 1984 when indications were found that properties of the
Standard Model are present in this theory. So far, however, a recovery of the Standard Model
from string theory remains an unfulfilled dream. String (and M-) theory contain supersym-
metry as a necessary ingredient to ensure its consistency, but no sign of supersymmetry was
found to date in experiments performed at the Large Hadron Collider (LHC) at Cern, Geneva,
and elsewhere.

When we speculate about a unified theory, we implicitly assume that we deal with a final
theory, that is, we assume that there is no deeper structure of physical theories. InWeinberg’s
words, a final theory is characterized as follows:

A final theory will be final in only one sense–that it will bring to an end a certain sort
of science, the ancient search for those principles that cannot be explained in terms of
deeper principles. Weinberg ([33] p. 13)

One may add here that a truly final theory should also be rigid in the sense that small
changes in its parameters do not change its essential structure. But can we really decide
whether a given unified theory is final in this sense?

Physical theories are formulated in the language of mathematics, so the question of unifi-
cation in physics is deeply related with the construction of a ‘unified’ mathematical language.

1 In a talk given in 2002, however, he speculated thatwe shall never find an ultimate theory, and evenmentioned
Gödel’s theorem(s) as a reason for that [16]
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At the beginning of the last century, it was the mathematician David Hilbert who attempted
to construct a unified mathematical language. He searched for an axiomatic foundation of
geometry and finally the whole of mathematics. Hilbert belonged to what is today called
the formalistic school. There, axioms are no longer ‘obvious’ statements in the sense of
Euclid but arbitrary formal settings whose justification lies in the success of finding a uni-
fied scheme. In view of Ludwig Wittgenstein’s much later philosophical investigations, one
may call Hilbert’s formal system a Sprachspiel (language-game). In mathematics, such a
language-game is constrained by two important properties that will play an important role
below: completeness and consistency. Completeness means that every statement that can be
formulated in this formal system can be proved or disproved; consistency means that there
are no logical contradictions between different statements in the formal system.

Hilbert’s dream of unificationwas not restricted tomathematics. He intended to generalize
this to physics by providing a unified mathematical language for the physical interactions.
The only known fundamental interactions at the time were gravity and electrodynamics.
The latter was described by Maxwell’s equations, but what about the former? Here, the
big achievement was Einstein’s theory of general relativity (GR), completed in November
1915. Its central equations, Einstein’s field equations, so far describe all known gravitational
phenomena (or are at least not obviously in conflict with them). Hilbert arrived at those field
equations around the same time by postulating a geometric variational principle, starting from
what today is known as the Einstein–Hilbert action. But in contrast to Einstein, he envisaged
to derive all field equations of physics by such a geometric variational principle. This is why
his publication bears, not very modestly, the title “The Foundations of Physics” [17].

The goal of unifying gravity with electrodynamics by a geometric theory in the spirit of
GR was not achieved by Hilbert. Nor was it achieved by Einstein, who spent most of his later
years with attemps of finding a unified field theory. In retrospect, we can claim mainly two
reasons for this failure. First, neither Hilbert nor Einstein took into account the microscopic
interactions known as weak and strong interactions, which were studied from the beginning
of the 1930s onward. And second, perhaps even more important, quantum theory was not
addressed in these attempts, a theory not known at the time of Hilbert’s 1915 article, but
known and experimentally established at the time of Einstein’s later work in the 1940s and
1950s. Connected with this second point is the question of the space-time continuum, used
by Einstein in the traditional sense, and its fate in a unified theory encompassing quantum
theory. We shall come back to this point below.

