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Abstract 

The Kardar-Parisi-Zhang (KPZ) equation of nonlinear stochastic growth in d dimensions is 
studied using the mapping onto a system of directed polymers in a quenched random medium. The 
polymer problem is renormalized exactly in a minimally subtracted perturbation expansion about 
d = 2. For the KPZ roughening transition in dimensions d > 2, this renormalization group yields 
the dynamic exponent z* = 2 and the roughness exponent X* = 0, which are exact to all orders 
in e = (2 - d) /2 .  The expansion becomes singular in d = 4. If this singularity persists in the 
strong-coupling phase, it indicates that d = 4 is the upper critical dimension of the KPZ equation. 
Further implications of this perturbation theory for the strong-coupling phase are discussed. In 
particular, it is shown that the correlation functions and the coupling constant defined in minimal 
subtraction develop an essential singularity at the strong-coupling fixed point. 

I.  Introduct ion  

One focus of  today 's  statistical mechanics is scale invariance far from equilibrium. 

Driven growth of  surfaces is an example that widely occurs in nature; for a review, see 

e.g. Ref. [ 1 ]. On large scales of  space and time, the effective growth dynamics may 

often be described by a stochastic evolution equation for a continuous "height field" 

h(r ,  t ) .  The Kardar -Par i s i -Zhang  (KPZ)  equation [2] 

ath = u V 2 h  + ½A(Vh)  2 + r/ (1.1) 

driven by gaussian white noise with 

r l ( r , t )  = 0 ,  

•( r, t )~l( r', t ~) = o'2o~a ( r  - r ' ) ~ (  t - t ' )  (1.2)  
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has become the "standard model" for such processes since it represents the simplest 
universality class of nonlinear growth. Many realistic growth models are in other uni- 
versality classes due to additional symmetries. Moreover, the KPZ equation has deep 
theoretical links with a number of more difficult nonequilibrium problems, notably fluid 
dynamics and turbulence. Phenomenologically, the link to turbulence is even more man- 
ifest for certain related growth models that show multiscaling [3]. 

The phenomenology of the KPZ equation is well known. In spatial dimensionalities 
d ~< 2, the nonlinearity 1,~(Vh)2 is a relevant perturbation of the gaussian dynamics 
(,~ = 0). The strong-coupling regime is characterized by two basic exponents, the 
roughness exponent X and the dynamic exponent z, which are defined e.g. by the 
asymptotic scaling on large scales 

( (h ( r l ,  t l )  - h(r2, t2) )2) ~-~ ir I _ r2lZxc(t ir I _ rzlZ) (1.3) 

of the height difference correlation function [2]. In the renormalization group, this is 
a crossover between two fixed points: the gaussian fixed point, which is (infrared-) 
unstable, and the strong-coupling fixed point, which is stable. In d = 1, the exponents 
X = ½ and z = 23- can be obtained exactly in several ways: by exploiting the symmetries 
of the system (namely Galilei invariance and a fluctuation-dissipation relation particular 
to d = 1), by a one-loop dynamic renormaiization group analysis [4], or by mapping 
the KPZ dynamics onto an exactly solvable lattice model [5]. All of these tools fail 
in higher dimensions, and the properties of the strong-coupling fixed point are known 
only numerically. In d = 2, the KPZ equation is asymptotically free, and the crossover 
to the strong-coupling regime is exponentially slow [6]. Recent numerical values for 
the exponents are X = 0.386 and z = 1.612 [7]. For d > 2, the height profile is smooth 
in the gaussian theory. A small nonlinearity ½A(Vh) 2 does not alter this asymptotic 
scaling; there is now a roughening transition to the strong-coupling phase at finite 
critical values ±Ac [8-10].  In the renormalization group, the transition is represented 
by a third fixed point. This critical fixed point is unstable and appears between the 
gaussian fixed point and the strong-coupling fixed point which are now both stable [6]. 
Numerical studies [ 11,7] indicate that a strong-coupling phase with z < 2 persists 
also in high dimensions; various theoretical arguments, on the other hand, predict the 
existence of a finite upper critical dimension d>, above which z = 2 in both the weak- 
and strong-coupling regimes [9,12,13]. 

