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Universal amplitude relations associated with hyperscaling are obtained exactly for several integrable
perturbations of two-dimensional (multi)critical points described by minimal models. The results are
confirmed numerically and it is discussed how they can be verified by experiment.
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At a critical point, the long-distance behavior of a sys-
tem is given by a scale-invariant continuum field theory.
The simplest two-dimensional such theories are the series
of minimal models M,, (m=3,4,...), whose first
member M3 is the critical Ising model. They can be
classified and solved exactly by means of their infinite-
dimensional conformal symmetry [1,2]. In heat capacity
and scattering experiments, the leading exponents of
these universality classes have been measured in a variety
of systems [3]: Ising critical behavior was found in two-
dimensional antiferromagnets such as K,CoF,; at the
Néel point [4] and in the reconstruction transition of Au
surfaces [5]; melting transitions of atomic submonolayers
adsorbed on crystal surfaces fall into the Ising [6] or the
three-state Potts universality class Ms [7], or have con-
tinuously varying exponents, depending on the sym-
metries of the crystal surface and the microscopic in-
teractions [8].

Perturbing the critical theory by a generic combination
of its relevant scaling fields destroys all long-range corre-
lations and generates a finite correlation length &, defined
by the weakest exponential asymptotic behavior ~e ~/¢
of the two-point functions. The resulting massive renor-
malized field theories describe the scaling region around
the critical point, where the & is much larger than any
microscopic length scale of the system. The correlation
functions are determined entirely by those of the critical
theory, but since the exponential decay is a nonperturba-
tive effect, calculations are difficult in general. In two di-
mensions, however, important progress has been made re-
cently for integrable perturbations (i.e., perturbations
that retain an infinite-dimensional symmetry) of minimal
models [9]. In several such cases, the exact S matrix of
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the associated one-dimensional quantum field theory has
been conjectured. These scattering theories have a finite
number of stable particles, and in all scattering processes
the particle momenta are individually conserved. Numer-
ically, the single-particle spectrum [10-13] and the elas-
tic two-particle phase shifts [14,15] have been confirmed
by transfer matrix diagonalization, but so far these con-
jectures lack any experimental verification. In this
Letter, we point out that they lead to exact predictions of
universal amplitude combinations [16] associated with
hyperscaling relations [see Egs. (2), (10), and (12)
belowl. This gives the first experimentally feasible test of
the proposed scattering theories.

The finite-size scaling hypothesis in d dimensions can
be stated as follows: The singular part of the free energy
F (measured in units of kgT) of a system with volume
R is, on a given renormalization-group (RG) trajectory,
a universal function of the dimensionless variable R/&
only [17]. In particular, in the thermodynamic regime,
where all linear dimensions of the system are >¢&, the
most singular term is proportional to the volume:

F(R/E)=eo(R/EY!+ - - - | ¢))

where the bulk constant &g is universal [18]. Corrections
to this asymptotic behavior are less-singular universal
terms that depend on the boundary conditions and the
shape of the sample (such as a surface term ~¢& W=y
and nonuniversal background terms that remain analytic
in the thermodynamic limit. The latter contain powers of
the microscopic lattice cutoff a and are subtracted in the
renormalized continuum theory. For a RG trajectory
whose points are parametrized by a single coupling con-
stant A with scaling dimension y, the finite-size scaling
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hypothesis implies one-scale-factor universality: The
only system-dependent quantity for all variations of the
free energy along this trajectory is the scale factor

g=A¢&". The dimensionless combinations
AOLF
’ éd—_fo'*'
ras 2)
AOLF
_); dzi i—l et o, ...,
R¢ Y|y

which involve the thermodynamic density conjugate to A,
the response function, etc., are independent of this scale
factor and hence universal as well. Examples are dis-
cussed below.

Recall that the free energy of a two-dimensional classi-
cal system defined on a rectangle RXL with periodic
boundary conditions equals that of a one-dimensional
quantum system defined on a circle of perimeter R, at in-
verse temperature (imaginary time) L. The quantum
Hamiltonian H(R,£) is obtained by integrating the
time-time component of the renormalized stress-energy
tensor along this circle [19]. The important conclusion is
that the free energy of this quantum system is precisely
the universal free energy of the two-dimensional system
near criticality. In the low-temperature limit L — oo, it
behaves as F=LEy(R,&), where E¢(R,&) is the ground-
state energy of the Hamiltonian Ho(R,£). By quantizing
the system in the perpendicular direction and thus ex-
changing the roles of space and imaginary time, one sees
that Eo(R,&) is also the grand canonical pressure of the
system in the thermodynamic limit, at inverse tempera-
ture R.

