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Similarity Detection and Localization
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The detection of similarities between long DNA and protein sequences is studied using concepts of
statistical physics. It is shown that mutual similarities can be detected by sequence alignment methods
only if their amount exceeds a threshold value. The onset of detection is a critical phase transition
viewed as a localization-delocalization transition. Tlukelity of the alignment is the order parameter
of that transition; it leads to criteria to select optimal alignment parameters.
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Evaluating the simularities between long strings of thegenes are often deduced empirically from sequence pairs
alphabet is a challenging task, which arises in many fieldsvhose functional alignments are already known [5].
ranging from data processing to biology [1]. Standard In this Letter, we apply ideas and methods of statistical
applications involve the comparisons of copies of a mesphysics to sequence alignment, introducing a different con-
sage sequence blurred by an imperfect transmission or reeptual approach towards the parameter selection problem.
production process. A particularly important example isUsing simple stochastic models of evolution, we mutate
the evolution in biological systems, a process that muan ancestor sequence to obtain daughter sequdifgkes
tates gene sequences in various ways including legbd  and{Q;} with well-defined mutual correlations, namely,
stitutions, insertionsanddeletions. Molecular biologists the ensemble of all paire?; = Q;) of unmutated daugh-
routinely compare newly sequenced genes to known ondsrs of the same ancestor element. These sequences are
in databases, a first step towards unveiling the structurthen aligned using a given energy functiBnand the fi-
and function of the new findings. This so-calleeljuence delity of the optimal alignment is quantified as the fraction
alignmentis the most widely used mathematical and com-of correctly recovered such pai{B; = Q;). For long se-
putational tool in molecular biology [2]. gquences, we find that the mutual correlations cannot be

A (global) alignmentof two sequence$P;} and{Q;}  detected if their amount is below a threshold value. A criti-
defined as an ordered set of pairing3;, Q;) and of cal transition separates th@mv-similarity phaseof zero fi-
unpaired element&P;, —) and (—, Q;) called gaps, each delity from thehigh-similarity phasewhere the fidelity is
letter P; and Q; belonging to exactly one pairing or finite. (This phase transition is distinct from the “transi-
gap (see Fig.1). The optimal alignment of the twotion” to the so-called local alignment regime discussed in
sequences is determined by minimization of a cost othe literature [6].)

“energy” functionE favoring pairs of matching elements  Our analysis of the phase transition is based on the
(P; = Q;) over mismatchesP; # Q;) and gaps. A known representation [3] of an alignment of two se-
simple and commonly used energy function is the sunguences{P;},{Q;} on the two-dimensional lattice of
over all matches, mismatches, and gaps of the alignmefitig. 2. The cells of this lattice are labeled by the in-
contributing the respective energied, u > 0,andd >  dex pairs (j) or alternatively by the rotated coordinates
0 each [3,4]. Many more general energy functions have =i + j andr =i — j. The bonds encode the adja-
been discussed [2]. cency of letters: The diagonal bond in ceé|]Xrepresents

Clearly, the optimal alignment depends strongly onthe pairing(P;, Q;); horizontal and vertical bonds corre-
these energy parameters, and so doefidddity, i.e., the spond to gapgP;, —) and (—, Q;), respectively. Thus
extent to which it captures mutual correlations betweerany alignment maps onto a lattice path thatdisected
the sequences compared. In particular, if the evolutiomlong thet coordinate, i.e., given by a unique function
process involves random insertions and deletions, one ha§). For daughter sequences generated from our stochas-
to allow for gaps in the optimal alignment so that mutuallytic evolution model, mutual similarities can be represented
correlated regions of the sequences can actually align. Fan the lattice by a pathR(t) joining all correlated pairs
gene sequences, a more stringent criterion ibiblegical

relevanceof an alignment, that is, the extent to whichthe P/ A A—A B A B B MV match (-1)
matched regions actually indicate functional similarities % g % s mismateh (1)
between different proteins. Finding alignment parameters {0/ A B B A B A— — gap (8

