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1 Interfaces, strings and membranes

The critical behavior of interfaces is related to their reduced dimensional-
ity. [1] In some cases, the interface can simply be viewed as a planar 2-
dimensional system. However, it can also ‘escape’ into the third dimension
and then attain nonplanar morphologies. This roughening of the interface
can be thermally excited or induced by frozen randomness. In addition, the
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interface has a certain depth profile and thus has itself a third dimension.
'This intrinsic thickness of the interface can become mesoscopic as in wet-
ting phenomena [1, 2]: one then has a thin layer which is bounded by two
interfaces. The thickening of this layer leads to the unbinding of these two
interfaces, see fig. 1.

These critical effects are not restricted to three dimensions. Indeed,
roughening, wetting and general unbinding phenomena also occur in 2-
dimensional systems where they are governed by the behavior of 1-dimensional
domain boundaries. [3] Since these domain boundaries are governed by a fi-
nite line tension, their statistical mechanics is intimately related to other
1-dimensional lines or strings such as (i) steps or ledges on crystal surfaces,
(ii) stretched (or directed) polymers, and (iii) vortex lines in superconductors.

It turns out that these 1-dimensional strings have scaling properties which
are very similar to those of 2-dimensional membranes, i.e., thin sheets of
molecules. [4] The most prominent examples of such membranes are bilay-
ers of amphiphilic molecules which represent model systems for the rather
complex membranes of biological systems. [4, 5] These membranes are also
roughened by thermally—excited shape fluctuations. In addition, the adhe-
sion and unbinding of membranes can be understood in close analogy to
interfacial wetting, see fig. 1. Adsorption—-desorption transitions of polymers
[6] are a related unbinding phenomenon.

The unbinding of strings and surfaces is often driven by their shape fluc-
tuations which renormalize their direct interaction arising from intermolec-
ular forces. For thermally—excited fluctuations, this renormalization acts to
increase the repulsive part of the interaction. At low temperatures, these
fluctuations are weak and the renormalized interaction closely resembles the
direct interaction. However, as the temperature T is increased, the renor-
malization becomes more and more effective up to a characteristic unbinding
temperature, T' = T, at which the manifolds undergo an transition from a
bound to an unbound state.

The critical behavior at these unbinding transitions involves several di-
verging length scales such as the mean separation or the roughness of these
manifolds . In addition, other quantities such as the probability for local
contacts are also singular at these transitions. This quantity represents a
convenient starting point for a systematic field-theoretic treatment of these
transitions [7].

This article reviews recent theoretical work on these critical phenomena
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Fig. 1. (a) Wetting layer of phase 3 between two bulk phases o and . The thickening of
this layer corresponds to the unbinding of the two interfaces bounding the layer; and (b)
Adhesion of a flexible membrane consisting of a thin layer of molecules towards another
interface. The shape fluctuations of the membrane act to unbind the two surfaces.

[7-14]. It is organized as follows. The scaling behavior of interacting mani-
folds and theoretical models for these systems are briefly reviewed in Sect. 2
and Sect. 3, respectively. Then, in Sect. 4, a new scaling picture is described
[12] in which the probability of local contacts between the interacting mani-
folds plays a prominent role. This scaling picture is developed in some detail
for the case of strings interacting via short-ranged or long-ranged potentials.
In this context, we discuss in Sect. 4.7 the unbinding transition of bundles
of nonintersecting strings in the transfer matrix approach [8, 9, 10, 13]. Sect.
4.8 contains extensions of the scaling picture to other systems.

The scaling picture can be justified in a systematic way by applying con-
tinuum field theory to these systems [7]. The central idea is to treat all
interactions as local operators which form an operator algebra characterizing
their universal short-distance properties. In this article, we do not assume
any knowledge of field-theoretic renormalization; Sect. 5 can also be read as
a self-contained introduction to some ideas in this subject. In Sect. 6 we
apply these methods to a number of more difficult problems in the context of
interfaces 7, 11, 14]: strings with long-ranged interactions, systems of many
strings (which may be “bosonic” or “fermionic”), and interfaces of general di-
mensionality. In all cases, we find a number of nontrivial universality classes.
We conclude this section with a brief outlook.
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2  Scaling behavior of interacting manifolds

In this section, we will introduce the various quantities which are singular at
roughening, wetting and unbinding transitions and define the corresponding
critical exponents.