A satisfactory theory of stochastic growth should classify the different universality 
classes and the possible crossover phenomena between them, as well as give a way to 
calculate scaling indices exactly or in a controlled approximation. Despite considerable 
efforts, such a theory still seems far. In the framework of the renormalization group, 
the strong-coupling fixed point does not seem to be accessible by the methods of 
renormalized perturbation theory and the e-expansion that have been so successful in 
equilibrium critical phenomena. This key difficulty is a further common feature of the 
KPZ equation and turbulence, and one may speculate that its eventual solution will be 
similar in both cases as well. 
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Recent progress has taken place mainly along a different avenue. Various groups have 

studied the so-called mode-coupling equations, a self-consistent approximation to the full 
problem. The mode-coupling equations have been shown to be exact in a certain large-N 
limit [ 14]. However, for two reasons it is not clear at present whether the mode-coupling 
solution can serve as the basis for a controlled l/N-expansion: (i) The numerical so- 
lution of the mode-coupling equations presents great difficulties since it relies so far on 

assumptions on the approximate scaling form of the propagator. While it incorporates 

the known exponents in d = 1 [ 15] and seems to produce exponents which are not too 
far from the best numerical estimates in d = 2 [ 16,14,17,18], there are considerable dis- 
crepancies in higher dimensions, which leaves the status of this approximation open. (ii) 

The corrections to mode coupling for finite N are not necessarily analytic as N --~ c~z. 
The aim of this paper is to compare the strong-coupling phase with the roughening 

transition under renormalization group aspects. The critical fixed point is perfectly ac- 

cessible in an e-expansion about the lower critical dimensionality d< = 2, as I show 

in Sections 2 and 3 by dynamic renormalization and by exploiting the mapping of the 
KPZ equation onto a system of directed polymers with quenched disorder. The structure 

of the perturbative singularities is in fact very simple. In terms of the dimensionless 

coupling constant u~ in a minimal subtraction scheme, the beta function reads exactly 
to all orders in perturbation theory 

/3(u 2)  = 2eu 2 + 2 (u2)  2 (1.4) 

with e = (2 - d ) /2 .  This yields the dimension-independent critical exponents 

z * = 2 ,  x * = O  (1.5) 

at the roughening transition, which agree with a one-loop dynamic renormalization 
group calculation [6], that has recently been extended to two-loop order [ 19], and with 

a scaling argument by Doty and Kosterlitz [20]. 
The perturbation theory for the roughening transition is likely to be exact in the 

interval 2 ~< d <~ 4; however, d = 4 is seen to be a singular point. It is hence tempting 
to identify d> = 4; see the discussion below. 

In Section 4, I turn to the consequences of this e-expansion for the crossover to 
the strong-coupling fixed point in d = 2. It proves necessary to carefully distinguish 

between fields and couplings in minimal subtraction and properly renormalized fields 
and couplings defined by their finiteness at a renormalization point. In particular, it is 
shown that the functional dependence of the renormalized coupling constant UR and the 

renormalized height field hR on their minimal subtraction counterparts, 

UR(UM) , hR(hM,UM) , (1.6) 

has an essential singularity at UM = 0. (In an ordinary e-expansion, the mapping UR(UM) 
is a diffeomorphism of which both the ultraviolet fixed point UR = UM = 0 and the 
infrared fixed point u~(u~a) are regular points.) This property allows one to pin down 
the reasons for the failure of perturbation theory for the strong-coupling fixed point. 

The results are summarized and discussed in Section 5. 
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2. The roughening transition: dynamic renormalization 

In this section, I will sketch the dynamic renormalization of the KPZ equation 
[4,6,21,19] in a formalism that facilitates comparison with the renormalization for 
the polymer system. 

It is convenient to use the dynamic functional [22] 

f D h D h e x p  [ - / d d r d t o  ( ½ h 2 + i h o ( f - - ~ o h o - ½ V Z h o - ~ ( V h o ) 2 - P ) )  ] 

(2.1) 

in terms of the field h0 and the "ghost" field ho, which generates response functions, 

iho(rj, toj) I X  ho(rj , toj)  = ho(rj,toj) • (2.2) 
j=N+I j=l " j -  1 

Here the convention has been adopted to absorb all dimensionful constants of the linear 

theory into the "canonical" variables 

to = vt ,  ho = k~r2 ) h,  h,  (2.3) 

which have dimensions 

d - 2  d + 2  
z0 = 2 ,  -Xo = 2 ' 2 ' o + d =  2 ' (2.4) 

respectively. This convention is standard in field theory, but unfortunately is not generally 
used in the literature on dynamic renormalization, which tends to burden the calculations 
with redundant factors. 

