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Vicinal Surfaces and the Calogero-Sutherland Model
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A miscut (vicinal) crystal surface can be regarded as an array of meandering but noncrossing
Interactions between the steps are shown to induce afaceting transitionof the rough surface betwee
a homogeneous Tomonaga-Luttinger liquid state and a low-temperature regime of local step clu
coexistence with ideal facets. This morphological transition is governed by a hitherto neglected c
line of the well-knownCalogero-Sutherland model. Its exact solution yields expressions for measura
quantities that compare favorably with recent experiments on Si surfaces. [S0031-9007(96)007
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Miscutting a crystal at a small angle with respect to
one of its symmetry planes produces avicinal surface
[1]. It often consists of a regular array of terraces
separated by monatomic steps. The steps meander
thermal activation but they do not cross or terminate; the
density is determined by the miscut angle. This picture
the well-known terrace-step-kink model[2], neglects
the formation of islands, voids, and overhangs on th
surface, and is hence expected to be valid below th
roughening transition of the ideal facet. In the simples
approximation, such steps are modeled as the world line
of free fermionsmoving in one spatial dimensionr and
imaginary timet, thus taking into account the no-crossing
constraint through the Pauli principle [3,4]. While the free
fermion model is sometimes a qualitatively satisfactory
approximation [5], it has become clear thatinteractions
between the steps can induce phase transitions th
change the surface morphology drastically [2]. From a
theoretical point of view, models of interacting fermions
are important realizations of two-dimensional Euclidean
field theories, some of which are exactly solvable. Fo
example, steps with short-ranged interactions can b
mapped onto the Thirring model and, in the more comple
case of reconstructed surfaces, onto the Hubbard mod
[6] or chiral clock-step models [7].

Interactions between steps are produced by a varie
of physical mechanisms [8]. For example, elastic force
lead to a long-ranged mutualrepulsionthat decays asr22

with the step separationr [9]. Short-ranged interactions
(including all forces that decay faster thanr22) can be of
either sign. Using scanning tunneling microscopy on
Cu surfaces, Frohnet al. [10] have found evidence
for step-stepattractions that decay over distances of
a few lattice spacings. In a beautiful series of x-ray
scattering experiments, Song and Mochrie [11] hav
recently discovered an important manifestation of attrac
tive forces on miscut Si(113) surfaces in equilibrium.
At sufficiently high temperatures (T * 1300 K), a sur-
face of miscut angleu0 is a homogeneous ensemble
of fermionic steps whose local densityrsr , td has the
expectation valuekrsr , tdl ­ tanu0 ; r0 and somewhat
smaller fluctuationskrsr, tdrsr 0, t0dl than expected for
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by
ir
,

e
e
t
s

at

r
e
x
el

ty
s

e
-

free fermions. As the temperature is lowered, however
the fluctuations increase substantially, until afaceting
transition occurs at a temperatureTpsr0d ø 1200 K.
Below that temperature, the attractive forces caus
the steps to cluster locally. Hence the surface splits
up into domains of an increased andtemperature-
dependent [12] step density krsr, tdl ­ rsT d . r0
alternating with step-free (113) facets [krsr , tdl ­ 0]. A
critical temperatureTc ­ 1223 K is identified from the
extrapolationrsTcd ­ 0.

The idea that short-ranged forces between noncrossin
steps may produce a faceting transition goes back to Ch
and Weeks [13]. In the mean-field theory of Ref. [2],
faceting occurs due to a presumed long-ranged attractio
but the quantitative properties are in conflict with the ex-
perimental findings of Ref. [11]. In this Letter, I show
that a long-ranged repulsion and a short-ranged attrac
tion can conspire to produce a quite complex tempera
ture dependence of the surface morphology, including
faceting transition in quantitative agreement with these
experiments. This gives strong evidence that both kind
of forces are indeed present in the step system. I ob
tain three temperature regimes characterized by qualita
tively different step configurations (see Fig. 1): (a) Well
above the critical temperatureTc, the steps are dominated
by the no-crossing constraint and the long-ranged repu
sion. Hence they are well separated from each other wit
relatively small fluctuations. Below a crossover tempera
tureT̃sr0d, the short-ranged attraction becomes important
(b) In the critical regime close toTc, the probability of a