2.1 Roughness exponent (

As mentioned, low-dimensional manifolds are often rough, i.e., they make
large transverse excursions from their mean or average position. More pre-
cisely, such a manifold is rough if the typical size, £, , of its transverse excur-
sions grows with its lateral size, §. This behavior can usually be described
by the scaling law

&L ~g° (2.1)

which defines the roughness exponent . For interfaces and domain bound-
aries, the universality classes for this exponent are primarily determlned by
the symmetry of the two bulk phases adjacent to the interface.

2.2 Roughening exponent v,

The roughness of the manifold can change as a function of temperature or
some other control parameter. For example, the 2-dimensional interface
between a periodic crystal and its vapor is smooth at low temperatures T with
1 confined by the lattice potential. As the temperature is increased, this
confining potential becomes less and less effective and the interface becomes
delocalized up to a critical temperature T at which it undergoes a roughening
or delocalization transition. For T' > T, the interface is rough at all scales.
Likewise, a domain boundary may be localized at low temperature by a defect
line (in D = 2) or by a defect plane (in D = 3) but may become delocalized
at sufficiently high temperatures.
As the critical temperature, T, is approached from below, the roughness
&1 typically grows as
€~ 1/(T-T)™ (2.2)

which defines the roughening exponent v, . In general, this exponent depends
on the nature of the effective potential confining the interface and one must
distinguish several universality classes or scaling regimes of these potentials.
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2.3 Unbinding exponent v

Now consider two interacting manifolds with local separation [. If these
manifolds undergo an unbinding transition, their mean separation (I} diverges
and grows as

= ()~ 1/(T, =T (2.3)

which defines the unbinding exponent 9. This exponent in general also de-
pends on the nature of the interaction potential experienced by the two
manifolds.

In most cases of interest, the manifolds become rough or delocalized as
they unbind. In fact, we will be primarily interested in situations in which
the unbinding is driven by the roughening of the manifolds. One may then
consider the roughness of the local separation field | which is defined by
& = ([l — (1))*)Y/2. If the unbinding is driven by the shape fluctuations,
one has £, ~ £, and the unbinding exponent % is equal to the roughening
exponent v, (there is one exceptional case where short-ranged attractive
potentials compete with repulsive potentials of ‘intermediate range’, see Sect.
4.6).

2.4 Contact exponent (,

Another quantity which exhibits singular behavior at roughening and un-
binding transitions is the probability P of locally bound segments, i.e., of
local contacts between the interacting manifolds. As discussed in some detail
in the following sections, this quantity is quite generally given in terms of
the one-point function of a local operator ® and vanishes as

Py~ (B) ~ gm0 ~ g 00 (2.4)

close to criticality [7] * This defines the contact exponent (.

The simplest situation is exemplified by an interface characterized by a
Gaussian probability distribution exp(—12/2£2)/£, for the fluctuating field
l. In this case, we have P, ~ 1/£;, and hence the contact exponent ¢, equals

.

* A precise definition of “locally bound segments” must distinguish between “bosonic”
and “fermionic” systems, see eqns. (5.4) and (6.26) below. The exponent (, will be called
z in Sect. 5.
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In general, two cases must be distinguished. If the attractive part of
the potential is sufficiently short-ranged, the exponent (; is related to the
roughening exponent v, via a scaling relation, see the relations (4.19) and
(4.27) below. On the other hand, if the bound state of the manifold is
controlled by an attractive potential which is sufficiently long-ranged, the
exponent v, is determined by this long-ranged potential. The the exponent
(o may still governed by a repulsive short-ranged potential, in which case
the two exponents are independent.