The linear theory has the response propagator 

Go(r2 - rl , to2 - tol ) -- (iho( rl,  tol ) ho( r2, to2)) 

0(toz -- t01) exp [.--(r2 -- r l )  z° ] (2.5) 
= (47r(to----2--- t015) -a/zo I. to2 7to~ " 

The formal expression for the height-height correlation function 

Co(r2 - r l ,  to2 - tol ) = (ho(rl,  tol)ho(r2, to2)) 

_ / d d r  dto Go(t01 - to, rol - ro)Go( t02 - to, r02 - ro) 

(2.6) 

requires for d < 2 (i.e. Xo > 0) the introduction of an infrared cutoff. In a system 
of finite size L with periodic boundary conditions, the stationary correlation function at 
late times q ,  t2 is translationally invariant; it has a singularity 

Co(rl -- r2, tol -- to2, L) ,,~ L zx° . (2.7) 
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Only the infrared-regularized correlation function remains well-defined in the thermo- 
dynamic limit L ~ co: 

C~(r2 - rl,t02 - tol) = l i rn  [Co(r2 - rl ,  to2 - tol, L) - Co(0,0, L) ] 

= Ir2 - r112X°F([t02 - toll/lr2 - rllZ°). (2.8) 

In the interacting theory, the same subtraction is necessary to define the L-independent 
stationary two-point function C~(r, t0,u0); the higher connected correlation functions 
require infrared regularizations as well. The scale L will also serve to generate the 

renormalization group flow below. 

The canonical coupling constant 

(~r2~ ,/2 
Ao = \~ -y}  A (2.9) 

has the dimension e -- (d - 2) /2 .  We define the dimensionless coupling constant 

uo = AoL'. (2.10) 

The response and correlation functions of the nonlinear theory have the crossover scaling 

form 

i[~o(rj,toj) H ho(rj,toj) 
J= j=N+ 1 

L-NXo+N(xo+a)FN~( r j - r ~  tOj-tOk ) (2.11) 
= Z ' , u 0  , 

which can be expressed as the "bare" Callan-Symanzik equation 

o 0 ) 
L "~C9 + Z r j _ _  zo Z tOJ~oj +18o(uo)..~uo _ NXo + ~l(xo + d ) 

J Orj j 

x i[~o(rj,toj) H ho(rj, toj) = 0  (2.12) 

~j=l j=N+I 

with 

flO( UO) -- LaLUO = euo . (2.13) 

For the infrared-regularized correlators, the explicit dependence on L vanishes in the 

thermodynamic limit. 
In the strong-coupling limit A0 ~ c¢, these correlation functions develop anomalous 

scaling and hence a singular dependence on the bare coupling constant Ao. Renormal- 
ization consists in absorbing these singularities into new variables 
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h R = Z h ( u R ) h o ,  

t/R = Zh - l  (UR) ~/0 , 

tR = Zt(UR)t0, 

U R = Z(UR)U 0 . 

Under this change of variables, Eq. 
Symanzik equation 

( O~ao _ _  r3j~Tj _ _  03j3 
J 3 

c9 _ NX(UR) + ]~(X(UR) "q-d)~ +/~R (UR) 
aUR / 

× ihR(r j ' tRj )  I ~  hR(rj,  tRj) = 0  
j=N+I 

with 

(2.14) 

(2.12) transforms into the renormalized Callan- 

(2.15) 

~UR 
fl(UR) --'--L~-~UR= 1 - u a d Z / d u a '  (2.16) 

Z (UR) = Z0 -- fl~UR log Zt ,  (2.17) 

fl  d--~-logZh. (2.18) X(UR) = ,¥0 -- dUR 

A different but equivalent Callan-Symanzik equation is derived in Ref. [ 19]. Notice 
that the renormalization of the ghost field is not independent since the response function 

GR(r2 -- rl, tR2 - tR1, UR) = (ih(rl, tRl ) h(r2, iRE)) 

always has dimension d by its definition. Furthermore, a Ward identity due to Galilei 
invariance [ 19] enforces the following relation between the Z-factors: 

Z =  Z t - I Z h  I . (2.19) 

By inserting this relation into Eqs. (2.16), (2.17), and (2.18), one obtains 

/~(UR) = [--2 + z (UR) + X(UR) ]UR (2.20) 

and hence at any nontrivial fixed point u~ ~ 0 the exponent identity 

z (u~) + X(U~) = 2. (2.21) 

The renormalized variables (2.14) can be defined in a nonperturbative way by impos- 
ing two independent normalization conditions e.g. on the infrared-regularized correlators 
in an infinite system, 
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(a) 

".~ ~ ÷ ~ ÷ . . .  