Hilbert was very optimistic towards the materializability of his axiomatic programme. In
this, he was an antagonist of the physician and physiologist Emil du Bois-Reymond who had
formulated his famous Ignoramus et ignorabimus (we do not know and will not know) in
his 1872 keynote address Über die Grenzen des Naturerkennens (On the limits of science).
Du Bois-Reymond was convinced that there were fundamental limits to our knowledge of
Nature and natural laws. Already in 1900, at a major conference on mathematics in Paris,2

Hilbert emphasized that in his opinion there is no ignorabimus in mathematics. Thirty years
later, just one year before the publication of Gödel’s undecidability theorems, he emphasized
his standpoint again in strong words in a radio address:3

We must not believe those, who today with philosophical bearing and a tone of supe-
riority prophesy the downfall of culture and accept the ignorabimus. For us there is no

2 It was at that conference where Hilbert presented his list of 23 important unsolved problems in mathematics.
3 See and “hear” www.maa.org/press/periodicals/convergence/david-hilberts-radio-address, where also the
German transcription and the English translation can be found.
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ignorabimus, and in my opinion even none whatever in natural science. In place of the
foolish ignorabimus let stand our slogan: We must know, We will know.4

So will we one day know the final theory of physics or will there be a final ignorabimus?
In modern days, especially in particle physics, a final theory is sometimes referred to as a
“theory of everything” (TOE). This wording implies that such a theory will not only provide
a unified theory of physics, but – at least in principle – a theory for all possible effects in
chemistry, biology, and maybe even beyond. The crucial word here is in principle. As we
know today, even within physics we cannot, in general derive effects at an effective level
from a fundamental theory. For example, nuclear physics is thought to arise as a limit from
quantum chromodynamics (QCD), our fundamental theory of the strong interactions. But in
practice, the formalism is so complicated that this can hardly be done; this is whymodels such
as the nuclear shell model are still essentially used in the everydaywork of a nuclear physicist.
It is thus evident that this limitation holds even stronger for biology. There, we deal with
even more complex systems, and concepts such as synthetic biology are more powerful than
biological laws arising from fundamental physics [34]. Nevertheless, the important question
for us is whether a final theory exists in principle, independent of these practical limitations.
To address this question, it is necessary to clarify the relation between mathematics and
physics, which is subject of the next section.

2 Mathematics and Physics

In a well-known article, the Nobel Prize winner EugeneWigner speculates about the, accord-
ing to his opinion, unreasonable effectiveness of mathematics in the natural sciences, in
particular physics [35]. Why is it that physical phenomena can be described by mathematical
equations? And why exists, it seems, a small set of equations, such as Einstein’s equa-
tions, Maxwell’s equations, and the Schrödinger equation, that lie at the foundation of this
description? Already Galileo, in his Il Saggiatore, envisaged the Universe as being written in
mathematical language, which for him was the language of triangles, circles, and other geo-
metric figures. Our modern mathematical description of physics dates back to Isaac Newton,
the second Lucasian Professor of Mathematics at the University of Cambridge. Wigner, in
his Nobel Prize speech of 1963, emphasized the surprising discovery of Newton’s age that
the laws of Nature can be clearly separated in dynamical laws and initial conditions. The
dynamical laws are given by differential equations up to second order in space and time. They
thus leave room for initial (or, more generally, boundary) conditions, which are not fixed by
the laws and which thus represent contingent features of our Universe.

But why is mathematics so effective? A full answer is elusive, but a partial answer may
lie in the role symmetries play at a fundamental level. The structure of the Standard Model
is given and, in fact, strongly constrained by gauge invariance. This is an internal symmetry
that acts on all the quantum fields representing particles, thus connecting them in a non-
trivial manner. Gravity is not contained in the Standard Model. It is described by Einstein’s
field equations which displays another type of symmetry (or, more properly, invariance) – the
diffeomorphism invariance of space-time.Hereby ismeant themathematical exact expression

4 German original: “Wir dürfen nicht denen glauben, die heute mit philosophischer Miene und überlegenem
TonedenKulturuntergangprophezeien und sich in dem Ignorabimus gefallen. Für uns gibt es kein Ignorabimus,
und meiner Meinung nach auch für die Naturwissenschaft überhaupt nicht. Statt des törichten Ignorabimus
heiße im Gegenteil unsere Losung: Wir müssen wissen, Wir werden wissen.” This slogan is engraved on his
tombstone in Göttingen.
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for coordinate invariance: space-time points have no meaning independent of the dynamic
degrees of freedom representating geometry and matter fields.