3 Effective models for interacting manifolds

In the continuum limit, the position of each fluctuating manifold can be de-
scribed by a displacement field I = I(s) where s is a dj—dimensional coordinate
parallel to a reference plane. For roughening or delocalization phenomena,
the field ! gives the distance of the manifold from this reference plane; for the
unbinding of two interacting manifolds, this field measures the separation of
these two manifolds.

The effective Hamiltonian for the displacement field | has the generic form
(1]

H{l} = Ho{l} + / VIi(s)]d% s (3.1)

where Ho{l} represents the elastic energy of the shape fluctuations in the
completely unbound state and V(I) is an effective potential which acts to
localize these shape fluctuations. H will also be called the action for the field
l'in order to avoid confusion with the corresponding Hamilton operator H,
the infinitesimal generator of the transfer matrix.

For roughening and delocalization phenomena, the potential V(l) can
describe the effect of an underlying lattice which may be periodic [15] o
quasi-periodic [16] Below, we will discuss the influence of a defect line (or
defect plane) which acts to localize the interface. In this latter case, the
potential V(I) is taken to be symmetric and to have local minima at the
position of the defect and for | = +o00. [7]

For wetting and adhesion phenomena, the potential V(I) describes the
interaction energy of the two manifolds at separation . Usually, the two
manifolds cannot intersect one another, and this interaction potential con-
tains a hard wall at [ = 0 which ensures that the displacement field satisfies
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[>0.
In Sections 4.7 and 6.2, we will also study the case of many interacting
lines and thus of a large number of displacement fields.

4 A refined scaling picture for unbinding
phenomena

A localized manifold can be regarded as an ensemble of essentially uncorre-
lated humps, see fig. 2 below. This view leads to the concept of a fluctuation—
induced interaction Vy; between the manifolds. In the case of thermally-
excited fluctuations, Vy; represents the loss of entropy arising from the con-
finement. This fluctuation-induced interaction can be used in a heuristic
way in order to understand the critical behavior at unbinding transitions.

It has been previously emphasized that a simple superposition of Vy
and the direct interaction V(I) does not predict the correct critical behavior
unless the interaction V(l) is sufficiently long-ranged. {17] Here, a refined
scaling picture [12] based on a two-state model for the interacting segments
of the manifolds is described which is appropriate for any type of interaction
potential. This scaling picture can be justified in a systematic way in the
field-theoretic framework [7] described in Sections 5 and 6 below. A cru-
cial role is played by the probability that two segments of the interacting
manifolds form locally bound pairs.

In the following section, the refined scaling picture will be first described
for 1-dimensional strings governed by a finite line tension. The case of wetting
in two dimensions, i.e., of two strings in D = 1 4+ 1 dimensions interacting
via general pair potentials is discussed in some detail. For the special case of
attractive square—well potentials, similar scaling ideas have been previously
formulated for the so—called reflection model in Ref. [18]. The extension of
the refined scaling picture to other types of manifolds is briefly described
in Sect.4.7 and 4.8. The same picture can be formulated for bundles and
bunches of N manifolds where it leads to a N—state model. [12]

Now consider two interacting strings in 1+ 1 dimensions with line tensions
71 and o9, respectively. The action (or effective Hamiltonian) for their local
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separation (or relative displacement field) [ is given by

iy = [ {%a(dl/ds)z +V{i()] }ds (4.1)

with the reduced line tension ¢ = 0y02/(01+03). If one string has an infinite
stiffness, say o3 = o0, corresponding to a straight rigid boundary, one has
o=o01/2

This model can be analysed in much detail by transfer matrix methods,
and one can obtain the exact critical behavior for many potentials V(I). From
these latter results, one knows that there are several universality classes
for the unbinding transition which depend on the long-ranged part of the
interaction potentials. As shown below, the refined scaling picture is valid
for all of these universality classes.

4.1 Two-state model for interacting strings

In general, the direct interaction potential V(I) will contain a short-ranged
part and a longer-ranged part, which will be denoted by Vy(I) and Vy(1),
respectively (the indices b und ub will become clear in a moment). It will be
convenient to introduce a microscopic length scale I, and to define these two
parts of the potential via

Vb(l) = V(l) for l< lb (42)

and
V() = V(1) for 1>1, |, (4.3)

respectively.