(b) 

Fig. 1. Diagrammatic expansions generated by the dynamic functional (2.1). The lines with one and two arrows 
denote the unperturbed response function (2.5) and the unperturbed correlation function (2.8), respectively. 
Dots represent the vertices ih (Vh)2;  each incoming line to a vertex has to be differentiated with respect to 
r. (a) Response function Go(r, to, uo). The one-loop diagram is regular at e = 0. (b) Stationary growth rate 
<Otoho)(L, uo). The boxed subdiagram contains a simple pole at e = 0. A further diagram with a loop as in 
(a) is regular at e = 0 and has been omitted. 

L2x°c[~ ( L, tR = O, u~ ) = L2x°C~ ( L, to = 0 ) ,  (2.22) 

LaGR(O, tR = L 2, u~) = LeGo(O, to = L 2) • (2.23) 

L is now an arbitrary normalization scale. An alternative to (2.22) is the normalization 

condition 

L 2 -xo (OtR hR) ( L, UR ) = --bur (2.24) 

on the universal finite-size correction to the stationary growth velocity in a system of 

size L, where b > 0 is a constant independent of uR that is defined in (2.26) below. 

In a perturbative e-expansion, there is an alternative way of constructing the Z-factors, 
namely order by order through a minimal subtraction prescription. This makes the r.h.s. 

of Eqs. (2.22) and (2.23) analytic functions of the minimally renormalized coupling 
constant UM with coefficients that remain finite as e ~ 0. As long as the coupling 

constant is small, this scheme is clearly equivalent to normalization conditions. As we 
shall see in Section 4, this is no longer the case for large values of uR. I will therefore 
denote all quantities in the minimal subtraction scheme by the subscript M, and reserve 
the term "renormalized" and the subscript R to quantities defined by normalization 

conditions. 
I will discuss the perturbative renormalization not for the momentum-space response 

and correlation functions in the infinite system as it is customarily done but for the 
position space response function Go(r, to,uo) and the stationary finite-size amplitude 
(Otoho> (L,  uo). The calculation is in close analogy to the polymer renormalization group 

of the next section. 
The response function has the diagrammatic expansion shown in Fig. la. To order u 2, 

the expansion reads 

LdGo(O, to = L 2, uo) = LdGo(O, to = L 2) + O(u~e °, u 4) . (2.25) 
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The one-loop diagram does not have a pole at d = 2 since its short-distance singularity 
cancels with a geometric factor 2 -  d [21,19]. As Frey and Tiiuber have shown, 
constructing the strong-coupling fixed point in d = 1 requires taking into account this 
"hidden" pole of the response function [ 19]. However, this finite renormalization can 
be ignored for the critical fixed point above d = 2, which is the focus of this section. 

The expansion for the growth velocity is shown in Fig. lb. The tadpole diagram 
at order u0 consists of a nonuniversal ultraviolet-divergent part and of the universal 
finite-size correction 

dar dt~o [Or'Go(~, t~o, L)  ] 2 = _ b L - d  , (2.26) 

reg 

At order u 3, the boxed subdiagram contributes a pole, 

u0)--- u0 (1 ÷ Cu ) ÷ o u o O,u ) 

with c = 1/32¢r. This pole originates from the integration region where the two vertices 
approach each other. It can be absorbed into the definition of the variables hM = ZMhho, 
I/M - 1  " = ZMh ho, tM = ZMttO, UM = ZMUO, w i t h  

c 2 
Zmh(Ui )  = 1 -- ~-~eUM + O(U~t) , (2.28) 

ZMt(UM) = 1 + O(U4) ,  (2.29) 
c 2 

ZM(UM) ---- 1 + ~-~U i + O(U4) .  (2.30) 

This reparametrization respects (2.19) and renders both the response function and the 
growth rate regular as e ~ 0, 

L d GM ( O, tM = L 2 , UM ) = L d GO (0, to = L 2 ) + 0 ( u2e  0 , u 4 ) , ( 2.31 ) 

L 2-x° (tgtu hM)( L, UM ) = --bUM + O ( u 3 e  °, U~ ) .  (2.32) 