that lead to high relevance is a difficult problem, which 5 1 one possible alignment of two binary sequences

has not been solved systematically so far. For biologicajp,} = AAABABB and {0,} = ABBABAB, with six pairings
applications, “optimal” parameters for various types of(five matches, one mismatch) and two gaps.
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{P} of the alignment paths and the site-to-site variations of
AAABABB . the pairing potential, ,, respectively. The lowest energy
AR T ! reisf pathry(r) depends o ands only via the ratiog = A/J
B[ [y in the biologically relevant limiig < 1 (or26 = u) [7].
Bl [y To model the behavior of typical alignment paths in the
QA i I /< low-similarity phaseye take the sequencéB;} and{Q;}
Bl Y- i tmivi from an ensemble of unbiasedndom sequencef.e.,
A L’ﬁLHLH - : ﬂ = P_, = Q_] =0, P;P; = 5,',1-/ and Qij/ = 51',]'1) with no
B‘ 0 mutual correlationsP;Q; = 0. (Averages over this en-
J semble are denoted by overbars.) The pairing poten-
FIG. 2. Thedirected path (thick line) corresponding to the tial v, then becomes aandom potential with average
alignment in Fig. 1. Horizontal and vertical lattice bonds v,; = —J and variance
represent gaps, diagonal bonds represent pairings with bond
energiesv,, = —(J = A) for matches (full-wiggly lines) and Uy U — J?2 = A2 Piri1)2Poi+1200—0200—11) /2

mismatches (dashed-wiggly lines), respectively. )
=A 6r,r’61,r’- (1)

(P; = Q;). We call such a path the “target path.” For It induces random fluctuations on the alignment paths.
long sequences, it inducesnaorphological transitionon The large-scale statistics of these fluctuations can be
the optimal alignment pathy(z): In the low-similarity  derived from the partition function of the alignment paths
phase, this path isuperdiffusivewith typical fluctuations [8] in a path integral representation [9]. We show [10]
8r(t) = ro(t) — R(r) scaling agér(r)] ~ >3, while, in  that the continuum “action” of this path integral takes the
the high-similarity phase, it itocalizedto the target path form [11]

with finite fluctuations|ér(¢)] ~ &, ; see Fig. 3. Hence

only in the high-similarity phase is the path(r) a faith- S = [ dr [% o2+ n(p(r),7) + 0(p*, ni)z,...)]

ful approximation of the targeR(r). The fidelity of the )
alignment is then simply given by theverlap of the two

paths, i.e., by their number of intersections per unit.of |t describes a “coarse-grained” alignment path) with a

For long sequences, the overlap is proportional to the infipjte line tensiony (andp = dp/d7) in a coarse-grained

verse localization lengti'; maximization of this “order  random potentiak(p, 7) characterized by its second mo-

parameter” gives a numerically and analytically accessipent 2. nn(pl o) ~ A28(p — p))d(r — /). All

ble criterion for the choice of alignment parameters. other short-ranged moments [12], as well as the terms
To establish these results, we restrict ourselves hergmitted in (2), are irrelevant variables. We conclude that

to binary sequences (with elemerits 0; € {+1.—1}),  the large-distance behavior of alignments is governed by

and to the simple model introduced above with just twothe well-known universality class of a directed path in a

parameterg. andé (generalizations are briefly discussed tyo-dimensionalGaussianrandom potential [9]. Many

at the end of this Letter). With a convenient shift in the properties of this universality class are known exactly.

energy function, we write the total eneryof any path  Typical fluctuations of the optimal path(z) are (asymp-

r(t) as the sum over all its diagonal bonds with bondtotically) superdiffusive[ro(r) — ro(t) = Alt — ¢'|*/3,

energiesv,, = —J = APi—+120j~(—n/2; horizontal  refiecting the tendency of the optimal alignment to use
and vertical bonds take the energy 0. The paramdtess gaps to gain an excess number of matches over mis-

