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Upper Critical Dimension of the Kardar-Parisi-Zhang Equation
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The strong-coupling regime of Kardar-Parisi-Zhang surface growth driven by short-ranged noise
is shown to have an upper critical dimensidn less than or equal to four [where the dynamic
exponentz takes the value(d-) = 2]. To derive this, we use the mapping onto directed polymers
with quenched disorder. Two such polymers coupled by a small contact attraction of streagth
shown to form a bound state at all temperatufss < B!, the roughening temperature of a single
polymer. Comparing singularities of the (de-)localization transitiom at 0 below 8! and atg!
then yieldsd- = 4. [S0031-9007(97)02298-9]

PACS numbers: 64.60.Ht, 05.70.Ln, 68.35.Fx

The Kardar-Parisi-Zhang equation [1] has been intro- Itis a notorious difficulty of the strong-coupling regime
duced as the simplest nonlinear evolution equation that above dimension one its properties are inaccessible
A to any known systematic approximation, let alone to an
9,h(r,t) = v V?h(r,1) + E[Vh(r’ NP + n@r,r) (1) exact solution. In particular, renormalized perturbation
theory with ane expansion abouf = 2 fails to produce
for a continuous “height field(r, r) driven by Gaussian a strong-coupling fixed point [12]. This feature, which
noise n(r,7) with (n(r,1)) = 0 and(n(r,1)n(r’,#')) =  the Kardar-Parisi-Zhang equation shares with other driven
o?8(r — r')8(t — 1'). It appears ubiquitously in a systems such as fully developed turbulence, is a major
number of nonequilibrium statistical problems such asppen problem in nonequilibrium statistical physics. In
fluid dynamics or dissipative transport, as well as inthis Letter we discuss a (modest) step towards its eventual
systems with quenched disorder; for example, flux linessolution. We find that the Kardar-Parisi-Zhang equation
in a dirty type-ll superconductor (see [2] for reviews). has anupper critical dimensiond- =< 4, where the
The morphology of a growing surface governed by (1)exponents in the strong-coupling regime take the values
is well known in low spatial dimensions. The asymptotic; = 2 and y = 0, equal to those governing the limit
scaling of the spatiotemporal height correlations d — = [13,14] (and thus presumably the whole interval
_ 20\ o 2x z d> =d < ). As d- is approached from below, the
{Lhtrr, ) = Ao, )] =m0 C/r), @ exponents tend to these values continuously. Hence the
(with r = |r; — rp| andr = |1, — 1,]) defines theough-  upper critical dimension could serve as the starting point
ness exponenky and thedynamic exponent. In the for a controlled expansion. However, the reader should
Gaussian dynamics\(= 0), one hasy = (2 — d)/2and  be cautioned that the name “upper critical dimension”
z = 2. ForA # 0, Galilei invariance imposes the rela- may be misleading sinc#. does not mark the borderline
tion y + z =2 [3]. In dimensionsd = 2, any small to simple mean-field behavior as in the standard theory
nonlinearity (A/2)(Vh)? is a relevant perturbation of the of critical phenomena, but instead to an even more
Gaussian theory and leads to new values of the excomplicated state in high dimensions with presumed
ponents f = % 7= % in d=1[4] and y = 0.386, glassy characteristics [14,15].
z = 1.612 in d = 2 [5]). In the renormalization group, Even the existence of a finite upper critical dimension
there is a crossover between the Gaussian fixed poinihas been very controversial. Numerical work seems to
which is (infrared-)unstable, and te&rong-couplingixed indicate that a strong coupling phase with nontrivial
point, which is stable. Fo# > 2, a Gaussian surface is exponentsz <2, y > 0 persists in dimensions! =
smooth. A small nonlinearityA/2)(Vh)? does not al- 3,4,...,7 [5]. However, since the available system sizes
ter this asymptotic scaling. There is now a rougheningapidly decrease with increasing it becomes difficult
transition to the strong coupling regime at finite valuesto distinguish the apparent power laws from logarithmic
+ ). [6—8]. In the renormalization group, the transition prefactors or other corrections to scaling that mask
is represented by a third fixed point. Thistical fixed the true exponents. Various theoretical arguments favor
point is unstable and appears between the Gaussian fixéide existence of a finite upper critical dimensial
point and the strong-coupling fixed point which are nowbut all of them rest on approximation schemes whose
both stable [9,10]. The critical point is characterized bystatus is not very well understood. This is the case for
the dimension-independent critical exponepts= 0 and  functional renormalization group calculations [16], which
¥ =2[11,12]. are supported by a Flory-type argument [17], and for a
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1/d expansion based on a solution on the Cayley-treg¢ = % and w = 0 govern the low-temperature phase as