If the interaction potential contains an attractive short-ranged part, the
scale ly is given by the potential range of this attractive part. If the short—
ranged potential is purely repulsive, the choice of I, is somewhat arbitrary
but it should be small compared to the length scales which enter the long—
ranged part. In any case, the short-ranged part will contain the hard wall
interaction which ensures that the two manifolds cannot intersect.

Two string segments which interact via such a potential can attain two
different local states, see fig. 2: (i) They are locally unbound if their sepa-
ration exceeds the length scale l,; and (ii) They form a locally bound pair if
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Fig. 2. The bound state of two strings consists of humps which have lateral and transverse
extension £, and £;, respectively. The microscopic scale I, represents the range of the
short-ranged part of the interaction potential. Two adjacent segments of the two strings
are locally bound and unbound with probability P, and P,s, respectively.

their separation is smaller than l,. The probabilities for these two different
local configurations will be denoted by P, and Py, respectively.

Note that even if the string segments are locally unbound, they still have
a finite separation. Therefore, compared to the situation in which the strings
are completely separated, locally unbound segments have an excess free en-
ergy AF,; per unit length. Likewise, the excess free energy per unit area of
a locally bound pair will be denoted by AF,. Thus, the excess free energy
per unit length of the two strings can be estimated as

AF = AF, Py + AF, Py . (44)

If the unbinding transition is continuous, both the excess free energy AFy,
of the locally unbound segments and the probability P, for locally bound
pairs must vanish in a continuous way whereas Py = 1 — P, = 1 as the
transition is approached. In addition, all critical quantities should scale with
a single length scale which is here taken to be the roughness &, of the string
separation. Since £, diverges at the transition, one anticipates that both
AFy, and Py scale as inverse powers of & .

The excess free energy AF;, for bound segments, on the other hand, arises
from configurations which have a separation of the order of the microscopic
length scale [, and, thus, will not depend on the diverging scale &, .
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4.2 Excess free energy of locally unbound segments

As indicated in fig. 2, the fluctuations in the string separation ! can be
regarded as an ensemble of humps which have the typical height £, and the
longitudinal extension &;. Since the string separation is governed by a line
tension, it diffuses like a (directed) random walk. Therefore, the two length
scales £ and | satisfy the scaling relation

£L ~ (T)o) 2 g2, (4.5)

i.e., the roughness exponent has the value { = 1/2.

Each hump of longitudinal and perpendicular extension £ and £, has the
volume V =~ §,. Assuming that these humps are essentially uncorrelated
and using the ideal gas law PV =T for a single degree of freedom together
with the relation (4.5), one arrives at the pressure P ~ T?/0€,%. Alterna-
tively, one may allude to the equipartition theorem and postulate that each
such hump has a free energy ~ T. This implies that the hump free energy
per unit (projected) area behaves as

Vau(€r) ~T/g ~ T?/o& for large £, . (4.6)

The disjoining pressure is now obtained from P = dV;;/0€, . This estimate of
the excess free energy of interacting strings is implicit in the work of Gruber
and Mullins on steps or ledges on crystal surfaces [19] and has been explic-
itly derived by Prokovsky and Talapov for commensurate-incommensurate
transitions in two dimensions [20].

Thus, the locally unbound segments suffer a loss of entropy per unit length
which is given by V(€ ) and which represents one contribution to the excess
free energy AFyp. In addition, these segments also have an interaction energy
Vus(l). It is plausible to assume and it can be checked a posteriori that the
mean separation ¢ = (l) is proportional to £, close to the transition. In such
a situation, the excess free energy of the locally unbound segments can be
estimated as

AFy = aT?/o€2 + Vp(cbl) . (4.7)

Thus, for all long-ranged interactions which decay faster than ~ 1/I2? for
large [, one has AF,, ~ 1/£3.
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4.3 Scaling form for the probability distribution

Next, let us address the dependence of the probability P, for locally bound
segments on the roughness scale {,. In general, the probability distribution
P(l) for the string separation [ should have the scaling form

Pl)~Q/E1)/6L  for 1> (4.8)

where the explicit factor 1/£, arises from normalization. The probability P,
can then be estimated as

Pb ~ lbp(lb) = (lb/gl)ﬂ(lb/f_l_) . (49)

Therefore, the probability P, is determined by the behavior of Q(s) for small
s.