From (2.28) and (2.16), one obtains the beta function 

flM(UM) = eUM + CU3M + O(u  5 )  • (2.33) 

For d > 2, it has a pair of real-valued unstable fixed points 

uh 2 = _e__ + O(e2 ) (2.34) 
c 

that describe the roughening transition from the weak coupling to the strong-coupling 
phase. Relations (2.17) and (2.18) then give the critical exponents [6] 

z* = 2 + O(~ 2) , X* = 0 + O(~ 2) (2.35) 

satisfying (2.21). While higher-order calculations are cumbersome in the dynamic 
framework, we will see in the next section that these values are exact to all orders 
in perturbation theory. 
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3. The roughening transition: replica renormalization 

It is well known that the KPZ equation can be mapped onto a system of directed 
polymers given by the partition function 

z= f  rexp f dt \at} - M1 • (3.1) 

Here r(t) denotes the polymer displacement field in d transversal dimensions as a 
function of the longitudinal "timelike" coordinate t. The polymer is subject to the 
quenched random potential Ar/(r,t) that has the statistics (1.2) and describes point 
impurities with short-ranged correlations. 

The height field of Eq. (1.1) is related to the restricted partition sum Z(r, t) of all 
paths ending at a given point (r, t) by the Hopf-Cole transformation 

2p 
h(r,t) = --~ logZ(r,t)  . (3.2) 

Hence the disorder-averaged free energy per unit longitudinal length 

f (L )  -= -2~, lim OrlogZ(T,L) (3.3) 
T--*oo 

in a system of size T x L (with periodic boundary conditions in transversal direction) 
is proportional to the stationary growth velocity, 

-f = -A(Oth}. (3.4) 

A convenient way to set up perturbation theory is the replicated partition function 

Z t ' = f I ~ = l D r a e x p - i f  at° \ d t o ]  a<# 

where the parameters ~, and tr 2 are again absorbed into the definition of the canonical 
variables to and h0. Since we are interested in arbitrary particle numbers p, we rewrite 
the partition function in second quantization, 

Z =  j 7) ,Dt~ exp [_1 f dt0 dar (~b(Oto-02), - ~g~b2,2)], (3.6) 

where , ( r ,  t0) is a complex field. The normal-ordered interaction term -Agree,  2 is an 
attractive pair contact potential. More generally, we define the normal-ordered m-line 
contact fields 

f dClr [~b(r,t)]m[,(r,t)] m . (3.7) ~m(t0) 

The perturbation series for the free energy 
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oo U2 N f 
fp (L, u~) = - Z  -2 Z ~N~. L-2Ne dt2 . • • dtN/q02 (0)qb2(t2) . . .~2( tN))p 

N=I 

(3.8) 

is a sum involving connected pair field correlations in the p-line sector of the unperturbed 
theory (u0 = 0). The integrals in Eq. (3.8) are infrared-regularized by the system size 
L; their ultraviolet singularities are determined by the short-distance structure of the pair 
field correlations and have to be absorbed into the coupling constant renormalization. 

Hence consider the asymptotic scaling of the N-point function (~2 (t01) . . .  ~2 (toN)) as 

the points t01 . . . . .  tON approach each other, 

toj - tok = tT"jk and t / L 2 -+ 0 (3.9) 

with ~'jk and the "center of mass" t6 = N -1 ~ = 1  toj remaining fixed. This is given by 
the p-independent short-distance algebra 

N+l 

@2(to, ) . . .  q02(toN) = ~ t - ( N - ' + ' ) d / 2  [C~(~', . . . . .  7"N_2)q~,,(t~) + . . . ]  , (3.10) 
m=2 

where C~ are scaling functions of the N -  2 linearly independent distance ratios ~'jk 
and the dots denote terms that are subleading by positive integer powers of t/L 2. The 

integration over the relative distances then yields 

N--2 

dt t N-2 H drl (qb2(/01)...qb2(t0N)) 
1=1 

= ~  f j~tm-3+e(N-m+l)dt(qbm(tto))+... (3.11) 
,,=2 

with 

N--2 / ,  

J~t = / H d~'lC~(7"l . . . . .  TN--2) . (3.12) 
J l 

Hence we obtain to one-loop order 

L2I,,(L,u ) = (1 + c 4 )  + O(u4 O u6) (3.13) 

w i t h  Ld(CDE)p = ½p(p - 1). The pole in (3.13) originates from the term in (3.11) with 
m = N = 2, which is shown diagrammatically in Fig. 2a. This pole can be absorbed into 
the definition ur~ 2 2 = Z~u o with ZM given by (2.30). To this order, we hence recover the 
beta function (2.33) and the fixed points (2.34) of the dynamic calculation. 