26 — (u — 1)/2 and A = (u + 1)/2 are the effective ) . e el
gap and mismatch costs; they characterize the stiffne atchzes. This goes alopg with the varianeg(N)
Eo(N)" = BN?? of the optimal energyz,/N for paths of

(@ ; ®) ; lengthN > 1. We have verified these properties numer-
ically and have obtained the nonuniversal amplitudes
< andB; an example is shown in Fig. 4. Scaling arguments,
K which are supported by our numerics, yield= g*/? and
g ., B = g*3J2 for small values ofg (which are appropriate

v, *,, for the alignment of sequences with not too many inser-
tions and deletions; see below).
J /g J To study thehigh-similarity phasewe construct se-
quences{P;} and{Q;} with mutual correlations as they
FIG. 3. Typical large-scale configurations of the optimalwould arise if these sequences developed from a com-
alignment pathro(r) for long sequences. (&) In the high- qn ancestor sequence (again taken to be an unbiased
similarity phase, this path (full line) itocalizedto the target - .
path R(t) (dashed line) with typical transverse displacementr,a"‘dorn sequgnce) through lndgpendent muta.tlons over a
of size ¢,. (b) In the low-similarity phase, it fluctuates time #. Consider first the evolution through point substi-
independently of the target path. tutions only: On each sequence, elements are randomly
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10 We now turn to a more realistic model of evolution that
includes local insertions and deletions: We generate the
sequenceéP;} and{Q,} from a common ancestor through
point substitutions as before, then we randomly choose a
fraction p < 1 of the sites on each sequence, and insert
or delete a random elementl at the chosen sites. This
modifies the mutual correlations,

PiQ; = p*8i—jRii+j)- (4)
and hence the pairing potentia,; = —J — Ud,r()-
The target pathR(t) is no longer along the diagonal
0 of the alignment lattice, but along the trajectory of a
; Gaussian random walk with mean square displacement
[R(t) — R(t")]* = plt — t'| (see Fig. 3). Since a fraction

- —_/2
FIG. 4. Energy variationSAEy)? = E3(r) — Eo(r) ~ 1*? of ~ . .
the optimal alignments. The results are obtained from a sampl%p of the target path involves gaps, the attractive strength

of 100 pairs of uncorrelated random sequences for each set Gf the target is shifted to
the alignment parameters listed. U = [gp2(1 —p) —2p1, (5)

chosen with ratd” and replaced by an unbiased randomand now changes sign at the threshgid = p? =
number+1. Then{P;} and{Q;} remain unbiased random 25/g + O(p?). Above the threshold p> > p2), the
sequences and haveutual correlationsP;Q; = pzﬁi’j, interaction remains attractive/ > 0). In this phase,
wherep = exp(—1'0) is the fraction of elements on each the optimal alignment path turns out to be localized to the
sequence that are still unaffected by the mutations after target in much the same way as before [13], with a finite
time 6. It follows that the pairing potential still has the mean square displacemegit = lim,_.. [ro(r) — R(1)]?
variance (1) (up to an irrelevant [10] termé, 8, —,.), given by (3) and (5) and a finite fidelity-£1'. As p2

but the average is now,; = —J — U§,: mutual cor- approachesp? from above, the fidelity again tends to
relations generate a target pakky) = 0 (along the diag- zero continuously. Fop? < p2, the interaction becomes
onal of the alignment lattice) thaittracts the alignment repulsive, and the pathy() is again superdiffusive. This
paths with strengttU = gp2J. This interaction reflects is the low-similarity phase, where the optimal alignment
the excess number of matché&B; = Q;) of unmutated does not reflect the mutual correlations: Its fidelity is
daughter elements of the ancestor sequence. It turns ogéro. The singular behavior (3) of the fidelity applies to
to change the optimal alignment drastically [13]: The pathsequences whose length exceeds t¢herelation length
ro(1) becomesocalized,i.e., its mean square displacement ¢, ~ ¢¥2: for shorter sequences, the fidelity is reduced
from the target path3(r) grows no longer superdiffusively, by finite-size effects.