FIG. 1. Typical configurations of noncrossing (fermionic)
steps coupled by inverse-square and short-ranged forces. (
High-temperature regime [T . T̃ sr0d]. (b) Critical regime
[T̃ sr0d . T . T psr0d]. (c) Faceted regime [T , T psr0d].
© 1996 The American Physical Society
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step being close to one of its neighbors is substanti
enhanced. This goes along with increased step fluc
tions and a broader distribution of terrace widths. (c)
the temperatureT psr0d , Tc, a first-order faceting transi
tion occurs. BelowTpsr0d, the steps form local bundle
of densityrsT d . r0. On average, the distance betwe
two neighboring bundles is larger than the width of
individual bundle. The fluctuations of these “composit
steps are smaller than those of individual steps.

Specifically, I consider a system ofp fermionic lines
ristd governed by the effective action

S ­
1
T

Z
dt

241
2

pX
i­1

Ùr2
i 1

X
i,j

£
gvasrijd 1 hdasrijd

§35 ,

(1)

where Ùri ; driydt and rij ; ri 2 rj . The action con-
tains kinetic terms with a line tension normalized to
“contact” interactionsdasrd of microscopic rangea [14],
and an “equal-time” approximationvasrd ­ r22 to the
elastic interactions forjr j . a [15]. The universal prop-
erties can be expressed in terms of the rescaled
pling constantsg0 ; gyT2 andh0 ; hyT2. In the limit
r0a ø 1 of small miscut angles, this system can
mapped onto theCalogero-Sutherland model[16], an ex-
actly solvable continuum theory well known in the conte
of the fractional quantum Hall effect and random mat
theory. Its two branches of solutions are labeled by
parameter

l6sg0d ­
1 6

p
1 1 4g0

2
. (2)

The strong temperature dependence of the surface m
phology described above is shown to arise from crosso
phenomena between these two branches of solutions
high temperatures, the surface is governed by the s
tion l1sgyT2d. At the critical temperatureTc [implic-
itly given by hyT2

c ­ h2
0 sa, gyT 2

c d, whereh2
0 sa, g0d is a

nonuniversal function], the surface scales according to
solution l2sgc

0d (as long asgc
0 ; gyT2

c , 3y4; beyond
that point, this branch of solutions ceases to exist). T
solution l2sgc

0d also determines the faceting propertie
Hence a number of observables can be predicted in te
of the single nonuniversal parametergc

0 .
(a) The wave function (5) below yields immediate

the step density correlation functionkrs0, tdrsr , tdl ,
C

2
2 srd , r2l in the limit jr j ø r

21
0 , where multiparticle

effects can be neglected. Two steps at distancer from
each other enclose a terrace of widthr if no further
steps are in between; this condition is also negligible
r ø r

21
0 . Hence the terrace width distribution, whic

can be measured by surface scanning techniques, ha
same short-distance tail,r2l [5]. In the high-temperature
regime [l ­ l1sgyT2d . 1], short terraces are rare
while atTc [l ­ l2sgc

0d , 0], they are abundant.
(b) The surface stiffnessg, defined as the universa

prefactor of the height difference correlation function
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Csrd ; 1
2 kfhs0, td 2 hsr , tdg2l . g21 ln jr0rj 1 · · ·

(3)

on scalesjrj ¿ r
21
0 , shows a characteristic tempera-

ture dependence. Its high-temperature asymptotic valu
is g ­ 1y2. As the temperature is lowered, it firstin-
creasesasg ­ l1sgyT2dy2 ­ l1sgc

0T 2
c yT2dy2, thende-

creases in the critical regime [taking the valueg ­
2l2sgc

0dy2 , 1y4 at Tc], and again sharplyincreases
below Tpsr0d to valuesg . 1y2 for composite steps.
Most aspects of this pattern have been observed [11
but the measurements are not yet conclusive in the hig
temperature regime.