There are quite a few theoretical physicists who regard the fundamental mathematical
equations as ‘beautiful’. This sense of beauty is connected with the symmetries or invariances
that these equations exhibit. It only applies to the equations themselves; their solutions as
well as approximations following from them may be lengthy, complicated, and ugly. In the
words of ([33] p. 131): “It is when we study truly fundamental problems that we expect to
find beautiful solutions.” Paul Dirac, another holder of the Lucasian chair of Mathematics,
who invented the equation named after him, went even further in claiming that beauty in one’s
equations is more important than compatibility with experiment. Most physicists would not
support such a strong view because it brings the danger of formulating equations devoid of
empirical content. In 1931, Dirac himself had presented an even more symmetrical version
of Maxwell’s equations, which in addition to the usual electric charges contains magnetic
monopoles. But such monopoles have never been seen and they may, in fact, not exist at all.
Still, the question remains what is the structure of the fundamental equations of a unified and
final theory. String or M-theory, in its present state, does not exhibit ‘beautiful’ equations nor
is it based on an aesthetically appealing fundamental principle. But can we say something
about the possible mathematical structure of a final theory? The mathematician Kurt Gödel,
too, expressed this idea of beauty:

The beauty in the presentation of a subject lies in first giving general (abstract) concepts
and possibly a theory and then the application to the empirical …For the same reason,
the beauty in physics is the explanation of everyday phenomena. Hence also the name
“knowledge”. Gödel ([14] p. 229) 5

It is most likely that also Hilbert in his search for unification in both mathematics and
physics was driven by some concept of beauty. But Hilbert’s programme received a severe
blow when Gödel presented his undecidability theorems [10] 6. This blow applied to math-
ematics; whether it also applies to physics and to the dreams of a final theory is the subject
of this essay. In the words of Douglas Hofstadter, Gödel’s first undecidability theorem can
be paraphrased as follows:

All consistent axiomatic formulations of number theory include undecidable proposi-
tions. Hofstadter ([18] p. 17)

Hofstadter compares this theorem with a pearl that is buried in an oyster, the oyster
standing for the mathematical proof of this theorem, which makes essential use of self-
referring statements. The theorem has the far-reaching consequence that in any sufficiently
complex axiomatic system (complex enough to contain the arithmetics of natural numbers)
there are statements that can neither be proved nor disproved. So, as Hofstadter continues
to write, “provability is a weaker notion than truth, no matter what axiomatic system is
involved.” Traditionally, the assumption entertained by mathematicians always was that a
certain statement within a formal system can either be proved or its negation can be proved;
now there is a third option called undecidable.

5 German original: Das Schöne an der Darstellung einer Sache ist, zunächst allgemeine Begriffe (abstrakte)
und eventuell ihre Theorie zu geben und dann die Anwendung auf die Empirie. …Dasselbe ist der Grund
dafür, dass das Schöne an der Physik die Erklärung der alltäglichen Erscheinungen ist. Daher auch der Name
�Erkennen�. Godel ([14] p. 70)
6 For an English translation, see ([11] pp. 145 ff.)

123



   52 Page 6 of 12 International Journal of Theoretical Physics            (2024) 63:52 

At the end of his article, Gödel announces what today is called his Second Incompleteness
Theorem,which can be paraphrased as “if a sufficiently complex axiomatic system containing
the arithmetics of natural numbers is consistent (free of contradictions), it is impossible to
prove this consistency within the system itself”. Thus, Hilbert’s ambitious programme of
developing a complete and consistent formal scheme for the whole of mathematics cannot
be accomplished.