In the polymer framework, however, it is not difficult to discuss higher orders. The 
ultraviolet singularities of  the Nth order integral (3.11 ) are contained in the coefficients 
J~ or arise from the integration over t. In the first case, they are due to a proper 
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(a) (bl 

- - - I ~ -  t ~-- t 

Fig. 2. Singular diagrams contributing to the finite-size free energy fp (L, u~) in the expansion (3.8). The 

lines denote unperturbed single-line propagators (q~ ( r l, tol ) q~ ( r2, to2 ) ), the dots pair contact vertices q~2 (to). 
(a) One-loop diagram containing a primitive pole at e = 0. (b) N-loop diagram containing a pole of order 
N - -  1 at e = 0 .  

subdiagram and hence already absorbed into the renormalized coupling constant at 
lower order. Only the divergences from the integration over t, with J~v denoting the 
regular part of (3.12), may contribute to the primitive singularity at order N. Inspection 
of (3.11) then shows that a pole at e = 0 only appears for m = 2. However, there is 
only one diagram per order of this kind, which is shown in Fig. 2b. Since this diagram 
factorizes into loops of the kind of Fig. 2a, it contributes a pole in e of order N - I. 
Therefore, the pole at order N -- 2 is the only primitive singularity in the series (3.8) 
for the free energy; analogous arguments apply to the expansions of the contact field 
correlation functions. It follows that the one-loop equations (2.30), (2.33) and (2.34) 
are exact to all orders in perturbation theory (see also Refs. [24,25] ). 

The replica trick is unproblematic within perturbation theory, since it reduces to 
convenient bookkeeping of the averaging over disorder. Indeed, the random limit p -~ 0 
is trivial in Eqs. (2.30), (2.33) and (2.34) which are independent of p. The crossover 
scaling function of the disorder-averaged free energy 

1 L C(u 2) - L z f (  L, U2M) = L 2 lim - f p (  ,u 2)  (3.14) 
t,~0 p 

is a regular function of the minimally subtracted coupling constant u 2, as follows 
by inserting (2.30) into (3.13). By (3.4), (2.28), (2.29), and (2.30), the function 
-C(u~) /uM equals the scaling function (2.32) of the minimally subtracted growth 
rate, and hence b = ½. If the renormalization point condition (2.24) is chosen, the 
universal function C(u~) is directly related to the renormalized coupling constant, 

C (u~) = bUZR (u~).  Its finite fixed point value 

C* =C(U~ 2) b = - - e  + O(e 2) , (3.15) 
c 

the Casimir amplitude at the roughening transition, is the analog of the central charge 
in conformally invariant field theories [23]. The function C(u 2)  has the finite limit 
(3.15) since the free energy does not develop an anomalous dimension at the roughening 
transition, i.e. hyperscaling is preserved. By (3.4), this implies that (ath) ~ L -2 at the 
transition, and hence X* - z* = 2. The exponents (1.5) then follow from this relation 
together with (2.21). 
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The dynamic exponent z* = 2 can also be verified independently. Consider the two- 

point function of the normal-ordered density field q~l (to) =- q~b(r = 0, to), 

o~ u~iV L -2N~ [ 
( qOl ( t o )~ l ( t t o ) ) (L ' u2 )  = ~  a-'ff--~ , , .  j dt01 . . .  dtoN 

N=O 

× (q~l (t0)q~l (t~)~/'2 ( t01) . . .  ~2 (t0N)) • (3.16) 

Its short-distance asymptotics gives the return probabil i ty  of a single line to the origin 

r = 0. In the linear theory, 

(q~l ( to)qbl ( tlo) ) (  L, O) ~ ]to - t'ol-d/z° (3.17) 

for ]to - t~ol/L 2 << 1. Any anomalous contribution to this exponent arises from the 

renormalization of the fields ~ l ( t0 )  and ~1 (t~). The renormalization of ~l (to) is due 

to a short-distance coupling of the form 

qbl (t0)~2(t01) .- .~2(t0N) = t - N d / 2 c l ( ' r l  . . . . .  7"N-1)tlbl (to) + - . .  (3.18) 

for t / L  2 -~ 0 (with toj - to = troj, toj - tok = tTjk for j, k = 1 . . . . .  N, and ~'1 . . . . .  rN-~ 
denoting a basis of  the fixed ratios ~'0j,~'jk), and there is a corresponding expression 
for qol (t6). However, it is obvious that the product on the l.h.s, couples only to contact 

fields of at least two lines, and therefore C~ = 0 at all orders N. 