(c) In the faceted regime, the line bundles are o
densityrsT d , sTc 2 Td1yf122l2sgc

0 dg, which agrees with
the measured densityrsT d , sTc 2 Td0.4260.10 [11] if
gc

0 ø 3y4.
(d) The differences̃T sr0d 2 Tc andTc 2 T psr0d (i.e.,

the size of the critical regime) scale asr
122l2sgc

0 d
0 . This is

also consistent with the data forgc
0 ø 3y4.

The solutions of the Calogero-Sutherland model labele
by 0 , l , ` are known to describe a line of Tomonaga-
Luttinger liquid critical points [17] that contains the self-
dual point l ­ 2, the free fermion pointl ­ 1, and
the Kosterlitz-Thouless pointl ­ 1y2. Notice, however,
that for repulsive long-ranged forces (g . 0) the root
l2sgc

0d is negative. Solutions of the Calogero-Sutherland
model with l , 0 have not been discussed before a
they were deemed unphysical. The solutions labeled b
0 . l . 21y2 form a new line of Tomonaga-Luttinger
liquid critical points; faceting on vicinal surfaces seems
to be their first realization. This line is the analytic
continuation of the line0 , l , ` beyond the free
boson pointl ­ 0 (see Fig. 2), and it terminates at its
Kosterlitz-Thouless pointl ­ 21y2. There is another
closely related physical manifestation of the solution
l2sgc

0d in the particular casep ­ 2, where the action (1)
is a model for two interfaces in a two-dimensional system
in the so-called intermediate fluctuation regime [18]. In

FIG. 2. The two branchesl1sg0d andl2sg0d of the Calogero-
Sutherland model. On vicinal surfaces, they govern the high
temperature regime and the faceting transition, respectivel
The solutions0 , l , ` and 0 . l . 21y2 form two dis-
tinct lines of Luttinger liquid critical points. Special points are
l ­ 1 (free fermions),l ­ 0 (nonrelativistic free bosons), and
l ­ 61y2 (Kosterlitz-Thouless points).
527
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these systems, the well-known line ofwetting critical
points [18,19] turns out to correspond to that branch
solutions. The wetting transition atT ­ Tc is of second
order for l . 21y2, but of first order forl # 21y2
[18,19]. One may speculate that the faceting describ
here turns into a similar first-order transition atT ­ Tc

for l2sgc
0d # 21y2.

To derive these results, it is convenient to regard t
ensemble of steps as a many-body quantum system.
Hamiltonian of this system,

H ­ 2
1
2

Z
dr cysr , td≠2

r csr , td

1 g0Vastd 1 h0Fastd , (4)

acts on p-particle states; its form is determine
by the action (1). c and cy are anticommuting
fields; Vastd ;

R
drdr 0rsr, tdvasr 2 r 0drsr 0, td and

Fastd ;
R

drdr 0rsr , tddasr 2 r 0drsr 0, td are the long-
and short-ranged interactions written in terms of th
density operatorrsr, td ; cysr , tdcsr , td. In a system
of finite width L with periodic boundary conditions and
the periodic potential vasrd ­ sp2yL2d sin22spryLd
(for a , r , L 2 ad, the two-particle ground state
takes the exact form [16]C2sr12d ­ sinlspr12yLd for
a , r12 , L 2 a, with l given by Eq. (2). Matching
this wave function with the fermionic boundary conditio
C2s0d ­ C2sLd ­ 0 [20] requires a contact potential o
fixed strengthh0 ­ h6

0 sa, g0d. In the limit a ! 0, the
p-particle ground state is the simple product

Cpsr1, . . . , rpd ­
Y
i,j

C2srijd (5)

with energy Ep ­ l2p2psp2 2 1dy3L2, provided l .

