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The minimal conformal model Mp,q, perturbed by the relevant scaling field ~b],3, is argued to undergo a crossover 
to the model Mp_ (q-p),q-(q-p), at least for large values of p~ (q - p ) .  Hence its critical manifold is nested into all 
manifolds of lower criticality. 

The principle of  conformal invariance has yielded 
a partial classification of  universal critical behavior  
in two dimensions: the "minimal"  conformal theories 
Mp,q (where p and q are to relatively prime positive in- 
tegers with p < q) exhaust all universality classes with 
a finite number  of  pr imary scaling fields [ 1-3].  These 
theories have central charge c = 1 - 6 ( q - p  )2/qp. All 
scaling fields belong to degenerate representations of  
the Virasoro algebra; their correlation functions are bi- 
linear forms of generalized hypergeometric functions 
[ 1,4 ]. These forms are determined by modular  invari- 
ance of  the partition function on the torus [2,5 ]; we 
restrict ourselves here to "diagonal" theories, which 
have the pr imary fields ~br,s with 1 ~< r ~< p - 1 and 
l < ~ s < ~ q - 1 .  

The physical interpretation of  these universality 
classes is tied to the understanding of  their scaling 
behavior  close to criticality and of  the global topol- 
ogy of  the embedding phase diagram. 

For the subset o f  unitary minimal  theories Mp - 
Mp,p+l (p = .3,4 . . . .  ) [6,7], that interpretation is 
clear by now: the theory Mp describes the Landau-  
Ginzburg model of  a single scalar field with the la- 
grangian [ 8 ] 

= ( v ~ )  2 + ~- '~2~q ~j (1)  £ 

at the (p - 1 )-critical point 21 = 22 . . . . .  J . 2 m - 3  = 

0, 22m-2 # 0. As one would expect from this picture, 
the manifold Cp of  (p - 1 )-criticality is nested into all 
manifolds of  lower criticality [9,3 ]: 
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. . .  c Cp c Cp_~ c . . .  c C3. (2) 

This infinite hierarchy of  multicriticality appears in 
the Landau-Ginzburg  model already at the mean field 
level. The strong fluctuations in two dimensions, while 
drastically modifying the critical exponents, do not 
alter thd topology of  the phase diagram. 

In statistical mechanics, however, unitarity is not as 
crucial a requirement as it is in quantum field theory. 
Several physically interesting models are manifestly 
nonunitary, for example the O (N)-model  in the limit 
N ~ 0 (polymers in solution) [10,4], the Q-state 
Potts model for Q --, 1 (percolation) [ 11,4], and the 
N-replica Q-state Potts model for N ~ 0 (quenched 
bond disorder) [3]. These theories are not minimal; 
their operator algebra contains infinitely many (de- 
generate and nondegenerate) primary fields. 

Some nonunitary minimal models attracted consid- 
erable attention as well, since the simplest multicriti- 
cal matrix models [ 12] represent these theories cou- 
pled to two-dimensional quantum gravity [13 ]. 

The simplest nonunitary minimal model is the 
Yang-Lee theory M2,5 [14]. It describes the critical 
point of  an Ising model in a purely imaginary mag- 
netic field and corresponds to a Landau-Ginzburg  la- 
grangian of  the form g = ( V ~ )  2 + i~3 ~3 [15]. 

The only relevant perturbation of  the Yang-Lee 
model leads to a massive phase whose scaling region 
is characterized by a purely elastic scattering theory 
[ 16 ]. Some perturbations of  higher nonunitary mini- 
mal models are known to generate well-defined mas- 
sive phases as well [ 17,18 ], but this does not say which 
of  these universality classes are connected by massless 
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crossover phenomena and hence are part  of  a common 
phase diagram. In this letter, we argue that there are 
infinitely many hierarchies of  nested multicri t icali ty 

• . .  C C,p,q C C p - n , q - n  C C,p-2n,q-2n C . . . .  (3) 

where n = q - p. Each crossover between two sub- 
sequent theories in a sequence (3) reduces the num- 
ber rn =_ p / ( q  - p )  by one. Since the central charge, 
the scaling dimensions and the operator  product  co- 
efficients of  Mp,q depend analytically on m alone, we 
call m the "analytic index" of  M m .  The number  n 
is common to all theories in a sequence and is called 
the "nonunitar i ty index" for reasons that will become 
apparent  below. 

