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Abstract

Alignment algorithms are commonly used to detect and quantify similarities between DNA
sequences. We study these algorithms in the framework of a recent theory viewing similarity
detection as a geometrical critical phenomenon of directed random walks. We show that
the roughness of these random walks governs the fidelity of an alignment, i.e., its ability to
capture the correlations between the sequences compared. Criteria for the optimization of
alignment algorithms emerge from this theory.

Introduction

The explosion of genetic information has made statistical sequence alignment an indispens-
able tool in molecular biology [1]. The identity of new genes and relationships about known
genes are routinely analyzed by aligning sequences on a computer. This underlies, for ex-
ample, the retrieval of ancestorial relationships in the history of evolution.

In a typical algorithm [2, 3, 4], each alignment of sequences is assigned a score specified by
a set of parameters. Maximization of this score is then used to select the optimal alignment,
which depends, of course, strongly on the parameters used to define the score. What are
then optimal alignment parameters making the algorithm most sensitive to the similarities
of the sequences? This important problem has so far been solved mostly by trial and error,
despite some recent efforts to establish a more solid empirical footing [5, 6].

In this paper, we study the parameter optimization problem using a recent analytical
approach to sequence alignment introduced by two of us [7]. The approach is based on a ge-
ometrical formulation of sequence alignment [2] and focuses on the morphology of alignment
paths. This provides a fruitful link (see also Ref. [8]) to various well-studied problems in the
statistical physics of critical phenomena.

In a divergent evolution process, similarities between sequences stem from a common
ancestor sequence and are gradually destroyed in the course of time. We use a simplified
model of evolution: Sequences are altered by a stochastic process of local substitutions,
insertions, and deletions. In this model, the mutual similarities between daughter sequences
inherited from their common ancestor can be identified uniquely. Hence, we can quantify in
an unambiguous way the fidelity of an alignment algorithm [7], i.e., its ability to retrieve the
inherited similarities from the knowledge of the daughter sequences alone. Then we analyze
the dependence of the fidelity on the evolution parameters and the alignment parameters.
Maximizing the fidelity defines optimal alignment parameters for given evolution parameters.
Conversely, unknown evolution parameters can be reconstructed from alignment data.

In the sequel, we introduce the evolution model and the alignment algorithm used in this
work, derive geometrical properties of alignment paths, and discuss how they govern the
alignment fidelity and its parameter dependence. In particular, optimal alignment param-
eters are seen to follow from a simple geometric criterion. Further details of our work are
reported in a forthcoming publication [9].
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FIGURE 1: (a) One possible alignment of the sequences D = {G,T,A,C,T,G,A,T,G} and
D' = {G,A,GT,A G,T,T,G}; elements conserved from a common ancestor are shown in ital-

ics. The alignment has six matches (solid lines), two mismatches (dotted lines), and two gaps.
(b) Representation on the alignment grid. Horizontal and vertical bonds represent gaps, solid (dot-
ted) diagonal bonds represent matches (mismatches). Matches corresponding to native pairs are
marked with a circle. The directed path r(¢) corresponding to the alignment in (a) is shown as a
thick line. Its fidelity is 3/5. (c) The mean square displacement Arg(t) of the optimal alignment
path, obtained from a sample of 200 mutually uncorrelated sequence pairs for each value of ~.

Evolution Model and Alignment Algorithm

The simplified stochastic evolution process used in this paper generates two daughter se-
quences D and D’ from a common ancestor sequence A = {A;} taken to be a random
sequence of length N > 1. Each element A is with probability 1/4 one of the four different
nucleotides A, C, G, T; we neglect any correlations within the ancestor sequence. A daughter
sequence D is generated according to the following rules [7] (see also [10, 11]): (a) Each
element Ay, is deleted with probability /2. (b) Each element Ay is substituted with proba-
bility (1 — p/2)p by a randomly chosen nucleotide. (c) If an element A is not deleted, an
additional random nucleotide is inserted immediately to its right with probability p/2. If a
random element has been inserted, another random nucleotide is inserted immediately to its
right with probability p/2, etc.

An ancestor element A that is conserved in the evolution process (i.e., not deleted or
substituted at any point) gets shifted to a position i(k) due to the insertions and deletions
of other elements, and appears as daughter element D;4). Since the daughter sequences
D and D' are generated by independent realizations of the evolution process, a fraction
(1 —p/2)%(1 — p)? of the ancestor sequence elements is conserved in D and D'. Each such
element A; defines a unique pair of daughter elements (Djx) = D;(k)) called a native pair.

Alignment algorithms are designed to find the native pairs from the knowledge of the
daughter sequences D and D' alone. A global alignment of the two sequences is defined
as an ordered set of pairings (D;, D;) and of gaps (D;, —) and (—,Dj), each letter D; and
D; belonging to exactly one pairing or gap (see Fig. 1 (a,b)) [2]. (It is clear that gaps are
necessary to account for the shifts due to insertions and deletions and to allow the native
pairs to be matched.) We define the fidelity of an alignment as the fraction of native pairs
(D, D;) that are correctly matched.