21y2 [otherwise the wave function (5) is not normaliz
able]. An integrable continuum model emerges, known
the Calogero-Sutherland model [16]. The free energy de
sity fp ­ EpyL has a well-defined thermodynamic limi
fsr0d ­ limp!` fp at fixed densityr0 ­ pyL, which en-
codes the bulk properties of the step system.

For a given value21y4 , g0 , 3y4, the Hamilton-
ian (4) defines two different continuum theories, corr
sponding to the branchesl6sg0d in Eq. (2). The stability
of these solutions in the thermodynamic parameter sp
sg0, h0d can be studied perturbatively, using the metho
of Refs. [21–23] (where more details can be found). T
expansion of the dimensionless free energyFp ; L3fp

about the branch pointl6 ­ 1y2 has the form

Fpsg0
0, h0

0d 2 Fps0, 0d ­
s21dM1N

M!N!

X
M1N$1

FM,N g0M
0 h0N

0

with g0
0 ; g0 1 1y4, h0

0 ; h0 2 h2
0 sa, 21y4d, and

FM,N ­ r22
0

Z M1NY
i­2

dti

*
MY

i­1

Vastid
M1NY

i­M11

Fastid

+
.

The bracketsk· · ·l denote connected expectation values
the unperturbedp-particle ground state (5) atl ­ 1y2.
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In the limit a ! 0, the coefficientsFM,N develop loga-
rithmic singularities. With an appropriate normalizatio
of the operatorsFa andVa, one finds at the lowest orders

F1,0 ­ r22
0 kVal ­ sr22

0 kFal 1 Oss0d ,

F0,2 ­ r22
0

Z
dt kFas0dFastdl ­ 2sr22

0 kFal 1 Oss0d ,

and hence

Fpsg0
0, h0

0d 2 Fps0, 0d ­ 2 r22
0 kFal fh0

0 1 ssg0
0 2 h02

0 dg

1 Oss0, g02
0 , g0

0h0
0, h03

0 d ,

wheres ; 2 lnsr0ad. Up to this order, the singularities
can be absorbed into the renormalized coupling const
hR ; h0

0s1 2 shRd 1 sg0
0 1 · · · , while no renormaliza-

tion is needed forg0. This leads to the parabolic flow
equations

d
ds

g0 ­ 0 ,
d
ds

hR ­
1
4

1 g0 2 h2
R , (6)

which are independent ofp. They have first been
obtained by functional renormalization group methods f
p ­ 2 [19] and have been derived for arbitraryp in
Refs. [24,25]. It is possible to check thatF1,0 and F0,2
contain the only primitive singularities of the perturbatio
series. The renormalization group equations (6) are th
exact to all orders in a minimal subtraction scheme.

There are two lines of fixed points,h6
R ­

6
p

1 1 4g0y2. The renormalization group eigen
value of temperature variations (or variations ofhR),

y6sg0d ­
1
2

≠

≠hR

É
h6

R sg0d

µ
dhR

ds

∂
­ 7

p
1 1 4g0

2
, (7)

also governs the scaling of the contact operatorFa, e.g.,
kFal6sg0d , r

2f12y6sg0dg
0 . This is precisely the scaling of

kCpjFajCpl obtained from the exact solution (5) with
l given by (2). The two lines of fixed pointsh6

R sg0d
can thus be identified with the two branches of solutio
l6sg0d of the Calogero-Sutherland model.

