Information Theory: From Statistical Physics to Quantitative Biology

1. exercise class -5 . November 2008

1. Coin flips

A fair coin is flipped until the first head occurs. Let the random variable X denote the number of flips required.
a) Find the entropy $H(X)$ in bits. (25 pts)
b) A random variable is drawn according to this distribution. Find an efficient sequence of yes-no-questions to determine the value of the variable and compare the result with H. (25 pts) (Taken from Thomas \& Cover.)

2. Maximal entropy subject to constraints

a) Find the probability function $p(i), i \in\{1,2, \ldots n\}$ that maximizes the entropy $H(i)$ subject to the constraint

$$
\begin{equation*}
E(i) \equiv \sum_{i=1}^{n} i p(i)=A>0 . \tag{1}
\end{equation*}
$$

(25pts)
b) N dice are cast ${ }^{1}$. Given the total number of eyes is αN, what proportion of the dice show i eyes, $i=1, \ldots, 6$? (25pts)

Hint: It helps to consider the number of ways N dice can achieve αN eyes with n_{1} of them showing 1 eye, n_{2} of them showing 2 eyes, etc. What are the values of n_{1}, n_{2}, \ldots which maximize this quantity? Use Stirling's formula and compare with a).

[^0]
[^0]: ${ }^{1} \equiv N$ Würfel werden geworfen.

