VOLUME 75, NUMBER 11

PHYSICAL REVIEW LETTERS

11 SEPTEMBER 1995

Interacting Flux Lines in a Random Medium

Harald Kinzelbach' and Michael Lissig!?

Vnstitut fiir Festkorperforschung, Forschungszentrum, 52425 Jiilich, Germany
2Max-Planck-Institut fiir Kolloid- und Grenzflichenforschung, 14513 Teltow, Germany
(Received 8 December 1994)

We study the continuum field theory for an ensemble of directed lines r;(¢) in 1 + d’ dimensions that
live in a medium with quenched point disorder and interact via short-range pair forces gW(r; — r;).
In the strong-disorder (or low-temperature) regime, attractive forces generate a bound state with
localization length ¢, ~ |g|™"*; repulsive forces lead to mutual avoidance with a pair distribution

function P(r; — r;) ~ Ir; — r;|°

d' =2, weobtain v, = 0.8 and § = 0.4.
PACS numbers: 74.60.Ge, 64.60.Ak

Dirty type-II superconductors are a well-known system
with quenched disorder [1]. Close to the lower critical
field h.;, their magnetic flux lines have an average
distance R much larger than the London penetration depth
lp, and can, hence, effectively be regarded as a dilute
ensemble of fluctuating 1D objects, also called directed
polymers [2]. (These are of interest also because of their
links to more complicated random systems such as to
spin glasses [3], to surface growth [4,5], and to randomly
driven hydrodynamics [6].) The statistical properties of
the lines differ from those of free, thermally fluctuating
lines. Moreover, the disorder modifies their interactions
with other objects. For example, the pinning of flux
lines by columnar or planar defects has been studied
experimentally [7]. Much theoretical work has been
concerned with the low-density limit of a single line in
a disordered medium. Its interaction with a columnar
defect, for example, turns out to be weaker than in a
pure system. A weakly attractive defect localizes the line
only up to the borderline dimension d, = 1; in higher
dimensions, the transition to a localized state takes place
at finite coupling strength [8,9]. In a pure system, the
borderline dimension is d. = 2 [10].

Mutual interactions between several identical lines in
a disordered medium are the subject of this Letter.
Somewhat surprisingly, we find such forces to act in a
stronger way than in a pure system: They lead to long-
ranged effects on the lines in any dimension where the
low-temperature behavior of a single line is governed by
nonthermal scaling exponents. To obtain our results, we
use systematic methods of quantum field theory. Related
aspects of this system have been treated by Bethe ansatz
[11] and numerically [12] in d’ = 1, on a hierarchical
lattice [13] (these results also indicate the relevance of
such forces in higher dimensions), and in a Wilson
renormalization group [14,15] (see the remarks below).

Weakly attractive short-ranged forces are shown to
localize the lines to a bundle of width &, ~ |g|™"*
for small interaction strength g. In a pure system, the
localization would require a finite strength g above the
borderline dimension d], = 2

2208 0031-9007/95/75(11)/2208(4)$06.00

reminiscent of fermions. In the experimentally important dimension

Of equal importance are short-ranged repulsive forces;
for example, the magnetic interaction between flux lines
decays exponentially on the microscopic scale ly. For a
dilute system of thermal lines, such forces are important
only in d’ = 1, where they act as an effective constraint
on the fluctuations that is equivalent to the Pauli principle:
On mesoscopic scales lp < |r; — rj| < R, the lines
behave like the world lines of free fermions characterized
by a pair distribution function P(r; — r;) ~ Ir; — r;|’
with & = 2 [16—18]. For d’ > 1, short-ranged forces
have no effect on P(r; — r;) beyond the scale Iy, i.e.,
6 = 0. In the presence of disorder, however, we find
that P(r; — r;) obeys an asymptotic power law also
for d’ > 1, with a new exponent 6 that depends on
d’. The strong effect of repulsive interactions can be
understood qualitatively from the energetic competition
with an effective line-line attraction due to the impurities.
In almost all realizations of the disorder, there is a unique
ground state, i.e., a path of minimal energy [19]. At
low temperatures and without direct forces, two lines
will share this path with finite probability even in a
system of infinite size [12,20] as expressed by Eq. (3)
below. Repulsive interactions, however, force one of
the lines to a (distant) excited path. In other words,
the behavior of several lines with contact interactions
in a random medium efficiently probes the statistics of
excitations for a single line. This property may be used
to obtain information on the theoretically important, but
still unresolved, question of the upper critical dimension
of the single-line system (see the discussion at the end of
this Letter).

