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Vicinal Surfaces and the Calogero-Sutherland Model
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A miscut (vicinal) crystal surface can be regarded as an array of meandering but noncrossing steps.
Interactions between the steps are shown to indufaeeting transitionof the rough surface between
a homogeneous Tomonaga-Luttinger liquid state and a low-temperature regime of local step clusters in
coexistence with ideal facets. This morphological transition is governed by a hitherto neglected critical
line of the well-knownCalogero-Sutherland modelts exact solution yields expressions for measurable
guantities that compare favorably with recent experiments on Si surfaces. [S0031-9007(96)00702-8]

PACS numbers: 68.35.Rh, 05.30.Fk

Miscutting a crystal at a small angle with respect tofree fermions. As the temperature is lowered, however,
one of its symmetry planes producesviginal surface the fluctuations increase substantially, untilfaceting
[1]. It often consists of a regular array of terracestransition occurs at a temperatur@*(po) = 1200 K.
separated by monatomic steps. The steps meander Below that temperature, the attractive forces cause
thermal activation but they do not cross or terminate; theithe steps to cluster locally. Hence the surface splits
density is determined by the miscut angle. This pictureuyp into domains of an increased artémperature-
the well-known terrace-step-kink mode[2], neglects dependent [12] step density (p(r,t)) = p(T) > pg
the formation of islands, voids, and overhangs on thealternating with step-free (113) facetsfr,r)) = 0]. A
surface, and is hence expected to be valid below theritical temperaturel’. = 1223 K is identified from the
roughening transition of the ideal facet. In the simplestextrapolatiorip(7.) = 0.
approximation, such steps are modeled as the world lines The idea that short-ranged forces between noncrossing
of free fermionsmoving in one spatial dimension and steps may produce a faceting transition goes back to Chui
imaginary timer, thus taking into account the no-crossingand Weeks [13]. In the mean-field theory of Ref. [2],
constraint through the Pauli principle [3,4]. While the freefaceting occurs due to a presumed long-ranged attraction,
fermion model is sometimes a qualitatively satisfactorybut the quantitative properties are in conflict with the ex-
approximation [5], it has become clear thateractions perimental findings of Ref. [11]. In this Letter, | show
between the steps can induce phase transitions th#tat a long-ranged repulsion and a short-ranged attrac-
change the surface morphology drastically [2]. From dion can conspire to produce a quite complex tempera-
theoretical point of view, models of interacting fermionsture dependence of the surface morphology, including a
are important realizations of two-dimensional Euclideanfaceting transition in quantitative agreement with these
field theories, some of which are exactly solvable. Forexperiments. This gives strong evidence that both kinds
example, steps with short-ranged interactions can bef forces are indeed present in the step system. | ob-
mapped onto the Thirring model and, in the more complextain three temperature regimes characterized by qualita-
case of reconstructed surfaces, onto the Hubbard modgvVely different step configurations (see Fig. 1): (a) Well
[6] or chiral clock-step models [7]. above the critical temperatuf, the steps are dominated

Interactions between steps are produced by a varietlyy the no-crossing constraint and the long-ranged repul-
of physical mechanisms [8]. For example, elastic forcesion. Hence they are well separated from each other with
lead to a long-ranged mutuedpulsionthat decays as=>  relatively small fluctuations. Below a crossover tempera-
with the step separation [9]. Short-ranged interactions ture7(po), the short-ranged attraction becomes important.
(including all forces that decay faster than?) can be of  (b) In the critical regime close t@.., the probability of a
either sign. Using scanning tunneling microscopy on
Cu surfaces, Frohret al.[10] have found evidence [, b P
for step-stepattractions that decay over distances of
a few lattice spacings. In a beautiful series of x-ray|
scattering experiments, Song and Mochrie [11] havg
recently discovered an important manifestation of attrac
tive forces on miscut Si(113) surfaces in equilibrium.
At sufficiently high temperaturesT(= 1300 K), a sur-
face Of. m.ISCUt angledo is a homoggneous ensemble FIG. 1. Typical configurations of noncrossing (fermionic)
of fermionic steps whose local densipy(r,7) has the  geps coupled by inverse-square and short-ranged forces. (a)

expectation valuép(r,)) = tandy = po and somewhat High-temperature regimeT[> 7(po)]. (b) Critical regime
smaller fluctuations(p(r,t)p(r',t')) than expected for [T(po) > T > T*(po)]. (c) Faceted regimel[ < T*(po)].
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step being close to one of its neighbors is substantially C(r) = 5 (h(0,7) — h(r,)") = ¥ 'Inlpor| + -
enhanced. This goes along with increased step fluctua- 3)
tions and a broader distribution of terrace widths. (c) At

the temperatur&@*(po) < T,, a first-order faceting transi-

—1 . s
) > -
tion occurs. Belowl'*( pg), the steps form local bundles on scales|r| > po, shows a characteristic tempera

of density5(T) > py. On average, the distance betweenUre dependence. Its high-temperature asymptotic value