Recall the argument based on per turbat ion theory 
in the parameter  1/rn that leads to the hierarchy (2) 
for the unitary series [9,3 ]. The field qh,3, which is the 
least relevant scaling field in a unitary minimal  model, 
enjoys the following properties: (a) it has scaling di- 
mension xl,3 = 2 - 4 / m  + O ( 1 / m  2) and becomes 
marginal as m ---, o~; (b) it has a finite opera~or prod- 
uct coefficient with itself [19], 

4 ( 1 )  
C ( m )  = ~ + O  , (4) 

but does not couple to any other relevant field. Hence 
the perturbat ion of  Mp by this field has the beta func- 
t ion 

4 - -~  3 ( ~ 3 )  p ( u )  = - - - u  + u 2 + O . (5) 
m 

The infrared fixed point  u* = v ' ~ / m  + O ( 1 / m  2) 

describes a critical theory with central charge 

12 ( ~ 4 )  ( ~ 4 )  C* = Cm " - ~  dr 0 = Cm-I  "~ 0 . (6) 

Any unitary theory with c < 1 has to be minimal  
[6]; since the perturbat ion preserves unitari ty and 
c* < Cm < 1 #1 , the infrared theory has to be a member  
of  the same series. This must be Mp_ l, which is the 
only unitary theory whose central charge satisfies eq. 
(6). The perturbat ive calculation has been confirmed 
by supersymmetry arguments for the crossover from 
the tricritical to the critical Ising model  (the case p = 

~,1 The c-theorem [20,9] ensures that this relation is valid 
beyond perturbation theory. 
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4) [21] and more recently by thermodynamic  Bethe 
ansatz methods for general values of  p [22]. 

We wish to show that in any minimal  model  M m  
with m >> 1, the field ~bl,3 induces a crossover to 
the model  Mp-n,q-n. Since the dimension Xl,3 and the 
operator  product  coefficient (4) depend analytically 
on m alone, the perturbat ive beta function is the same 
as in the unitary case, and eq. (6) is still valid. This 
is consistent with the assertion but does not prove it 
since (a) it is not clear a priori  whether the infrared 
theory is minimal  and (b) even the minimal  theories 
,fill the interval - o ~  < c < 1 densely. 

To analyze the field content of  the perturbed theory, 
it is convenient  to label the pr imary fields $r,s Of Mp,q 
in order of  decreasing relevance by the index N = 
q r - p s ,  which measures the distance of  the point  (r, s)  
to the diagonal of  the Kac table and takes the values 
N =  1,2 . . . . .  p -  1 , p +  1 . . . . .  q -  1 , q +  1 . . . . .  2 p -  
1,2p + 1 . . . . .  p + q - l , p  + q + 1 . . . .  (the omit ted 
values correspond to points outside the Kac table).  
The field ~bN has scaling dimension 

N 2 _ n 2 
x u ( m )  - 

2 n 2 m ( m  + 1) 

~ - m Z  + " 
(7) 

Hence all p + q - 4 fields ~N with 1 ~< N ~ p + q - 1 
are relevant. The first n - 1 of  them have negative 
scaling dimension; in this sense, n measures the degree 
of  nonunitari ty of  M m .  

The operator  product  coefficients CN - Cuu(l,3) 

are [19] 

C N ( m )  = 
F ( ( N  + p ) / q ) F ( ( - N  + p ) / q )  

F ( ( - N  + q - p ) / q ) F ( ( N  + q - p ) / q )  

× + O  

the last equality is valid for generic values of  N. For  
N ,.~ k q  with k = 1,2 . . . . .  C N ( m )  is enhanced by the 
finite factor ( N - k q - n ) / ( N  - k q + n ); these are just  
the fields that mix appreciably under the renormaliza- 
t ion group [9 ]. For  generic values of  N, the mixing is 
of  O ( 1 / m ), and eqns. (4) and (8) determine directly 
the infrared scaling dimension of  ¢N, 
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2C~(m)  [ 4  (~--~2)J xu* = x s (m)  + C ( m ~  + 0 