On a mesoscopic scale, a system of p lines in a
random medium is described by an effective continuum
Hamiltonian

9t =5 [al3(5) - o)

i=1
+ ngdt\I’ij(t). (1)

i<j
Here r;(r) denotes the displacement vectors of the lines in
d’ transversal dimensions as a function of the longitudinal
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“timelike” coordinate f. All lines are subject to the
same random potential 7 (r, r) which models the quenched
point defects. It is assumed to be Gauss distributed with
n(r,1) =0 and n(r,0)nk’,t) = 20284 (r — r')6(t —
t'). Averages over disorder are denoted by an overbar
and thermal averages by brackets (---). The direct pair
interaction, which is assumed to be short ranged, is
described by the continuum fields W;;(r) = 8% (r;(t) —
rj(¢)). The pair distribution function P(r; — r;) in the
dilute limit |r; — r;| << R may then be obtained by
neglecting the direct interaction with all other lines, i.e.,
from the restricted Hamiltonian (1) for these two lines
(p = 2) in a system of transversal size R.

For g = 0, the two lines feel only the random poten-
tial, and the free energy of the system is just twice the
free energy of a single line. The continuum field theory
for this system serves as the starting point for a systematic
renormalized perturbation theory in the line-line coupling
g. The analysis is complicated by the fact that even the
“free” theory (g = 0) has non-Gaussian multipoint corre-
lations due to the quenched averaging. Nevertheless, we
are able to obtain, solely in terms of single-line proper-
ties, the scaling dimension and the form of the operator
product expansion of the pair interaction field W1,(z) [see
(3) and (4) below]. These determine the renormalization
group equations for the interaction strength to leading or-
der, and hence the phase diagram of the system [21].

The large-scale behavior of a single line is generated
by the sample-to-sample fluctuations of the ground state
paths and defines two important exponents. The rough-
ness exponent { characterizes the mean transversal excur-
sions of the line, given, e.g., by the two-point function
r(t) — r(z/}]?) ~ |t — ¢/|>). The exponent —w is the
anomalous dimension of the disorder-averaged free en-
ergy F = B 'InTrexp(—BH ), whose universal part has
the scaling form F(T,R) ~ T“ F(R/T?) in a finite sys-
tem of transversal size R and longitudinal size 7' [22].
The two exponents are related by a “tilt” symmetry of
the system, w = 2{ — 1 (see, e.g., [5,23]). In low di-
mensions, { is always larger than in the case of thermal
fluctuations, namely, { = 2/3 for d’ = 1 and ¢ = 0.62
for d’ = 2. For d’ > 2, a phase transition appears at a
finite temperature; in the high-temperature phase, the sys-
tem is asymptotically thermal, i.e., { = 1/2 and w = 0
(see, e.g., [5], and references therein). Whether a finite
upper critical dimension d. exists, such that for d’ = d.
the thermal exponents govern also the low-temperature
phase, is controversial, some workers believe d. =~ 4
[24]. In the continuum theory (1) with g = 0, the large-
scale regime is reached in a crossover from the Gauss-
ian theory with characteristic longitudinal length §|| =
B(o?B3)~%2=4)  We have discussed the renormalized
continuum field theory for this regime in Ref. [9]. Its
construction involves a reparametrization of the transver-

sal displacement and of the free energy, r — BgY sz/ g
and F — Bfn F, such that the renormalized variables re-

2—»00)_

d'/2
The additional reparametrlzatlon Wi, — B~ d//zf / Vi,

and g — B'*4/ 2§” g keeps all correlation functions
of the pair field free of singularities in this limit, as we
will see explicitly below. This is accompanied by a tem-
perature reparametrization; the renormalized temperature
B!~ El’f is an irrelevant scaling variable of dimension
—w.