. ; : ; is v = 1/2. As the temperature is lowered, it first-
two neighboring bundles is larger than the width of an _ o N/ a (e )2 )
individual bundle. The fluctuations of these “Composite,,creasesaw AT (g/T%)/2 = A (&T¢/T7)/2, thende

steps are smaller than those of individual steps creasesin the critical regime [taking the valug =
Specifically, | consider a system gf fermionic lines —A~(g0)/2 < 1/4 at T, and again sharphincreases

. ) below T*(po) to valuesy > 1/2 for composite steps.
ri(r) governed by the effective action Most aspects of this pattern have been observed [11],
1

1 &, but the measurements are not yet conclusive in the high-
S=7 f dr| 5 Zri + Z[gwa(rij) + hda(rip)] | temperature regime.
i=l1 i< () In the faceted regime, the line bundles are of
(1) densityp(T) ~ (T, — T)V/[1=2470)] which agrees with

) _ the measured densitg(T) ~ (T. — T)%4>*010 [11] if
where r; = dr;/dt andr;j = r; — r;. The action con- g6 ~ 3/4.

tains kinetic terms with a line tension normalized to 1, (d) The difference§ (po) — T. andT. — T*(po) (i.e.,
contact“ |nteraqt|or1',séa(r) of'm|c_roscop|c ranﬁgzez [14], the size of the critical regime) scale ,a(ls_mi(gO). This is
and an “equal-time” approximation,(r) = r = to the

o . . also consistent with the data fef ~ 3/4.
ela_stlc interactions fopr| > a [15]. The universal prop- The solutions of the Calogero-Sutherland model labeled
erties can be expressed in terms of the rescaled co

By 0 < A < = are known to describe a line of Tomonaga-
; — 2 — 2 P y ga
pling constantsgo = /T andho = #/T*. In the limit Luttinger liquid critical points [17] that contains the self-
poa < 1 of small miscut angles, this system can be

dual point A = 2, the free fermion pointA = 1, and
mapped onto thé:a}logero-Sutherland mod{eZ'L6], an €X-  ihe Kosterlitz-Thouless point = 1/2. Notice, however,
actly solvable continuum theory well known in the context

! . that for repulsive long-ranged forceg & 0) the root
of the fractional quantum Hall effect and random matrix, — .. . : :
theory. Its two branches of solutions are labeled by th { (go) is negative. Solutions of the Calogero-Sutherland

fnodel with A < 0 have not been discussed before as

parameter they were deemed unphysical. The solutions labeled by
A= (g0) = 1+ T+ 4g . 2 0>1> —1/2 form a new line of Tomonaga-Luttinger

2 liquid critical points; faceting on vicinal surfaces seems

The strong temperature dependence of the surface mdiQ bg thgir first reali_zation. This line is the analytic
phology described above is shown to arise from crossoveiontinuation of the lined < A < beyond the free
phenomena between these two branches of solutions. ARESON pointA = 0 (see Fig. 2), and it terminates at its
high temperatures, the surface is governed by the soldfosterlitz-Thouless pointt = —1/2. There is another
tion A*(g/T?). At the critical temperaturd’. [implic- CIE)seCIy.reIated p'hy5|cal manifestation of the §o|ut|0ns
itly given by h/T2 = hq (a, g/T2), wherehg (a, o) is a A (g0) in the particular casp = 2, where the action (1)
nonuniversal function], the surface scales according to thi & model for two interfaces in a two-dimensional system
solution A~ (g§) (as long asg = g/T? < 3/4; beyond N the so-called intermediate fluctuation regime [18]. In
that point, this branch of solutions ceases to exist). The
solution A~ (gg) also determines the faceting properties.
Hence a number of observables can be predicted in terms
of the single nonuniversal paramets.

(@) The wave function (5) below yields immediately
the step density correlation functiofp(0,¢)p(r,1)) ~
W3(r) ~ r? in the limit |r| < po !, where multiparticle
effects can be neglected. Two steps at distandeom
each other enclose a terrace of widthif no further
steps are in between; this condition is also negligible for
r < py'. Hence the terrace width distribution, which
can be measured by surface scanning techniques, has th&. 2. The two branches® (g;) and A~ (go) of the Calogero-
same short-distance tailr>* [5]. In the high-temperature Sutherland model. On vicinal surfaces, they govern the high-
regime = A*(g/T?) > 1], short terraces are rare, temperature regime and the faceting transition, respectively.