For strings in two dimensions, the probability distribution P(l) is given
in terms of the ground state wavefunction of the transfer matrix operator
which can be explicitly calculated for many potentials. The results of these
calculations will be described in the following subsections 4.5 and 4.6. In all
cases, one finds the scaling behavior

Q(s) ~ go-! forsmalls  with(y >0 (4.10)

provided (i) the transition is continuous and (ii) the mean separation £ ~ &L
as assumed here (exceptions occur for interaction potentials with a long—
ranged repulsive part which decays to zero not faster than ~ 1 /€2). The
relation (4.10) implies that the probability for locally bound segments be-
haves as

Py~ 1/6.7%0 ~ 1/ (4.11)

4.4 Competition between locally bound and unbound
segments

Now, we can insert the two relations (4.11) and (4.7) into the expression (4.4)
for the excess free energy in order to arrive at the estimate

AF ~ ClT2/0'§i + Vub(Cgﬁl) -+ C3AFb/§J_2CO (412)

in the limit of large £, where ¢;, c; and ¢; are dimensionless and positive
coefficients.
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The continuous unbinding of the two strings now correponds to a min-
imum of AF with respect to £, which goes continuously to infinity as the
temperature or some interaction parameters are varied and the unbinding
transition is approached.

Since the first term in (4.12) is positive, either the second or the third
term must be negative in order to have a minimum of AF at a finite value
of {4, i.e., in order to have a bound state of the two strings. The third term,
AF}, Py, for locally bound segments, involves the exponent ¢, which has not
been specified so far. A balance of this term with the two other terms in
(4.12) shows that two cases must be distinguished: (i) For 0 < ¢, < 1, the
third term dominates provided the long-ranged part Vy,(l) does not decay
more slowly than ~ 1/i2. The unbinding transition then occurs as AF, goes
to zero from below, and the critical behavior of £, is directly related to the
probability Py; and (ii) For 1 < (o < o0, a bound state is only possible
for an attractive interaction Viy(l) < 0 which grows for large I or decays
more slowly than ~ 1/I2. In this case, unbinding occurs as this long-ranged
attractive part goes to zero, and the corresponding critical behavior of £, is
not affected by the probability P,.

4.5 Strong—fluctuation regime

The so—called strong—fluctuation regime consists of all interaction potential;
which decay faster to zero than ~ 1/I? for large [. First, consider the cas
of an attractive square-well potential of depth |U| and range I,. In this case
the longer-ranged part V, is identically zero. The excess free energy fo
bound pairs can be estimated as AF, ~ —|U| + ¢T?/ol,? where the first an
the second term represent the interaction energy and the entropy loss withi

the square well, respectively. In addition, transfer matrix calculations sho

that the probability distribution P(l) exhibits the scaling form (4.8) wit

Q(s) ~ e~*. Since £2(s) ~ const for small s, one has

G=1/2 and Py~1/& . (4.1

If these expressions are inserted into the excess free energy AF, mi
mization with respect to £, leads to

L~ 1/|AF,|™* with v, =1 (4.0
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which is indeed the correct critical behavior for the unbinding transition
within a square-well potential. [21, 22]

The same critical behavior applies to all potentials within the strong-
fluctuation regime, i.e., to all potentials with a tail V(1) which decays faster
than ~ 1/l%. [23] This can be understood by inspection of the expression
(4.12) for the excess free energy: the tail V,(c£,) is irrelevant compared to
the short-ranged part AF, P, ~ AF,/£,%° provided the exponent o still
has the value (o = 1/2 . Thus, these interaction potentials are short-ranged
even though there tails decay as inverse powers.