With this renormalized theory for ¢ = 0 at hand, the
effect of pair interactions may now be expanded in
powers of g. For example, the perturbation series for
the free energy density f = limy_« F/T in a system of

transversal size R = LY,
N
Alz( Bg) fdtz"'dtN

Wia(tn))e,

2)

involves integrals over connected correlation functions of
the pair field W, evaluated at g = 0. We are, hence,
led to study these correlation functions. While they are
finite by construction, the ‘“time” integrations generate
new singularities that have to be handled by an additional
renormalization. The one-point function (W5(z)) gives
the probability density that the two lines intersect at time
t, averaged over thermal and disorder fluctuations. We
will show below that for R/ > §|,

(W12(1)) = bR, 3)

where b is a constant independent of gll. Hence W ,(1)
can be regarded as a scaling field of dimension zero. The
higher connected correlation functions of the local pair
field ¥, can be shown to obey the operator algebra

V()W) =cB e — I179Wn() + - (@)

with a coefficient ¢ > 0, which is valid as an asymp-
totic identity inserted into any such correlation function
(=W (6)Wa(2') - - )¢ for t — t'. This type of operator
algebra is familiar from Ref. [9] (where the reader is re-
ferred to for a more detailed discussion): The field ¥,
couples to itself, but the leading singularity in (4) involves
a correction-to-scaling exponent related to the irrelevant
coupling constant B!, It is instructive to compare (3)
and (4) with the case of thermally fluctuating lines (n =
0) [18]. The intersection probability is then just the in-
verse transversal volume, (W1,(¢)) = R~¢. The operator
algebra W, ()W 12(t") ~ |t — ¢/|74/2W ,(t') + --- has a
stronger singularity than in the random case, originating
from the return probability of the Gaussian paths r; and
rp to each other after a “time” |t — ¢/|.

To establish Eq. (3), it is useful to study the pair dis-
tribution function P(d) = (89 (r1(¢) — r2(z) — d)), i.e.,
the probability density that the two lines have the relative
displacement d. We find that for g = 0 and in the limit

main finite in the limit &y — 0 (i.e., 37! — Oor o

f(g.L) = f(0,L) =

X AW (0)Wa(t2) - -

2209
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R — o, P has a scaling form that depends only on |d|
and & with the asymptotics [25]

Eirld|~ @)t for |d] > &,
f” ae for 'dl < fﬁ
Recall that EI‘{’ is the renormalized temperature ,8’1.
Hence with finite probability the two lines share a com-
mon “tube” of width éﬁ G.e., |d|l < Eﬁr), but they do
make large excursions whose probabilities decay with
a power of |d| such that all positive integer moments
[d¥d|d[*P(d) diverge for R — oo [26]. [This is what
distinguishes (5) from a bound state probability distribu-
tion, where large separations are exponentially suppressed
and all moments remain finite.] The expectation value of
the pair potential W, at g = 0 involves an integral over
the potential function times P(d). If ¥, has a micro-
scopic range [y, this integral does not depend on R which
is just (/3). For [ < Eﬁ, the integral develops a singular-

ity Snﬂl ¢ that we have absorbed into the definition of the
renormalized field ¥ ,.

By analogy with the case of thermal lines, the form
of the operator algebra (4) is already obvious: The

P(d) ~ ()

leading short-distance singularity between intersections
W1,(r) and Wi,(¢') should be given by the intersection
field W ,(¢) itself, times a modified return probability
of the random paths to each other. To calculate that
singularity, we exploit the exact mapping [15] of the
polymer system defined by (1) to a generalized Kardar-
Parisi-Zhang equation (4): If Z(r;,ra,7) denotes the
restricted partition sum over all two-line configurations
with fixed end points (ry,r,7), the field A(ry,rs, 1) =
B 'InZ(ry,ry, t) obeys

A 2
V25 n 2
Vih 5 2 Ve

n(r,,t) — g8%(r; — ). (6)

Jd:h = v

WMNIMN

From (6), one constructs in a standard way the generating
functional of the dynamic correlation functions [27] which
are denoted by ((---)). This functional integral involves
the field # and an auxiliary field /. Insertions of the
auxiliary field generate response functions which are
directly related to connected polymer averages [9],

B8 (e1 (1) — s1)89 (r2(11) — s1)- -

= }im«h(l‘l,l‘z, T)h(s1,s'1,11) -

The pair field W1,(z) is therefore mapped onto the dy-
namic field ¢(t) = [d¥rh(r,r, ). It is straightforward
to show that ¢(¢) has dimension @ (with time as the ba-
sic scale). Hence its self-coupling has to be of the form
JOF() ~ |t — |7 g () + ---. Transforming back
to the polymer system then gives (4).