In this paper, we use the simplest version of the classic Needleman-Wunsch algorithm [2]
to align the sequences D and D'. An alignment is assigned a score
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given in terms of its total number N, of matches (D; = D}), the total number N_ of
mismatches (D; # Dj}), and the total number N, of gaps. The scoring function (1) has a
single adjustable parameter 7, the effective gap penalty. Without loss of generality, the score
contributions of matches and mismatches have been chosen in such a way that a pairing of two
independent random elements has the average score 0 and the score variance 1. Maximizing
the total score ¥ defines the optimal alignment of the sequences D and D’ for a given value
of 7. (From a physicist’s point of view, —3 is an energy function that has to be minimized.)

The following geometrical representation of global alignment will prove very useful.
Fig. 1(b) shows a two-dimensional grid whose cells are labeled by the index pair (i, ).
A given alignment of D and D’ uniquely defines a directed path on the grid [2]: A diagonal
bond in cell (7, ) represents the pairing of elements (D;, Dj). A horizontal bond between
cells (¢,7) and (i, 7+ 1) represents a gap (D;, —) located on sequence D' between the elements
D} and D}, . Similarly, a vertical bond between cells (i, j) and (i + 1, j) represents a gap
located on sequence D between the elements D; and D;,,. Using the rotated coordinates
r =i — j and t = i + j, this alignment path is described by a single-valued function ()
measuring its displacement from the diagonal of the alignment grid. The path of the optimal
alignment is denoted by r¢(¢). The set of native pairs resulting from a given evolutionary
history corresponds to a set of special diagonal bonds marked by circles in Fig. 1(b). The
fidelity of an alignment is the fraction of native bonds that lie on the alignment path r(¢).
Any shortest trajectory through all native bonds defines again a directed path R(¢) on the
alignment grid called target path.

Y =vV3N, - —=N_— 9N, (1)

Alignment Statistics and Roughness

The representation on the alignment grid enables us to express the statistics of the evolution
process and of sequence alignments in terms of displacement fluctuations measuring the
roughness of the directed paths R(t) and ro(t).

Since insertions and deletions are assumed to be independent of each other, the target
path R(t) is just a free random walk on the alignment grid; its mean square displacement

(AR(t; — t5))* = (R(t;) — R(ty))” is given by

AR(t) = (Flt)""* . (2)

Here and throughout the paper, an overbar is used to denote the average over an ensemble
of evolution processes for given p and p.

At first glance, the optimal alignment path may appear to be a free random walk as
well. However, this is generally not the case. Consider first the optimal alignment of a pair
of random sequences with no mutual correlations (i.e., in the limit p = 1). As pointed out
in Ref. [7], the mean square displacement (Arg(t; — t3))* = (ro(ty) — 7o(t2))” of the optimal
alignment path follows the scaling law

Aro(t) = A(y) [t (3)



in the asymptotic regime |t| > A~%/2(y), describing a correlated random walk.! As expected
from the theory of critical phenomena, the entire parameter dependence of the displacement
Ary(t) is contained in the amplitude A(vy). The exponent 2/3 of the power law is universal
(i.e., independent of 7), just as the exponent 1/2 is universal for free random walks. We
have verified this numerically (Fig. 1(c)) and have determined the amplitude function A(~)
(for details, see [9]). Over the relevant range, A(7) is a monotonically decreasing function
of 7y, with A(7) oc y7#/% in the biologically relevant regime y > 1.

We can compare the roughness of the free random walk R(¢) and the correlated random
walk 79(t). Equating the rms. displacements (2) and (3) defines the roughness matching scales

tv,0) =p°/A°(v),  #(v,p) =0"/A(7). (4)
For [t| < #(v,p), the displacement of R(t) exceeds that of r¢(t). For |t| > #(v,p), the
displacement of the alignment path becomes dominant since the cost of gaps is outweighed
by the gain in score from regions of the grid with an excess number of random matches.

Roughness Matching and Fidelity

For daughter sequences with nonvanishing mutual correlations (i.e., for p < 1), the statistics
of matches and mismatches on the alignment grid differs from the case of uncorrelated
sequences: along the target path R(t), there are U(p,p) = (1 — p)*(1 — p/2)? extra matches
per unit of ¢ due to the native pairs. The optimal alignment path contains a finite fraction F
of these extra matches, thereby increasing its score. Hence, it has no longer the displacement
(3) and remains confined to the vicinity of the target path R(¢). The confinement length
r. is defined by the relative displacement of the two paths, r(v,p,p) = (ro(t) — R(t))%. Tt
is uniquely related to the average fidelity: F decreases with increasing r., and F ~ r_! for
small F [9].