4. The strong-coupling fixed point 

As discussed in the previous sections, the crossover from the critical fixed point to the 
gaussian fixed point in d > 2 can be parametrized in terms of the coupling constant UM 

of a minimal subtraction scheme. In the framework of the e-expansion, UM is completely 
equivalent to the coupling constant UR defined by normalization conditions, e.g. (2.22) 
and (2.23): the two couplings are related by a diffeomorphism that remains regular in 

the limit e ~ 0, defined on a domain of interaction space that contains the fixed points 

uu = UR = 0 and UR(UM). This equivalence is lost in the crossover to the strong-coupling 
fixed point, as I will now show. 

Integration of the flow equation (1.4) for u~ in two dimensions with the initial 
condition u~ (Lo) = Ul 2 yields 

ulZ (4.1) u2  ( L )  = 1 - u 2 1 0 g ( L / L o )  ' 

an expression that diverges at a finite value 

L = Ll -- L o e x p ( 1 / u 2 ) .  (4.2) 

It follows immediately that UM(L) is not well suited to describe the crossover to the 
strong-coupling fixed point since it divides the crossover into an ultraviolet regime 
L < Ll and an infrared regime L > L1 where u ~ ( L )  is defined by analytic continuation 
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of the solution (4.1). However, the pole of u 2 ( L )  at L = L1 is only a "coordinate 

singularity" [ 26] of the minimal subtraction scheme; any renormalized coupling UR (L) 
is expected to remain regular at L L1 Hence the function 2 2 = . UM(U R) also has a pole at 
the value u 2 ( L  = Ll  ) between the fixed points u 2 = 0 and u~ 2. 

For small u 2 > 0, the correlation functions (2.22) and (2.23) at the normalization 
point can be calculated perturbatively, which results in an analytic renormalization 

hR = [1 + a lu  2 + a2u 4 + . . . ] h M ,  (4.3) 

tR = [1 +blU2R + b 2 u  4 + . . . ] t M ,  (4.4) 

and hence by (2.21) 

u 2 = [1 q- (al q - b l ) U  2 q- (a2 q - a l b l  + b2)u 4 + . . . ] u  2 . (4.5) 

with finite coefficients alv, bN. Hence u 2 has the beta function 

flR(U 2) = u 4 + (a  2 + a ,b ,  + b 2 - a2 - b2)u 8 + O ( u ~ ° ) .  (4.6) 

In perturbation theory, one would calculate these power series up to some finite order 
in u 2 and look for a fixed point u~ 2 of Eq. (4.6). However, a low-order calculation 

does not yield nontrivial exponents at the strong-coupling fixed point. Consider e.g. the 
expression (2.18) for the roughness exponent in d = 2, 

d 2 ) u~=u~ 2 
X(u~ 2) =--/3R(U2R) -~U~ 1ogZh(UR . (4.7) 

It is zero if Zh(u 2) is a regular function of u 2 since ~R(U~ 2) = 0. In an ordinary 

e-expansion, the beta function and the Z-factor are treated as power series; a finite 
result would then arise from the linear part of ]~R(U 2) together with the simple poles of 

Zh (u 2). Here, if we assume the existence of an expansion parameter ~ and naively take 
u~ ~ ~, we obtain X(U~ 2) = O(~ l°) from (4.3), (4.6), and (4.?). In fact, we expect 

a perturbative fixed point of Eq. (4.6) to be spurious at any order, i.e. not to reflect 
properties of the long-distance asymptotic regime. The reason is that all coefficients aN, 

bN are finite for ~ = 0 and thus depend on details of the infrared regularization, unlike the 
residues of the poles in 8 which determine the Z-factors in an ordinary R-expansion. It 

is difficult to see how this dependence could cancel out to produce universal exponents. 
In the infrared regime L > L1, the relationship between u 2 and u 2 is no longer given 

by Eq. (4.5). As L --~ c~, the asymptotic behavior of the renormalized quantities is 

u~ 2 - u 2 ,,~ L -y '  = e x p [ y ' / u  2 ] , (4.8) 

tR = ZdM ~ L z-z°  = e x p [ - ( z  - z o ) / u  2 ]  , (4.9) 

hR = ( U~IUR2 Z t  I )hM ~ u 2 exp[ ( Z -- Zo ) / u 2  l hM , (4.10) 

in terms of their minimal subtraction counterparts, where the exponent yl is defined by 