An important application is the halting problem, which is the problem of whether there
exists a general algorithm with which one can decide whether an arbitrary programme with
arbitrary input will finish after a finite number of steps. This was shown by Alan Turing
in 1936 to be undecidable. Apart from the halting problem, the perhaps most important
example for an undecidable problem is the continuum hypothesis (CH). It goes back to the
mathematician Georg Cantor and can be phrased as stating that there is no cardinal number
between the set of natural numbers N and the set of real numbers R. Assuming the validity
of the axiom of choice, it can also be stated in the form that the cardinality of the power set
2ℵ0 is equal to ℵ1, where ℵ0 is the cardinality of the natural numbers and ℵ1 the cardinality
of the real numbers. The continuum hypothesis is actually the first entry in Hilbert’s famous
list of 23 problems presented in 1900. It is a statement about numbers; the term continuum
comes from the idea, mostly taken as granted, to identifying R with the points on a line.
That such an identification can be questioned is a later insight and will be discussed below
in connection with its relevance for unified theories.

The continuum hypothesis was shown to be undecidable by Paul Cohen in 1963. He could
prove that it cannot be proved or disproved from the standard axioms of set theory (the
Zermelo–Fraenkel axioms). Gödel, who subscribed philosophically to what one may call
platonic realism, believed that the CH is true or false, even if no proof or disproof can be
given within standard set theory.7 He envisaged that there will be a future powerful axiomatic
system within which a decision can be made.

The story of Gödel’s theorems and their consequences for the history of mathematics has
been told many times, and their is no point to repeating it here.8 We are interested, instead, in
discussing the relevance of Gödel’s results for the construction of a unified physical theory
(e.g. string theory), a story that so far is unduely neglected.9

In the last section below, we will investigate the relevance of the continuum hypothesis
for mathematical models of space-time. Before doing so, we have to understand the role of
quantum theory in the search for a unified theory, something not yet attempted by Hilbert
and Einstein in their searches for a unified theory of physics.

3 The Role of Quantum Theory

The non-relativistic version of quantum theorywas constructed ten years after Einstein’s (and
Hilbert’s) work on general relativity, in the years 1925–27. Generalizations to field theory
were started later and are not yet fully completed. The reason for this unfinished state of
affairs lies in the infinitely many degrees of freedom of quantum field theory: sophisticated

7 See his article “What is Cantor’s continuum problem?”, first published in 1947, see [12] pp. 176–187, and
later published in a revised version in 1964, see ([12] pp. 254–270).
8 See, for example, [18] or the detailed editorial notes in [11] and [12].
9 As Roger Penrose has remarked: “It is my own personal opinion that we shall find that computability issues
will eventually be found to have a deep relevance to future physical theory, but only very little use of these
ideas has so far been made in mathematical physics.” Penrose ([29] p. 378). This essay is an attempt to fill
this gap.
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mathematical schemes of regularization and renormalization were invented to deal success-
fully with formally infinite expressions, but the problem of the infinitely small (and, thus,
the continuum) remain unsolved. The Standard Model of particle physics mentioned above
is such a quantum field theory.

Mathematically, the Standard Model is a gauge theory (Yang–Mills theory) and contains
in particular the theory of strong interactions (QCD). An important issue is whether one
can prove within this theory the observed confinement of quarks. Interestingly, this problem
seems to be undecidable [4]. In fact, this problem belongs to the general class of spectral-gap
problems, under which one understands the question whether there is a gap between the
ground state energy of a given system and its first excited state or not. Cubitt et al. [4] were
able to relate this problem to Turing’s halting problem, from which the undecidability of the
spectral-gap problem follows.10 In this way, Gödel’s theorems enter the Standard Model of
particle physics.

In their proof, [4]make essential use of the thermodynamic limit, that is, the limitwhere the
number of degrees of freedom tends to infinity. This limit was taken because of its relevance
for quantum phase transitions: the transition from a gapless to a gapped situation (or vice
versa) can occur at arbitrary large (and uncomputable) values for the parameter describing
the thermodynamic limit.

An application to field theory was recently presented by [31] in the context of supersym-
metry. His line of arguments is interesting. He poses the question whether one can prove that
a certain supersymmetric model (Wess–Zumino model) can entail supersymmetry breaking.
He related this problem to Hilbert’s tenth problem about Diophantine equations, which is
known to be undecidable, and concluded that his question about supersymmetry breaking is
undecidable, too.