g NI The solutions0 < A <« and0 > A > —1/2 form two dis-
while at7, [A = A (g(_)) < 0], they_ are abundant. . tinct lines of Luttinger liquid critical points. Special points are
(b) The surface stiffnesy, defined as the universal ) = | (free fermions)\ = 0 (nonrelativistic free bosons), and

prefactor of the height difference correlation function = *1/2 (Kosterlitz-Thouless points).
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these systems, the well-known line wfetting critical  In the limit a — 0, the coefficientsFy, y develop loga-

points [18,19] turns out to correspond to that branch ofithmic singularities. With an appropriate normalization

solutions. The wetting transition & = T, is of second of the operators, and(},, one finds at the lowest orders

order for A > —1/2, but of first order forx = —1/2

[18,19]. One may speculate that the faceting describeqr, | = 5-2(0),) = sp; 2(D,) + O(sY),

here turns into a similar first-order transition At= T

for A~ (g) = —1/2. 72]61 — gp 2 0

t{(DP,0)D,(z)) =2 o)+ 0 s

To derive these results, it is convenient to regard the — Po (Pa(0) P4 (1)) $po~(Pa) (s")

ensemble of steps as a many-body quantum system. The

Hamiltonian of this system, and hence
1
H=-3 f dr gt (r, 007 (r, ) Fy(84.h) — F(0.0) = — po @) [hf + s(gh — hi)]
+ 20Qa(1) + ho®, (1), 4) + 0(s°, 85 80ho, hi’
acts on p-particle states; its form is determined _ . . -
! + . . wheres = —In(ppa). Up to this order, the singularities
b_y the act|on_ (D). ‘p, and 47 are /antlgommutlng can be absorbed into the renormalized coupling constant
fields; Qu(1) = [drdr p(r,Dwa(r = rp(r, ) and 5 7 ) + sgl + ---, while no renormaliza-
G (1) = [drdr'p(r,08,(r — rp(r',1) are the long- o e heedeq forgy. This leads to the parabolic flow
and short-ranged interactions written in terms of the €aquations
density operatorp(r,t) = T (r,0)¢(r,1). In a system q
of finite width L with periodic boundary conditions and d d 1 )
the periodic potential w,(r) = (72/L?)sin 2(wr/L) 280 =0 “ohe =+ g0 — Bk, (6)

(for a <r <L — a), the two-particle ground state

takes the exact form [16WW,(rj,) = simt(wr;n/L) for  which are independent ofpp. They have first been
a <rpp <L — a, with A given by Eq. (2). Matching obtained by functional renormalization group methods for
this wave function with the fermionic boundary condition p = 2 [19] and have been derived for arbitrapgy in
W,(0) = W,(L) = 0 [20] requires a contact potential of Refs. [24,25]. It is possible to check that, and Fy,
fixed strengthhy = hg (a,go). In the limit « — 0, the  contain the only primitive singularities of the perturbation

p-particle ground state is the simple product series. The renormalization group equations (6) are thus
exact to all orders in a minimal subtraction scheme.
W,(ri,...,rp) = l_[‘I’Z(”ij) ) There are two lines of fixed points,iz =
=< +/1 + 4g9/2. The renormalization group eigen-
with energyE, = A>#2p(p? — 1)/3L2, provided A > value of temperature variations (or variationsh@f,

—1/2 [otherwise the wave function (5) is not normaliz-

I 9
able]. Anintegrable continuum model emerges, knownas y*(gg) = = —
the Calogero-Sutherland model [16]. The free energy den- 2 dhg
sity f, = E,/L has a well-defined thermodynamic limit
f(po) = lim,_.. f, atfixed densitypy = p/L, whichen- also governs the scaling of the contact operdator e.g.,
codes the bulk properties of the step system. (@) (g0) ~ pal 778 This is precisely the scaling of

For a given value-1/4 < gy < 3/4, the Hamilton- (¥, |®,|¥,) obtained from the exact solution (5) with
ian (4) defines two different continuum theories, corre-) given by (2). The two lines of fixed pomtBR (0)
sponding to the branches™(go) in Eq. (2). The stability can thus be identified with the two branches of solutions
of these solutions in the thermodynamic parameter spacg*(g,) of the Calogero-Sutherland model.

(0, ho) can be studied perturbatively, using the methods At the fixed pointsA~(g§), temperature variations are a
of Refs. [21-23] (where more details can be fOUHd) Theelevant perturbation. (Fqr = 2, these fixed points gov-
expansion of the dimensionless free enefgy= L°f,  ern the wetting transition &, [19].) AboveT., Eq. (6)

(7)

<th> _ 1 +4go
) =X o
ht( ds 2 ’

about the branch poimt™ = 1/2 has the form yields a crossover to the stable branch of solutibhégy).
. (—1)M+N BelowT., the renormalized couplingk tends to—o under
Fy(g0-ho) = Fp(0,0) = ~—=—— > Fungd'hd  the flow (6), indicating an instability of the step ensemble
MINT e : .
with respect to the formation of local bundles. The scal-
with g6 = go + 1/4, hy = hg — hg (a, —1/4), and ing form of the free energy density( po) ~ ps + (T —
M+N M+N Tc)pg_zy (g°), determines the singular density dependence
Fun = po f ]_[ dt; <]_[Q ) [] . t)> of the crossover temperature and of the phase boundary,
i=M+1

T(po) — Te ~ T, — T*(po) ~ péy*(g‘?), as well as the
The brackets- - -y denote connected expectation values incharacteristic line densig(T) ~ (T, — T)"/% $) in the
the unperturbeg-particle ground state (5) at = 1/2.  faceted regime. On average, a line bundle consists of
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