The operator algebra (4) determines the renormalization
group of the perturbation series (2) to one-loop order [9].
Inserting (3) and (4) into (2), we find

Flg.L) — F(O.L) = L™*(¥y2) (u - uz)
&

+ 03, %?) (8)

in terms of the dimensionless coupling u = gL® and
the expansion parameter € = 1 — w(d’). Absorbing the
pole in & into a renormalized pair coupling ug = Z(u)u
with Z(u) = 1 — (¢/e)ug + O(u%) then yields the flow
equation Ldpup = gup — cur + O(u%). To the given
order, this equation has the two fixed points ug = 0 and
ugr = (I — w)/c. In any physical dimension d’, one has
e > 0. Hence the trivial fixed point ug = 0 is unstable,
and the interaction is a relevant perturbation. This result
is at variance [28] with Ref. [14].

Any attractive line-line force (g < 0) grows indefi-
nitely in magnitude under the renormalization. The sys-
tem develops a bound state with transversal localization
length £,. As g /0, the lines unbind continuously, i.e.,
& diverges as

2210

5d’(rl(tm) - Sm)éd,(rZ(tm) - Slm»c
PSS 15 tm))) - (7)
~ vy 1 — £ — 1+ o
lgl with v, e 20 =) C))

With a repulsive interaction (g > 0), however, the
large-scale behavior of the two-line system is determined
by the nontrivial fixed point ug. At this fixed point,
the pair field ¥, acquires the new dimension x* =
2(1 — w) + O((1 — w)?) that determines the large-scale
asymptotics of the pair distribution function. For exam-
ple, the probability of intersection in a system of transver-
sal size R scales as (W,(r)) ~ R™*/¢. Unlike in the
case without pair interactions, the probability of inter-
section now approaches zero in the limit R — o: The
lines avoid each other completely. Moreover, for R >
[r; — rp] > £, (g) the pair distribution function behaves
as

P(ry — 1) ~ Irp — raf’ (10)

with @ = x*/¢{ — d' (i.e.,0 = 1ford = land 0 = 0.4
for d' = 2), as follows by standard scaling arguments.
We may use these results to obtain the finite-size scal-
ing of the “overlap” ¢(T,g) = T ™! fg dt'{(V (")) (T, g)
in a system of longitudinal length T and with R — o,
a quantity that is discussed in the literature [12,13,15].
We have ¢(T,g) = q(T,0)Q(T /&) = Q(gT'~*), using
q(T,0) ~ T° by (3) and the scaling of the longitudinal
correlation length &) ~ fi{ given by (9). For d' =
1, where 1 — w = 2/3, this scaling form agrees with
Mézard’s conjecture [12] (which is based on numerical
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simulations) and with Mukherji’s standard dynamic renor-
malization group [15] for Eq. (6). The latter approach,
however, gives no information on the strong-coupling
phase in any dimension d’ > 1.

In summary, we have shown that directed lines in a
highly disordered medium respond to pair forces in a
stronger way than lines with purely thermal fluctuations.
In any dimension d’ < d., they form a bound state
with attractive forces; with repulsive forces they avoid
each other, as described by the pair distribution function
(10). The reason for this strong effect of short-ranged
interactions is that when they are absent, the disorder
forces the lines to cluster in the vicinity of a unique
path of minimal energy. Our results, hence, provide an
experimentally and numerically accessible consequence
of the clustering. However, the pair distribution function
(5) shows a singular broadening for fixed ¢ and R —
as d’ approaches the upper critical dimension d. (i.e.,
@ \, 0): The width A(n) defined by [iq-5 d*dP(d) =
n diverges as A(n) ~ 1/w for any 0 < n < 1, and
accordingly (W2) ~ w. If d. is finite, we, hence, expect
that for d’ > d. the lines no longer cluster, but exploit
multiple near-minimal paths even at low temperature, as
in a glassy state. This leads to a modification of Eq. (3),
(¥15) ~ R™%; weakly attractive pair forces should then
no longer generate a bound state. This could be useful to
determine d. numerically in a way that is less hampered
by finite-size effects than the existing simulations of the
Kardar-Parisi-Shang equation [29].

We thank K. Willbrandt for useful discussions.
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