The notion of infinity thus plays an essential role in all these considerations. It seems that
so far in physics only the cardinality ℵ1 of the real numbers play a role,11 but this is already
sufficient to give rise to the problems discussed here. Early on, [25] remarked, on the basis
of Gödel’s theorem but without going into technical details, that the question of whether two
states in quantum field theory are macroscopically distinguishable or not, is undecidable. His
arguments only work for systems with infinitely many degrees of freedom, thus assuming a
space-time continuum.

These issues are connected with another most important problem in quantum theory: the
problem of the classical limit. A central (and perhaps its most characteristic) feature of this
theory is the superposition principle – the sum of two physically allowed quantum states is
again an allowed state. This immediately leads to the occurrence of weird macroscopic states
such as Schrödinger’s cat. The fact that such states are not observed was a perennial puzzle of
the theory. Oneway towards its solution is the assumption of amajormodification of quantum
theory in the form of a wave-function collapse. Collapse models are studied in detail [1],
but so far none has been experimentally established. Another way is the realistic modelling
of the system’s environment which can lead to the formation of correlations rendering the
superposition unobservable by transfering the information about it in entanglement between
system and environment. This process is called decoherence and is experimentally well
established [20].

10 A concrete construction of a Hamiltonian operator whose spectral gap is undecidable is given in [3].
11 The cardinality of the complex numbers C, which play a major role in quantum theory, is the same as the
cardinality of R.
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Decoherence is also of relevance for an interesting discussion about the origin of con-
sciousness. Roger Penrose, in collaboration with the anesthesiologist Stuart Hameroff,
developed the idea that quantum superpositions in neuralmicrotubules in the brain are respon-
sible for the emergence of consciousness; this was again concluded by making a connection
with the undecidability of the halting problem [28]. The brain, according to Penrose and
Hameroff, works in a non-algorithmic way and can thus give rise to free will.12

It is of some interest to note that other scientists had speculated earlier about a connection
between consciousness and quantum theory. The mathematician John von Neumann as well
as the above mentioned Eugene Wigner entertained the idea that consciouness is, in fact,
responsible for the occurrence of a wave-function collapse, avoiding in this way paradoxical
states such as Schrödinger’s cat. Wigner gave up this idea in the 1970s after the process of
decoherence was discovered by the physicist Dieter Zeh.13

Decoherence did not only leadWigner to change his mind, but also to render the Penrose–
Hameroff scenario unlikely. As Max Tegmark has shown, the decoherence times for possible
quantum superpositions in the brain are much shorter than standard time-scales used for
conscious processes, thus leading to their irrelevance [32].

The question of the quantum-to-classical transition is also related to the question of where
the “Heisenberg cut” can be applied. This notion goes back to discussions between Werner
Heisenberg andWolfgang Pauli in 1935 and refers to the scale of a problem in quantum theory
at which a classical description can be used without invoking a conflict with experiment. In
the above example of the brain, the decoherence timescale gives a lower bound for the cut,
guaranteeing the validity of an effective classical description of neural processes. There may,
however, be other situations inwhich theHeisenberg cut lies outside the rangeof observational
scales and where thus quantum effects can play a role even in macroscopic situations.

Such situationsmay occurwhen the gravitational interaction becomes relevant.A theory of
quantumgravity is not yet available in complete form, but it seems that such a theory is needed
as a major part of a unified final theory. One reason for this belief is the incompleteness of
general relativity as expressed in the singularity theorems. Geroch and Hartle [9] have argued
that such a theory contains undecidable statements, at least in present formulations of the
theory that make use of path integrals. In this formulation, Geroch and Hartle argue, no
computer can carry out a computation of expectation values, basically because the question
of whether two four-dimensional manifolds have the same topology is undecidable; in the
path integral, all possible topologies are superposed, so no calculation can be performed.