For several integrable systems, this quantity has been
obtained exactly by means of the thermodynamic Bethe
ansatz (TBA) [20]. The basic idea is as follows. The
pressure of such a system can be written in the same form
as for a free quantum gas, =FX,S(dk/27)
xIn(1 £e ~“*’) (q labels different parucle species); the
effect of the interactions is contained in the Boltzmann
weights e~ ™ ¥) " Particle momenta are conserved individ-
ually; hence the only effect of a scattering process on a
particle is a phase shift between in and out wave func-
tions. As these wave functions have to match when con-
tinued around the circle, the phase shift changes the ener-
gy of the level. In the thermodynamic limit, this amounts
to a change in the spectral density which can be absorbed
in the &,(k). For the theories of interest here, the solu-
tion of the TBA equations yields in particular a simple
expression for the bulk constant €y in terms of the elastic
S matrix of two lightest particles as a function of the

Lorentz-invariant rapidity difference 8 =60, — 6, [20,21],
&' =—2 lim [e" d lnS(9)] 3)
i 6+ de

which in turn is determined completely by the poles 6, of
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S(6),
€ = —4Zsmh9,, 4)

Actually, Eq. (3) has a very simple interpretation in
terms of the scattering process shown in Fig. 1 in the c.m.
frame. By taking Gaussian in and out wave packets,

oi"(z,r) =fd0'e

—(1/2)(9’—9026,[5(9')1 —ik(8)r

(5)

— Y g )2 . Nl
1/2)(¢6 0|)S—I(91_92)e15(0)l ik(6')r

o) = fdo'e
(and in an analogous way for particle 2), we can show
that the inverse bulk constant is actually the simple clas-
sical Lorentz invariant

€ =—01Lm (K- X)K-K)/m?, (6)

where K is the intermediate 2-momentum and X is the
world vector characterizing the scattering process of Fig.
1. Hence it is proportional to the c.m.-frame time delay
that either particle suffers as a result of scattering off the
other. Remarkably enough, this very simple observable
of the classical relativistic dynamics in one dimension cor-
responds to one of the most fundamental quantities of the
universal thermodynamics in two dimensions.

Consider now the matrix elements of the quantum
Hamiltonian H(R,&) in a Hilbert-space basis that be-
comes an eigenbasis in the conformal limit R/&— 0 [22]:

(|H(R,E)| )
=Qa/R)[—c/12+x;6;;+Q2n) ' "Vgo(R/E) Cinjl,  (7)

where ¢ is the central charge of the conformal theory, x;
are the dimensions, and Cie;=Co,00, the structure con-
stants of the (renormalized) scaling operators ®; (which
are in one-to-one correspondence with the states |i)).
The primary [1] operators are normalized by the condi-
tion (@;(0)®,;(r))(A=0)=5;r > on their two-point
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FIG. 1. Minkowski diagram describing the elastic scattering

of two ultrarelativistic particles of mass m2, in the c.m. frame.
The process is characterized by the intermediate momentum
K =K+ K> and the timelike vector X measuring the space-time
delay between ingoing and outgoing particles.
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functions in the plane. This choice now fixes the scale
factor, which appears as the dimensionless coupling con-
stant go=Ao&” in (7). Below, we shall identify g¢ with
another important universal amplitude combination on
the RG trajectory parametrized by A. By comparing the
solution of the TBA equations in the high-temperature
limit R— 0 with conformal perturbation theory, this con-
stant can be obtained exactly as well [20]. For the exper-
imentally relevant cases, namely, the magnetic perturba-
tion of the Ising model [9], and the leading thermal per-
turbation of the tricritical Ising model M, [23] and the
three-state Potts model [24], the values of €, and go are
collected in Table I.

The results of the TBA can be verified with great accu-
racy by the conformal truncation method [12,13]. This
nonperturbative approximation consists in restricting the
Hilbert space to the finite-dimensional subspace spanned
by the states |i) with x; < xmax. The low-lying spectrum
of H can then be obtained by diagonalizing a finite-
dimensional matrix. For x;,,x=< 3, the vacuum energy
density E¢/R becomes independent of this cutoff and for
R > & converges rapidly to its bulk value €y, whose best
numerical estirnates are presented in Table I. The data
for the (presumably not integrable [13]) leading magnet-
ic perturbation of the tricritical Ising model are included
as well [25]. The single-particle spectrum below the
threshold of this theory (measured in units of the lightest
mass m ;) equals that of the Ising model in a magnetic
field to about 1% [11,13]. Interestingly, the bulk con-
stants differ drastically and Eq. (4) is not even approxi-
mately correct for this model, which makes the similarity
of the mass spectra appear even more surprising.