At the fixed pointsl2sgc
0d, temperature variations are a

relevant perturbation. (Forp ­ 2, these fixed points gov-
ern the wetting transition atTc [19].) Above Tc, Eq. (6)
yields a crossover to the stable branch of solutionsl1sg0d.
BelowTc, the renormalized couplinghR tends to2` under
the flow (6), indicating an instability of the step ensemb
with respect to the formation of local bundles. The sca
ing form of the free energy density,fsr0d , r

3
0 1 sT 2

Tcdr322y2sgc
0d

0 , determines the singular density dependen
of the crossover temperature and of the phase bound

T̃ sr0d 2 Tc , Tc 2 Tpsr0d , r
2y2sgc

0d
0 , as well as the

characteristic line densityrsT d , sTc 2 Td1y2y2sgc
0d in the

faceted regime. On average, a line bundle consists
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n ø 20 lines [11,26] and has a widthnyrsT d. Two neigh-
boring bundles at a typical distancenyr0 have an exponen-
tially small overlap,expf2rsT dyr0g; they can thus be
approximated as stable composite steps with nearly st
free facets in between.

From the above discussion, it is clear that the integr
bility of this system is tied to scale invariance at distance
a ø r ø r

21
0 . Along the crossover between the critica

and the high-temperature regimes, the two-particle wa
function does not have the simple power-law asymptoti
C2srd , jrjl as in (5), and, consequently, the produc
ansatz (5) breaks down. What happens to scale inva
ance at distancesr ¿ r

21
0 ? It has been shown that any

solution of the Calogero-Sutherland model withl . 0
describes a Tomonaga-Luttinger liquid: It belongs to th
universality class of the Gaussian model with actionSG ­
sgy4pd

R
f=hsrdg2d2r and stiffnessg ­ ly2 [17]. Here

r ; sr , yFtd, whereyF ­ 2plr0 is the Fermi velocity,
andhsrd is a coarse-grained surface height variable. U
ing the Bethe ansatz, one finds the low-lying finite-siz
excitationsDEe,m ­ 2pyFxe,myL in terms of the scaling
dimensionsxe,m ­ se2g 1 m2ygdy2 of the vertex opera-
tors Oe,m (e, m [ Z) [17]. It is then easy to show that
any solution withl , 0 is also a Tomonaga-Luttinger
liquid with g ­ 2ly2, since the transformationl ! 2l

acts as the symmetryOe,m ! Oe,2m on the Gaussian op-
erator algebra. Thus conformal field theories with centr
chargec ­ 1 govern the steps atTc andat high tempera-
tures—and thus along the entire crossover by virtue of t
c theorem [27]. It follows that the system is a Tomonaga
Luttinger liquid for all T . Tc [28]. This property ex-
tends to the entire critical regime, whereg can be written
in scaling form,gsT , r0d ­ GfsT 2 Tcdr22y2sgc

0 d
0 g [29].

Below Tpsr0d, one expects an effective action simila
to (1) for the composite steps; the system is then still
Tomonaga-Luttinger liquid.

In summary, the Calogero-Sutherland model has be
applied to interacting steps on vicinal surfaces. Th
thermodynamic complexity of this system arises from th
interplay of the two branches of integrable solutions.
will be of interest whether this mechanism also play
a role in other realizations of the Calogero-Sutherlan
model.

I thank J. L. Cardy, V. Korepin, R. Lipowsky, S. M.
Mochrie, and M. Zirnbauer for useful discussions. I
particular, I am grateful to S. M. Bhattacharjee for hi
contribution at the initial stage of this work.

[1] For a review, see M. Wortis, inChemistry and Physics of
Solid Surfaces, Vol. 7 (Springer-Verlag, Berlin, 1988).

[2] C. Jayaprakash, C. Rottmann, and W. F. Saam, Phys. R
B 30, 6549 (1984).

[3] P. G. de Gennes, J. Chem. Phys.48, 2257 (1968); V. L.
Pokrovski and A. L. Talapov, Phys. Rev. Lett.42, 65
(1979).
ep-

a-
s

l
ve
cs
t
ri-

e

s-
e

al

he
-

r
a

en
e
e
It
s
d

n
s

ev.