Another important application of Gödel’s theorems to quantum gravity is in the canonical
formulation of the theory [19, 23]. The quantum-gravitational wave function � is there to be
determined as a solution to theWheeler–DeWitt equation, which is of the form H� = 0, with
H being the Hamilton (energy) operator of all degrees of freedom. In the usual formalism
of quantum theory, this equation only makes sense if the value 0 is contained in the discrete
spectrumof H . But a decision about this question runs into the spectral-gap problemdiscussed
above: it is undecidable whether there is indeed a gap between zero and other eigenvalues
(as desired) or not. To our knowledge, this important point has not yet been addressed in the
quantum gravity literature.

12 Incidentally, the question of free will is also included in the seven “world riddles” formulated by du
Bois-Reymond.
13 See, for example, [24] for a discussion.
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4 Can we DecideWhether a Unified Physical Theory is the Final One?

Kurt Gödel, although being mathematician, had interests ranging far beyond mathematics.
In his own words:

I am apparently neither talented nor interested in combinatorial thinking (card games
and chess, and poor memory). I am apparently talented and interested in conceptual
thinking. I amalways interested only in how itworks…(and not in the actual execution).
Therefore, I should dedicatemyself to the foundations of the sciences (and philosophy).
This means: Not only the foundations of physics, biology and mathematics, but also
sociology, psychology, history …. This means an overview of all sciences and then
foundations (which is also what I am primarily interested in). Gödel ([13] p. 346) 14

Among his main other interests was physics, for which he envisaged an underlying reality
in the same sense as in mathematics. He believed “that a question not decidable now has
meaning and may be decided in the future.” Gödel ([12] p. 170). Can we answer the question
posed in the title of this section, whether a unified theory is the final one or not?

It is certainly not an easy task to construct a candidate theory in the first place. For
Gödel, the role of intuition in research was of great importance. This he had in common
with Einstein, who emphasized the importance of intuition in his work at various places, for
example in [7]. Whether intuition works, is of course not clear. Einstein was successful in
constructing general relativity, but he failed in constructing a unified field theory. As Friedrich
Dürrenmatt remarks: “While he arrived from the empirical by intuition to the a priori picture,
he now tried [in his attempts for a unified field theory] to arrive by intuition from the a priori
[i.e. mathematical] description to the empirical” ([6] p. 167).15 But without connecting the
mathematical formalism to experiments or observations, all efforts may be in vain.

Inmost attempts to construct a final theory, the underlying concept of space (or space-time)
is that of a continuum. In general relativity, space-time is modelled as a (pseudo-)Riemannian
manifold, which locally looks like R4 and thus possesses the same cardinality as R, namely
ℵ1. Similar features apply to the spaces employed in other approaches, such as canonical
quantum gravity or string theory. Take the latter as an example. The theory is defined on a
ten- or eleven-dimensional manifold. To understand why we observe only four dimensions,
one must invoke a mechanism to render the remaining dimensions unobservable. This can be
achieved, for example, by compactifying them in the form of Calabi–Yau spaces.16 But even
these spaces are manifolds and thus possess an uncountable number of degrees of freedom.
One thus has to face the continuum hypothesis, which we know is undecidable.

The continuum was imagined by many mathematicians to represent the real numbers in
the sense of a point set. This picture turned out to be a very powerful one for the development
of mathematics, but it is not the only one. In the field of non-standard analysis [30] developed

14 German original: Kombinatorisch scheine ich weder begabt noch interessiert zu sein (Karten- und
Schachspiel, und schlechtes Gedächtnis). Begrifflich scheine ich begabt und interessiert zu sein. Es interessiert
mich bei allem nur, wie es …geht (nicht die tatsächliche Ausführung). Also soll ich mich den Grundlagen der
Wissenschaften (und der Philosophie) widmen. Das bedeutet: Nicht nur Grundlagen der Physik, Biologie und
Mathematik, sondern auch der Soziologie, Psychologie, Geschichte …. Das heißt Überblick über sämtliche
Wissenschaften und dann Grundlagen (das ist auch, worauf ich mich eigentlich interessiere). Godel ([13]
p. 81)
15 The German original reads: “Gelangte er vom Empirischen durch Intuition zum Apriorischen, versuchte
er nun, durch Intuition vom Apriorischen zum Empirischen zu gelangen.”
16 The number of possible compactifications was estimated to be at least of the order 10272,000 [5], which
means that it is not possible to derive the Standard Model from string theory in any reasonable way.
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over the last decades, consistent models of the continuumwere constructed wheremanymore
numbers of different cardinality find place on the continuum. Such non-standard models
exist with arbitrary high cardinality, much beyond the cardinality of the real numbers; see,
for example, [27]. These numbers are also called hyperreal numbers; in such models, a
number such as 0.999 . . . is not equal to 1 (as we learn in school), but is strictly smaller
than it. These non-standard models put the notion of infinitesimals on a sound footing. One
may call the continuum as being inexhaustible, uncomparable to the picture of a point set
with the points representing real numbers. Therefore, as long as we use the notion of a
continuum at a fundamental level, Gödel’s undecidability theorems apply and we will never
know the microstructure of space-time. The final answer about continuum or discrete space
can eventually only come from the empirical.