=XN(m)[  1 + 2-m + 0 ( ~ 2 ) ]  

: , , +  (9) 

methods. A few additional comments are in order. 
Any minimal model Mp,q with p > 2 enjoys a Z2 

symmetry 

4'r,* --' (--)~- I Ors 
~r,s ~ (--)s--r~r,s 

if p is even, 
if  q is even, 
if q - p is even, (lO) 

In particular, the infrared theory has exactly n -  1 scal- 
ing fields of  negative dimension: the crossover con- 
serves the nonunitarity index n. This, together with 
eq. (6), proves the assertion provided the infrared the- 
ory is minimal at all. The above considerations give 
evidence for this as well. Since the operator product 
coefficients (4) and (8) are real, the infrared scal- 
ing dimensions (9) are still real. This remains true 
for fields that mix under the renormalization group 
(whose infrared dimensions are obtained as the eigen- 
values of real symmetric matrices) and for descendant 
fields (whose operator product coefficients are given 
in terms of the coefficients their primaries and real 
polynomials in the scaling dimensions and the central 
charge). Hence the partition function on the torus of 
the infrared theory has positive Boltzmann weights. 
But a non-minimal theory with c < 1 must have neg- 
ative Boltzmann weights, as follows from modular in- 
variance [2,3]. 

Some scaling fields of the infrared theory can be 
shown explicitly to be degenerate Virasoro primaries. 
For example, the field q~L,2 of Mp,q has dimension 
xl,2(m) = ½(1 - 3/m) + O(1 /m 2) and belongs to 
the subalgebra of fields ~bLs, which is preserved un- 
der the perturbation by ~b~,3. To leading order, it does 
not mix with any other field under the renormaliza- 
tion group and maps, according to eq. (9), onto an 
infrared primary field q~* of dimension x* = ½ (1 + 
3/m) + O ( 1 / m  2) = x2,1(m- I)  + O ( 1 / m 2 ) .  Its only 
left descendant at level two, L2_~bL,2, maps onto an in- 
frared field of dimension x* + 2 + O(1/m2),  and that 
is the only field of the infrared subalgebra with that 
dimension and angular momentum 2. Therefore 4)* 
must be degenerate at level two, as expected for the 
field ~b2,1 of Mp-n,q-n. 

Clearly, the main result (3) is not rigorously found- 
ed since it is based on first order perturbation the- 
ory. In particular for small values of m, variations 
in the flow pattern are to be expected. Therefore our 
arguments deserve to be checked by nonperturbative 

that leaves its operator algebra invariant. Since 41,3 is 
always even, the crossover to gp-n,q-n preserves this 
symmetry, which is consistent with the flow of fields 
given by eq. (9). 

Exactly 2n primary fields become irrelevant under 
the crossover. These are the 2n - I fields ~b2p_, = 
41,3, ~2p--n+ 1 . . . . .  ~2p-  1, ~b2p+ 1 . . . . .  ~bp+q-l, which 
have scaling dimensions xL,3 ~ xu < 2, and the field 
~b2p-2, =- ~b2,4, which leaves the Kac table as it does in 
the unitary case. 

We have limited ourselves to diagonal minimal the- 
ories. It would be very interesting to disentangle the 
flows between the other modular invariants, which has 
recently been achieved for the unitary series [23]. 

Under the crossovers considered here, which pre- 
serve the nonunitarity index n, the central charge de- 
creases. This does not rule out crossovers between dif- 
ferent sequences (3) that may violate the c-theorem. 
In fact, the mean-field analysis suggests that the usual 
Ising fixed point is linked to the Yang-Lee fixed point 
through a crossover induced by the imaginary mag- 
netic field and the reduced temperature in a fine-tuned 
linear combination. More generally, we should expect 
nonunitary minimal universality classes to appear in 
the phase diagram of the Landau-Ginzburg model 
(1) when some thermodynamic parameters ;tj take 
imaginary values. All that hints at an extremely rich 
scenario yet to be discovered. Hopefully, this will help 
to answer the question whether some of these univer- 
sality classes occur in nature. 
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