How could one measure universal amplitudes like (1)
in practice? For definiteness, consider an Ising (anti)fer-
romagnet in a (staggered) magnetic field, although analo-
gous arguments apply to the other cases of possible exper-
imental interest, namely, dilute antiferromagnets or
metamagnets at a tricritical point, or adsorbed Potts lat-
tice gases [26]. The connected order-parameter correla-
tion functions in momentum space, which are accessible

TABLE I. The bulk constant e, the dimensionless coupling
constant go, and the universal constant Ao for several perturba-
tions of minimal models. For € and go, the first value is taken
from the TBA results of Refs. [20,21]; the second value is ob-
tained by conformal truncation.

Model,
perturbation €0 go Ao

Critical Ising, —0.06173 0.06203 2.397x10*
magnetic —0.0617 £ 0.1% s

Tricritical Ising, e S 4.31x10*
magnetic —0.140 £ 0.5% 0.103

Tricritical Ising, —0.09421 0.09283 3.985x%10°
thermal —0.094 +0.5% R

3-state Potts, —0.02887 0.164 30 7.490% 102
thermal s e

in a scattering experiment, can be written in scaling form,
G(gA)=xA)D(x), (8)

where G(0,A)=x(A) = —987F/R? is the susceptibility di-
vided by kT, and KElqléj. In order to obtain &, one
would usually fit the data with a Lorentzian D(x)
=(1+x?) ", assuming that this function is dominated
by single-particle poles at k= 1. Here, however, its an-
alytic structure is much more complicated: There are
2x8 single-particle poles and many branch cuts [27] of
two and more particles. This makes it impossible to ex-
tract the ‘“‘true” real-space correlation length & directly
from the momentum space measurements. The length
scale £=[— $92D(x)|,=0]'%¢ defined by the infrared
behavior of D(x) corresponds to the second moment of
the real-space correlations and is universally related to £.
The bulk amplitude equivalent to (1) has been obtained
[28] from the ¢ theorem [29]:

1 c
367 15 + . 9
Comparing this with (1) and (4) yields the universal ratio
E/E (=1.3211 in this case), which measures the contribu-
tion of the higher singularities to D(x), i.e., the deviation
of its shape from a Lorentzian. Without further assump-
tions on this shape, the scale & is difficult to extract from
the scattering data as well, due to their error margins for
wave numbers g <& !,

Alternatively, one may relate & to the universal ultra-
violet asymptotics of G(g,A), which can be observed for
wave numbers &£ '<g<a~'. This function has to
remain finite as &— oo, and hence D(x) behaves as
x“72" in this limit. Substituting this and (2) into (8),
one concludes that

F - _
®

A2 [ lim G(g,\)q “‘“—"]52»"=a0g& (10)
P

is a finite universal number. In conformal field theory,
the normalization condition is G (r,A)=r ~2¢~¥) in real
space and hence G(q,}»)'—‘—'aoq’l“z"; this defines the nu-
merical constant ao [=22%"Yar(y —1)/r(2—y) for
d =2]. Evaluating the left-hand side of (10) in this nor-
malization then shows that go equals the known dimen-
sionless coupling constant that appears in (7).

If we combine (2) and (10) to eliminate the inaccessi-
ble quantity &, we get a prediction for a feasible experi-
ment, which is the central result of this Letter: The
universal amplitude

Ao=algd’[(d/y)(d]y —1)e) ~% (11)

(which is evaluated in the last column of Table I for the
cases of interest) is completely determined by the scatter-
ing data at ¢ =0 and in the ultraviolet tail,

W“‘-"[ lim G(g,\)q “”2-"]"/G(o,x)z-v=A0. (12)
B

The amplitude in the numerator can be determined more
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accurately if corrections to the leading ultraviolet behav-
ior are taken into account. Powerlike corrections are of
the form [30] D(x)~k!"2 X, Xrcodix ™. The
universal correction-to-scaling amplitudes A; , are of con-
siderable interest in their own right since they provide a
way of measuring the operator product algebra of the
conformal theory. They can also be evaluated accurately
by conformal truncation. Many of them vanish by sym-
metry. Specifically, for the Ising model in a magnetic
field, one obtains the expansion D(x)~x " "*[1
+Ay0k "+ A4,k 72+ 0 ")), taking into account
the leading contributions of the lowest three scaling
operators, which have dimensions x¢=0, x; =141, and
x>=1. In fact, it is possible to combine this information
with Egs. (1), (4), (9), and (10) to construct an approxi-
mation to the whole scaling function D(x). This will be
the subject of a future publication.

In summary, we have shown how the bulk constant ¢
and the dimensionless coupling constant go, which are
known exactly in integrable theories, are related to sur-
face scattering experiments. These numbers depend on
detailed predictions of conformal field theory, S-matrix
theory, and the bootstrap principle at a nonperturbative
level. Such an experiment could test these fundamental
ideas.
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