On the other hand, if the short-ranged potential is repulsive, field-theoretic
renormalization group calculations (7, 11}, described in Sect.5 below, and ex-
act transfer matrix calculations [13] yield

G=3/2 and P,~1/63° . (4.15)

Since this probability decays faster than the entropy loss ~ 1/¢2 and since
AFy is always positive, the term AF, P, does not affect the minimum of AF
and thus does not affect the critical behavior of £, .

For example, one may confine the strings by a potential V,,(I) ~ I or
~ [? and consider the limit in which the amplitude of such a potential goes
to zero. In fact, the same value {, = 3/2 applies to all attractive long—
ranged potentials which decay more slowly than ~ 1/I2. The marginal case
Vus ~ 1/12, on the other hand, is more complex since it leads to a nonuniversal
value for (y as discussed in the next subsection.

4.6 Intermediate fluctuation regime
Now, consider interaction potentials which behave as

V() ~ W/I? for large | (4.16)

which defines the so-called intermediate fluctuation regime. [24] In this case,
the behavior of the probability distribution P(l) = Q(l/€,)/€, for small
depends explicitly on the dimensionless parameter

w=20W/T? (4.17)

where ¢ and T are the string tension and the temperature, as before.
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In fact, when considered as a function of w, the exponent {, has two
branches depending on the sign of the short-ranged part of the interaction
potential. For attractive short-ranged potentials, the probability distribution
can be calculated using the results of Ref. [24]. As a result, one finds the
singular behavior

Q(s) ~ ¥ with (o=1-w+1/4 (4.18)

for small s. If these values for {, are used in the expression for AF, mini-
mization of this excess free energy leads to

€_L ~ 1/|AF},|Vi with vy = 1/(2 - 2<0) (419)

which is again the correct critical behavior at the unbinding transitions. The
case of a short-ranged potential is recovered for w = 0 with ¢, = 1/2 and
vy, = 1. Thus, the roughening exponent v, and the contact exponent (, are
not independent but satisfy a scaling relation in this case.

The critical behavior as given by (4.19) applies to —1/4 < w < 3/4.
For w < —1/4, the attractive potential V() ~ 1/I2 is so strong, that
the two strings cannot unbind. For w > 3/4, on the other hand, one has a
relatively large potential barrier, and one then enters the so—called subregime
(C) in which the probability distribution P(I) has the scaling from P(l) =
(/€)1 Q(l/€1) with p = \Jw+1/4 and Q(s) ~ '~ for small s. [25]
This implies that the probability distribution P(l) attains the limiting form
P(l) ~ 1'=2* and P, = P(ly) ~ const at the unbinding transition.

The interactions within the intermediate fluctuation regime have also
been studied by functional renormalization. [26, 27, 28] As a result, one finds
a parabolic renormalization group flow with a whole line of fixed points. The
fixed point line has two branches corresponding (i) to critical wetting transi-
tions in the presence of attractive short-ranged potentials, and (ii) to com-
pletely wet states for repulsive short-ranged potentials. The latter branch
is governed by completely repulsive fixed points at which the short-ranged
potentials represent irrelevant perturbations. The corresponding scaling in-
dex depends on w. In two dimensions, one may set up an exact functional
renormalization group (RG) in which the transfer matrix is diagonalized in
an iterative manner. The scaling indices obtained from numerical iterations
of this RG transformation [27] imply the contact exponent

Co=1+w+1/4 . (4.20)
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The case of short-ranged potentials is again recovered for w = 0 with ¢, =
3/2. Thus, if the strings experience an effectively repulsive short-ranged
potential, the probability for local contacts is more and more suppressed
with increasing w or W.

It is interesting to note that the intermediate fluctuation regime charac-
terized by the contact exponents as given in (4.19) and (4.20) also applies to
several other string systems if one makes an appropriate identification of the
parameter w. First of all, the same critical behavior is found if the interac-
tion potential V(I) is symmetric and does not contain a hard wall. [29] Such
a potential would arise, e.g., for a domain boundary with stiffness ¢; which
interact with a plane of defects. In this case, w is still given by (4.17) with
g =0, / 2.