but reaches a finite valuéi = |imt_mr§(t) for long se- The concept of an order parameter is useful for the
quences. Inrecentyears, this localization has been studigglection of optimal alignment parametgesand 5. As
carefully in the context of flux pinning in type-Il supercon- follows from Egs. (3), (5), and& = ¢*J, the correlations
ductors [13,14]. Itis governed [14] by the competition of (4) with given parametergsandp can be detected only for
the potential energy-U /& per unit oft gained from the & > g.(p,p) = 2p/p> + O(p?). They are recovered
overlap with the target path, and the random energy codiest if g takes the valueg*(p,p) = 4p/p* + O(p?)
V/&, (with a constanV = g2J for g2 < 1[10]) due fo  obtained by maximizings.' for fixed p and p < p>.
the confinement of the alignment path. (This is very simi-This is a linear condition om and$§.
lar to the competition of potential and kinetic energy deter- There is a number of related alignment issues rele-
mining the localization of a quantum particle in a potentialvant to applications in biology, where our results apply
well.) In the limit p = 1 of identical sequences, the op- in @ similar way; a detailed account will be published
timal alignment is obviously(r) = 0; the path is tightly ~€lsewhere [10]. (i) For alphabets witk different let-
bound to the target. Asdecreases, the fluctuations aroundters & = 4 for DNA and k = 20 for proteins), the ef-
the target increase, and the overlap decreases. It is fourgctive attraction strength increases withthis leads to
[13] that the pathr(r) remains localized to the target even @ much higher fidelity and a reduced correlation length.
for an arbitrarily weak attractiod/ > 0, although the lo- (i) A higher biological relevance of the alignment is of-
calization length becomes very large for< V, ten achieved if gap initiations are penalized by a higher
energy than gap extensions. Such refinements lead to
¢1 = expbV/U) 3 alignment paths that have, in addition to their line ten-
(with a universal constarit = 2.8). Thus the fidelity of siony, a finite “bending rigidity.” (iiij) The simultaneous
the optimal alignment¢ ', tends to zero with vanishing alignment ofn sequences is described by a directed align-
U; this signals a continuous transition to the superdiffusivement path(ry,...,r,-1) () in n — 1 transversal dimen-
behavior at = 0. sions. Fomm > 2, the detection threshold iscreasedio
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finite U > 0, making similarity detection more difficult. Electronic address: hwa@ucsd.edu

The divergence of the localization length close to the tran- TElectronic address: lassig@mpikg-teltow.mpg.de

sition is then given by aower lawinstead of Eq. (3). (iv)  [1] See, e.g.Time Warps, String Edits, and Macromolecules:
The same is true even for the alignment of two sequences The Theory and Practice of Sequence Comparigalited

if there are long-ranged intrasequence correlations that fall Py D. Sankoff and J.B. Kruskal (Addison-Wesley, Read-
off sufficiently slowly (as may be the case for the noncod- ing, MA, 1983).

) . ; [2] See reviews irMathematical Methods in DNA Sequences,
ing regions of the genome). (v) Unlike tiglobal algo- edited by M. S. Waterman (CRC Press, Boca Raton, FL,

rithms discussed so fagcal alignment algorithms match 1989): S.F. Altschuét al., Nature Genetics, 119 (1994).
only a contiguous piece of sequenie;} with a differ- [3] S.B. Needleman and C.D. Wunsch, J. Mol. Bi¢8, 444
ent piece of sequend®;}; they are appropriate for find- (1970).

ing mutual similarities that exist only within these two [4] T.F. Smith and M. S. Waterman, Adv. Appl. Math, 482
pieces. It has been noted [6] that the regimes of local  (1981).