The idea of mathematical realism is put to an extreme by Max Tegmark, who entertains
the idea that our Universe, in fact, consists of mathematical structures in a realistic sense
[32]. In order to avoid problems with Gödel’s theorems, he makes the assumption that only
computable numbers are realized in Nature. But this assumption is already in contradiction
with the undecidability of the spectral-gap problem discussed above, a problem that occurs in
standard quantum theory. Tegmark’s world would be plagued with undecidability problems.

That there should be no infinities in our actual world was already emphasized by Hilbert.
Ellis et al., too, adopt this point of view and argue that “infinity” in physics always means
potential infinity in the sense of very large numbers and that actual infinity (which they
call essential infinity) does not occur. In this case, all antinomies and paradoxes connected
with infinities vanish. Mathematical procedures such as regularization and renormalization
in quantum field are then only of preliminary nature and would become obsolete in a final
theory.

A finite world would also lead to a finite number of superposed quantum states in the situ-
ations of entanglement discussed above. For a finite number of quantum degrees of freedom,
it seems that the probability interpretation of quantum theory can be derivedwithout invoking
a wave-function collapse and an ad hoc-rule.17 No problems connected with Heisenberg’s
cut would remain.

Candidates for a unified final theory usually employ a continuous picture of space-
time. Some notable exceptions include Carl Friedrich von Weizsäcker’s Urtheorie and John
Wheeler’s models of It from Bit. So far, these ideas have not led to a final theory that is both
complete and empirically testable, but it is imaginable that a final theory will make use of
such structures.

Even for a finite world, the number of degrees of freedom may be very large. Seth Lloyd
has estimated the amount of information that the observable part of the Universe can register
and arrived at the number of 10120 bits [26]. This gives an upper bound to the amount of
possible computation, fromwhichwe shall of course stay far away in anypractical application.
Numbers with this order of magnitude are prevalent in cosmology and originate from the
assumption of a smallest spatial scale of the order of the Planck length.18 It is the large
size of this number and the corresponding smallness of the Planck scale that allow the
consistent formulation of physical theories with an underlying space-time continuum, even
if our “actual” space-time is of discrete nature.

17 See, for example, the discussion in ([24] p. 94).
18 The Planck scale follows from combining Planck’s constant, the speed of light, and the gravitational
constant into a quantity with unit of length; it is of the order of 10−35 metres.
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It thus seems that we could decide, at least in principle, whether a given theory is final or
not only if the world were finite at small and large scales.19 Long ago, Bernhard Riemann
already made speculations in this direction, although he was completely unaware of later
developments in physics and mathematics. In his famous habilitation thesis, he writes:

The question of the validity of the hypotheses of geometry in the infinitely small is
bound up with the question of the ground of the metric relations of space.…Either
therefore the reality which underlies space must form a discrete manifoldness, or we
must seek the ground of its metric relations outside it, in binding forces which act upon
it. Jost ([22] p. 40) 20

Sowe conclude that, unless the space-time structure is fundamentally discrete and the total
number of degrees of freedom in the world is finite, the question whether a given theory is
the final one or not will remain undecidable and so there will forever remain an ignorabimus.
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