Secondly, two strings in D = 1 + d, dimensions interacting with short—
ranged interaction potentials belong to this intermediate regime. In this
case, one has w = (d; — 3)(dy — 1)/4 [25] and thus

Coldr) =1=£|dL—2]/2 . (4.21)

Thus, there are two branches for the contact exponent with (o = d. /2 and
Co = 2—d, /2, respectively, which cross at d; = 2. The branch with Go=4dy /2
represents effectively Gaussian fluctuations with P(l) ~ exp[—I2/2¢, %] /€, 4+.

For 1 < d, < 2, the critical unbinding transition and the completely
unbound state are characterized by (o = d1/2 and by (o = 2 — d, /2, re-
spectively. For di > 2, the two branches have exchanged and the critical
unbinding transition now corresponds to (o = 2 — d; /2. The latter value is
valid up to d; = 4; for d, > 4, one has w > 3/4 and thus enters the so—~called
subregime (C) as explained above.

Thirdly, the necklace models that we discuss in Sect. 4.7 can also be
mapped onto the intermediate fluctuation regime.

4.7 Necklace models and nonintersecting strings

Consider the necklace model for three strings with line tensions o, oy and o3
30, 8]: the strings interact via a hard-wall pair potential, which ensures that
they cannot intersect, and via a short-ranged attractive 3-body force. Thus,
the two outer strings experience the 3-body force and an effective repulsion
arising from the confinement of the interior string. The entropy loss of the
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interior string behaves as ~ 1/1? which implies that the effective repulsion
between the two outer strings scales in the same way.

This necklace model is characterized by the parameter w = (r/8)2 —
1/4 With tan(ﬁ) = \/(0’2/0’1) + (0’2/0’3) -+ (0’22/0'10'3) and 0 _<_ 0 S 7I'/2. [8]
It then follows from (4.18) and (4.19) that ¢(4(3) = 1+ #/f. The minus
sign corresponds to unbinding transitions in the presence of an effectively
attractive 3-body force. However, since the minus sign leads to ¢, < 0
corresponding to w > 3/4, these transitions belong to subregime (C) for
which (o = 0. On the other hand, if the short-ranged 3-body force between
the three strings is effectively repulsive, this system is characterized by the
contact exponent

@) =1+7/0 . (4.22)

Thus, if one keeps the three strings together by an external pressure or by
some other long-ranged potential, the probability Ps, that all 3 strings form
a local bound state behaves as Py, ~ 1 /5"@(3). As the line tension o of
the interior string decreases, the angle § decreases and the contact exponent
Co increases. This is rather intuitive: as the interior string fluctuates more
strongly, local contacts between the two outer strings become less likely.

The necklace model for m identical strings as described in Refs. [31, 32
also belongs to the intermediate fluctuation regime [33]. In this latter model,
the strings again experience hard wall potentials between nearest neighbors
and thus do not intersect whereas their attractive interaction is restricted
to a short-ranged m-body potential. In this case, the parameter w has the
value w = [(m? — 3)% — 1]/4 [33] and the two relations (4.18) and (4.19) for
Co lead to (o(m) = 1+ |m? — 3|/2. For m = 2, one recovers the contact
exponents for two strings and w = 0: there are no interior strings in this case
and, therefore, there is no effective repulsion ~ 1/12.