[4] For a review of fermionic methods, see M. den Nijs
in Phase Transitions and Critical Phenomena, Vol. 12,
edited by C. Domb and J. L. Lebowitz (Academic
London, 1989).

[5] N. C. Bartelt, T. L. Einstein, and E. D. Williams, Surf. Sci.
Lett. 240, L591 (1990); B. Joós, T. L. Einstein, and N. C.
Bartelt, Phys. Rev. B43, 8153 (1991).

[6] L. Balents and M. Kardar, Phys. Rev. B46, 16 031 (1992).
[7] M. den Nijs, Phys. Rev. B46, 10 386 (1992).
[8] A. C. Redfield and A. Zangwill, Phys. Rev. B46, 4289

(1992).
[9] A. F. Andreev and Y. A. Kosevich, Zh. Eksp. Teor. Fiz.

81, 1435 (1981) [Sov. Phys. JETP54, 761 (1981)].
[10] J. Frohnet al., Phys. Rev. Lett.67, 3543 (1991).
[11] S. Song and S. G. J. Mochrie, Phys. Rev. Lett.73, 995

(1994); Phys. Rev. B51, 10 068 (1995).
[12] Below 1134 K, the step clusters turn into (114) facet

[11], i.e., r becomes independent of temperature. This
a more familiar kind of faceting.

[13] S. T. Chui and J. D. Weeks, Phys. Rev. B23, 2438 (1981).
[14] The regularization dasrd of the contact potential is

familiar in field theory as point splitting; see, e.g., J. L
Cardy,Scaling and Renormalization in Statistical Physic
(Cambridge Univ. Press, Cambridge, 1996). It is necessa
since a naive contact termdsrd vanishes identically due to
the Pauli principle.

[15] This approximation is justifieda posteriori by the fact
that it preserves the rotational (and even the conforma
symmetry of the theory at large distances.

[16] F. Calogero, J. Math. Phys10, 2191 (1969);10, 2197
(1969); B. Sutherland, J. Math. Phys.12, 246 (1971);12,
251 (1971); Phys. Rev. A4, 2019 (1971).

[17] N. Kawakami and S.-K. Yang, Phys. Rev. Lett.67, 2493
(1991).

[18] R. Lipowsky and T. M. Nieuwenhuizen, J. Phys. A21,
L89 (1988).

[19] R. Lipowsky, Phys. Rev. Lett.62, 704 (1989); Phys. Scr.
T29, 259 (1989).

[20] As a ! 0, this strength diverges,h6
0 sa, g0d , a21.

[21] M. Lässig and R. Lipowsky, Phys. Rev. Lett.70, 1131
(1993).

[22] M. Lässig, Phys. Rev. Lett.73, 561 (1994).
[23] M. Lässig and R. Lipowsky, inFundamental Problems of

Statistical Mechanics VIII(Elsevier, Amsterdam, 1994).
[24] S. Mukherji and S. M. Bhattacharjee (unpublished); E. B

Kolomeisky and J. P. Straley, Phys. Rev. B46, 13 942
(1992); Phys. Rev. Lett.73, 1648 (1994).

[25] H. Kinzelbach and M. Lässig (unpublished) (see
Ref. [23]).

[26] To determinen from the theory, further nonlocal step
interactions have to be taken into account, which i
beyond the scope of this Letter. An analogous case is t
size of stable domains in ferromagnets, which cannot b
obtained from the Ising Hamiltonian alone.

[27] A. B. Zamolodchikov, JETP Lett.43, 730 (1986).
[28] This implies that the parametersg0, h0 couple to the

marginal conformal fields=hd2 and to aredundantfield
that leaves the Gaussian actionSG invariant.

[29] The observed power law in the critical regime,g ,
fT 2 Tssr0dg2k with Tssr0d , T psr0d [11], corresponds

to a singularity inG. HenceTc 2 Tssr0d , r
2y2sgc

0 d
0 .
529