and global alignment are separated by a transition line in[5] W.S. Fitch and T. Smith, Proc. Natl. Acad. Sci. U.S.A.
the space of parametefg, §). In the global alignment 80, 1382 (1983); M. Schoniger and M. S. Waterman, Bull.
regime, the sequences are aligned up to small boundar)f Math. Biol. 54, 521 (1992). _

regions. As the transition line is approached, these re-16] M-S. Waterman, L. Gordon, and R. Arratia, Proc. Natl.
gions grow up to a lengtlt®(N) in the local alignment - écad. Sci. U'S'A84’2(13239 (1987). hin th imal
regime. This boundary-induced criticality is analogous to [7] For g > 1 (or p > 2), every mismatch in the optima

. - . . alignment is replaced by a pair of gaps, and the optimal
wetting transitions and thus quite different from the tran- aI:gnment Ipathp and e%/ergs 'no |gnger depend ;n'
sition described in this Letter.

) ] However, this parameter regime is clearly “unbiological”
In summary, we have described a unique approach  and will not be discussed here.

to similarity detection, identifying sequence alignment [8] This partition function is defined as the sum owadralign-
algorithms with physics problems defined on a lattice with ment paths(t), each weighed by a Boltzmann factor given
quenched disorder. We show that the successful detection by its energyE and the “temperature3™',Z(B7') =

of correlations between sequences depends on the kinds of = 2puns €XH—BE). [See, M.S. Waterman, Proc. Natl.
mutations they undergo, as well as on the specific choice ~ Acad. Sci. U.S.A80, 3123 (1983); M. Q. Zhang and T. G.
of the alignment parameters. This is demonstrated for_ Marr, J. Theor. Biol174 119 (1995) ] ,

simple stochastic mutation processes modeling biological[g] See review article by M. Kardar, ifluctuating Geome-
evolution. In such systems, correlations can only be tries 'nf?kt]at'it'ca:_'MeCEam%S and F'gthhleogW@eedL'x”
detected if the.ir a'mount exceeds a.t_hreshold value;' 'the Qﬂtseg by T;_ S:vidc,)u;. g?ns:;r? (Zrnd%.ozc}ﬁn-.?jsstli?]n(Else’-
onset of detection is shown to be a critical phase transition  yjier Amsterdam, 1996), and references therein.

with universal characteristics. Most importantly, it is [10] T. Hwa and M. L&ssig (to be published).

the fluctuation statisticsat this transition that determines [11] The path integral is understood to be discretization-
the fidelity of the optimal alignment. Using that order invariant under reflections — —7 so that only even
parameter we derive criteria for the optimal choice of powers of o appear in the action. We sej(p,7) =
alignment parameters given a limited knowledge of the 0, suppressing a constant term that affects only the
mutation process—in contrast to the current approach _ normalization of the partition function. .

of finding these parameters empirically. Conversely, thd!2] The. random potential has long-ranged correlations as
knowedge of optmal agnment parameters for @ gven Y21 S0 70 T s e fUL )
CIaSS.Of proteins can be used .to infer the nature of Such correlations are relevant at the Gaussian fixed
mutations suffered by those proteins.

. . point (A = 0) but irrelevant at the zero-temperature fixed
We thank Michael Zhang for a review of current point, essentially because they can only be felt by rare

issues in sequence alignment. _T- H. is supported by an  fjyctuations around the minimum energy path [10].
A.P. Sloan Research Fellowship and an ONR Young13] L.-H. Tang and I. F. Lyuksyutov, Phys. Rev. Lett, 2745
Investigator Award through ONR NO00014-95-1-1002. (1993); L. Balents and M. Kardar, Phys. Rev4B8 13 030

M. L. is grateful for the hospitality of SUNY at Stony (1994); T. Hwa and T. Nattermann, Phys. Rev58 455
Brook, where much of this work was done. §19953; H. Kinzelbach and M. Lassig, J. Phys28, 6535
1995).

[14] T. Nattermann and R. Lipowsky, Phys. Rev. Létt, 2508

*Current address: Physics Department, University of (1988).
California at San Diego, La Jolla, CA 92093-0319.

2594