The behavior of the fidelity is well established for an evolution process without insertions
and deletions (7 = 0) [7]. In this limit, F is found to be a monotonically increasing function
of 7, reaching its maximum F* = 1 for v — oo. This is not surprising since there is no need
for any gaps in an alignment if the evolution process has no insertions and deletions.

For small values of F, the fidelity has the asymptotic form F ~ exp(—C(v)/U(p,0)),
where C(y) ~ 2A4%* is another amplitude function. This form is supported by our nu-

merics [9]. For U — 0, the fidelity approaches zero and the confinement length 7, ~ F
diverges. This singularity marks a continuous phase transition at U = 0, which we call the
detectability transition. Positive correlations between sequences (U > 0) are recovered with
a finite fidelity F(-y,U), while anticorrelations (U < 0) cannot be detected (i.e., F = 0). For
the alignment path ry(¢), this is a critical (de-)localization transition? between the confined
regime (r, < oo) for U > 0 and the regime of correlated displacement fluctuations (3) for
U > 0.

!This class of random walks is in fact well known to physicists as directed polymers in a random
medium ( [12], see also [13] and references therein). Perhaps the most prominent example occurs
in the theory of magnetic superconductors. If these materials are placed into a magnetic field, they
develop tubular regions of normal magnetic conductance. These fluz lines are directed parallel to
the applied field (the ¢ direction) and can be described by a displacement vector r(t). In addition,
there is often a distribution of point impurities. These act on the flux lines just like a random
distribution of matches and mismatches on the alignment grid, causing large displacements of the
lowest-energy path 7¢(t).

2The properties of this phase transition are known from the physics of a magnetic flux line
interacting with an attractive linear defect R(¢) = 0 [14, 15].
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FIGURE 2: (a) The average alignment fidelity Z(y;p, p) obtained from a sample of 100 sequence
pairs (lines 1-5), and the inverse roughness matching scale # !(y;p) (lines 1-3’) for several values
of p and p. The curves belonging to the same value of p are shown in the same line style (solid:
p = 0.2, dotted: p = 0.1, dashed: p = 0.05). The maximum of a fidelity curve is close to its
intersection point with the roughness matching curve for the same value of p. (b-d) The optimal
alignment path 7¢(¢) (thin line) for the same sequence pair and the same target path R(¢) (thick
line) at three different values of 4: (b) in the random fluctuation regime, (c) at the optimal value
v*(p,P), and (d) in the shortcut regime.

For finite insertion/deletion rate p, it is clear that F should decrease to zero for sufficiently
large values of v, since a high gap penalty prevents the alignment path from following
a fluctuating target path R(t). The behavior of the fidelity F(v;p,p) is rather complex.
Fig. 2(a) shows the dependence of F on v for several values of p and p. Unlike for p = 0,
these curves have their (single) maximum at a finite value y*(p,p). Alignment patterns for
v < v*(p,p) and v > *(p,p) are clearly distinguished by the roughness of the optimal
path ro(t), as one recognizes from the examples of Fig. 2(b-d): (b) For v < v*(p,D), the
displacement fluctuations of r¢(t) exceed those of the target path R(¢). This can be expressed
by the relation r. > 7 with 7(v,p) given by Eq. (4). We call this regime of y the random
fluctuation regime. (c) For v = v*(p,p), the displacement fluctuations of boths paths are
seen to be of the same size, i.e., r. ~ 7. (d) In the shortcut regime for v > v*(p,p), the
dominant fluctuations are those of the target path, while the alignment path ry(¢) has large
straight patches with negligible intrinsic roughness.

One can show that in the asymptotic random fluctuation regime and shortcut regime,
the fidelity is a monotonically increasing (decreasing) function of 7, respectively. Hence, the

fidelity maximum F* should obey the roughness matching condition
Frai (D) - (5)

As one verifies in Fig. 2(a), the maxima of the curves F(v;p,p) are indeed close to the in-
tersection points with the curves 7 1(v;p) given by Eq. (4) with A(vy) taken from Fig. 1(b).



In order to determine the optimal alignment parameter v*(p, p) from this relation, we can ap-
proximate the l.h.s. by its value in the random fluctuation regime, F* ~ exp(—C(v*)/U(p, D)),
and solve the resulting equation numerically [9]. In the biologically relevant case of a low
insertion/deletion rate, where F* ~ 1, one obtains * by expanding (5) in powers of p:

Y (p,p) ~ B 1+ O0(B/(1 - p)°)]. (6)

In the shortcut regime, the fidelity rapidly decreases with increasing v, making the (prac-
tical) detection of the similarities impossible for sufficiently large . The singularities at the
theoretical detectability transition turn out to be different from the case p = 0 as well [9].
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