For m > 3, on the other hand, the branch of {o(m) = 1+ |m?2 — 3|/2 with
the minus sign corresponds to critical transitions in the presence of attractive
m~body forces which again belong to subregime (C). Likewise, the branch
with the plus sign again correponds to effectively repulsive m~body forces
for which one has

Go(m) = (m? -1)/2 . (4.23)

Now, this exponent governs the probability P,., that all m identical strings
form a local bound state, i.e., P, ~ 1 /5”@("‘) where a finite value of ¢
is enforced by an external pressure or by another long-ranged potential.
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The values (4.23) for the contact exponents have previously been derived by
field-theoretic renormalization [11]; they are the scaling dimensions of the
m-string contact operators (6.26) at the free Fermi fixed point (see (6.25)
below). They govern the contact probabilities P, as long as all attractive
interactions are sufficiently weak

In systems of several nonintersecting strings, there may be two-body and
many-body interactions of either sign. Numerical transfer matrix results [§]
as well as Monte Carlo simulations of bundles of strings or membranes [10]
indicate in general a second order unbinding transition not in the universality
class of the necklace model with a transition temperature that is independent
of the number N of strings. This is understandable from the scaling picture
[12] since with attractive pair forces the unbinding should be governed by
Pap alone. However, the effective critical exponents were found to depend on
N over the numerically accessible range of scales [8, 10].

On the other hand, if only pair interactions are taken into account, the
transfer matrix can be mapped onto that of a spin 1/2 xzz quantum spin
chain; this model is soluble by a Bethe ansatz and yields the N-independent
“Gaussian” exponents v, = 1 and v; = 2 [9]. (Bethe ansatz methods may
be extended to treat the unbinding of a system of such strings from a wall
13].)

The renormalization group discussed in Sect. 6.2 [11] reconciles these
two results: if the unbinding is driven by pair forces, it is in the Gaussian
universality class for an arbitrary number of strings, but the three-particle
interactions contribute large corrections to scaling that may account for the
N-dependence of the effective exponents. Moreover, there is a discrete se-
quence of new universality classes characterized by (o = 0.

4.8 Extension to interfaces and membranes

The scaling picture for interacting strings as described above can be easily
extended in the following way. First of all, the fluctuating humps of the
manifolds will in general be governed by £, ~ {”C with ( # 1/2. Asin the case
of interacting strings, the roughness exponent { determines the fluctuation—
induced interaction Vs between the manifolds which can represent a loss
of entropy or an increase in energy. The latter situation arises in systems
with quenched or frozen randomness for which the manifolds are subject to
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a random potential. For thermally—excited fluctuations, one has
Vﬂ ~ 1/55_ With T = dII/C . (424)

The case of 1-dimensional strings corresponds to di=1,{(=1/2and 7 = 2.
For fluctuations induced by quenched or frozen randomness, one has [34]

Thus, the excess free energy of two interacting manifolds can now be
written in the form

AF ~ ClA/fi + Vub(Cgﬁ_L) + AFb/g_LCO/C (426)

Minimization of this expression with respect to £, now leads to £, ~ 1/|AF,|*+
with the roughening exponent

vy =1/(t=G/¢) - (4.27)
One nontrivial check of this prediction can be obtained for wetting in
2-dimensional random bond systems. In this case, one has two interacting
strings which feel a random potential with short-ranged correlations, and the
roughness exponent has the value ¢ = 2/3 which implies the decay exponent
7 = 1. For a square-well potential, transfer matrix calculations using the
replica trick lead to the scaling form P(l) ~ Q(1/€,)/€, for the probability
distribution P(I) with the singular behavior Q(s) ~ 1/s'/2 for small s, see
(1], p-317. This implies (o/¢ = 1 — 1/2 = 1/2. Thus, the excess free energy
becomes

AF ~c)AJE) + AF, 12 . (4.28)

Minimization of this expression with respect to £, leads to the critical be-
havior
€_L ~ 1/|AFb|VJ‘ with vy = 2 (429)

at the wetting transition. This agrees with the critical behavior as obtained
via transfer matrix methods. [35, 36]

On the other hand, repulsive short-ranged potentials should also be char-
acterized, in general, by a nontrivial value for the contact exponent (o. The
expression (4.26) for the excess free energy implies that, in this latter case,
the exponent ¢, should satisfy the inequality ¢, /¢ > 7 which implies

C2dp  and (o> 2(1-() (4.30)

for thermally—-excited fluctuations and for fluctuations excited by frozen ran-
domness, respectively.
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