/3R(U2R) = - - y t ( u  2 -- U~ 2) + O(U 2 -- U~2) 2. 
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Hence all of these quantities have essential singularities at UM = 0, which are tied to an 
essential singularity 

(hM(rl, t)hM(r2, t)) ~ UM4 exp[--2(Z -- Zo)/u 2] (4.1 1) 

of the correlation function in minimal subtraction in the same limit, for fixed distance 
[rl - r21. This shows the inequivalence of the two renormalization schemes. 

5. Discussion 

In this paper, it has been shown that the perturbation theory for the KPZ roughening 
transition can be developed consistently in the dynamic and in the directed polymer 
framework. To all orders, it predicts the exponents 

z* = 2 ,  ( * = 0  (5.1) 

resulting from the exact beta function (1.4) in minimal subtraction. 
It should be emphasized that this calculation can only be trusted for d < 4. The 

minimally subtracted pair contact field ~2,M has the exact dimension 2 + 2e at the 
critical fixed point. This dimension would turn negative for d > 4, which is obviously 
unphysical. This exhibits the singular r61e of dimension 4 for the roughening transition. 
Indeed, the regularization of the perturbation series (3.8) by minimal subtraction breaks 

down at d = 4 since already the two-loop integral f dt02 (~2(tol)q02(t02)) develops a 
new pole that is not absorbed into the coupling constant renormalization (2.30). 

This singularity also gives some indications on the existence of an upper critical 
dimension d> for the strong-coupling phase of the KPZ equation. At the critical fixed 
point u~t 2, the nonlinearity is a relevant perturbation 

~(U2M) = - -2e(u  2 -- u~ 2) + . . . .  (5.2) 

Hence beyond this fixed point, the scale-dependent interface roughness x ( L )  defined in 
(2.18) increases to positive values to leading order in perturbation theory, 

x ( u ~ (  L)  ) = ( u ~  - uf~ 2) + . . . .  (5.3) 

With the plausible assumption that x ( L )  is a monotonic function of L over the entire 
crossover, this implies X = limL~o~ x ( L )  > 0 for the strong-coupling infrared limit. 
Again, this argument breaks down at d = 4, which implies d> /> 4 and in fact suggests 
the speculation that d> = 4. This is in agreement with the most recent mode-coupling 
results [ 18 ]. It should be possible to corroborate these results by extending the analysis 
of the roughening transition to dimensions d > 4. 

The form (1.4) of the flow equation has an interesting consequence for the description 
of the crossover to strong-coupling behavior in d = 2. The minimal subtraction coupling 
constant U2M(U2 R) develops a pole at a finite value U2R < U~ 2 of the renormalized cou- 
pling constant, a singularity not taken into account by existing renormalization group 
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treatments  of  the K P Z  equat ion.  That  s ingular i ty  divides the crossover into an ul traviolet  

regime u~ < u~ and an infrared regime u~ > Ul 2. Only  the former is accessible in 

per turbat ion theory: even the summat ion  of  an infinite number  of  terms e.g. in the series 

(4 .3)  and (4 .4)  can only  lead to a relat ion u ~ ( u ~ )  for u~  > 0. Whether  informat ion  

on the infrared regime can be gained by invert ing this relation and then analyt ical ly 

con t inu ing  it to values u~ > u~ remains  to be seen. 

The precise form (1.4)  o f  the beta funct ion is clearly due to the fact that the intr insic 

d imens ion  of  the polymer,  or the d imens ion  of  time, is one. The disorder  problem,  

however, has a natural  general izat ion from directed l ines to D-d imens iona l  directed 

surfaces. For  D ~ l ,  higher-order  perturbative singulari t ies are expected, which generate 

further terms in (1 .4) .  This  general izat ion has an interest in its own right. It is not  clear, 

however, i f  it is useful to solve the original  problem: any perturbative fixed point  will 

tend to infinity as D --+ 1, but  the exponents  may still be well-behaved in that limit.  
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