[7] (criticized, however, in [3]). Recent work treating well, albeit with possible logarithmic corrections.

the Kardar-Parisi-Zhang dynamics in a mode-coupling In its mapping to directed polymers, it is a natural

approach gives contradictory results, predicting values oéxtension of the model to study an ensemble of linés

d- between 3 and 4 [15,18] @k = = [19]. that live in the same random potential and are coupled by

The arguments of this Letter are of a different kind direct mutual forces [22—24]. The simplest case is that of
since they are not tied to any approximation schemgust two lines with the interaction

for the strong-coupling regime. We use the known

equivalence of the Kardar-Parisi-Zhang equation to a H; = —u[ dr V() @)
system of directed polymers and compaseactphysical

properties of this system in the strong-coupling phasén terms of the local pair fieldV () = §(ri(r) — ra(2)).

and at the roughening transition. Individual numericalFor d > 2, this interaction is irrelevant at the Gaussian
tests of these properties are possible and would be fixed point governing the weak-coupling regime. How-
highly desirable complement to the existing simulationsever, ford < d-, it turns out to be relevant both at the
of directed surface growth. The importancedof= 4 for ~ strong-coupling fixed point [24] and at the transition fixed
the roughening critical point has already been stressegoint. Thus for all temperature8 ' < B!, an attrac-
recently [12,20]. ForR = d = 4, this universality class tive contact interaction:{ > 0) leads to a bound state,
is accessible by renormalized perturbation theory, whictsuppressing the relative fluctuations of the lines on scales
produces the exponentg* = 0 and z* = 2 exactly to |r; — r2| = £,. This defines the transversal localization
all orders. Atd = 4, however, there are singularities length ¢,. A set of similar Scaleggfn)(m =1,2,..)

in some observables (for example, in the exponght characterizes the moments of the stationary pair distribu-

defined below). tion, see Eq. (11) below. For — 0 one has the singu-
Via the well-known Hopf-Cole transformation, larities
A ~ Ly
exp{z—h(rf,tf)} = j Dr 8[r(t;) — relexd—BoH ] f(lm) “ with y=1-w (8
v 3 £ ~ BUmy~(—w/m]y
; _ 1 -1
with the Hamiltonian in the low ter?r;erature phasg (' < B.'), and
i 2 £~ &M ~uVY with v =(d —2)/2 (9)
= [T al S5 - wtr0a)]. @ - n
0 m

at the critical temperatur@_'. According to (8),¢]
the Kardar-Parisi-Zhang equation can be mapped ontincreases with temperature for any valueuokept fixed.
the equilibrium problem of a directed polymar(r)  This is not surprising since the relative fluctuations of the
living in the quenched random potentialn(r,z) at lines are thermally activated. An immediate consequence
temperaturgd, ' = 2». The polymer is characterized by is the inequalitiesy/({ — w/m) = 2y*. These in turn

its transversal displacement imply an upper bound on the free energy exponent
— AN PP 4 (4 — d)/d, yielding our main resuld- = 4. We now
{r) = r@P ~In = £l ®) " discuss the arguments leading to Eqgs. (8) and (9) above.
and by free energy quantities like the “Casimir” term (a) Strong coupling phase-At low temperatures and

for w > 0, two noninteracting lines u(= 0) in the
same random potential have a stationary pair distribution
in a system of longitudinal siz& and transversal size P(|r|) = lim,7—_,—..(8[r;(r) — r2(r) — r]) given by

R. (Averages over the disorder are denoted by overbars, PP _

thermal averages by brackets--).) The asymptotic P(r)=p""r" with 6 = —d — w/{ (10)

scaling in (5) and (6) is related to the growth exponentsn a suitable normalization [24,25]. The nonintegrable
by { =1/z and @ = x/z; the scaling relation due short-distance singularity is cut off on scaless &,

to Galilei inyarianc_e now read® =2¢ — 1. In the whereZ, ~ B¢/ is the crossover length to the asymp-
strong-coupling regime faf < d-, the polymer becomes totic strong-coupling behavior. Thus with finite probabil-
superdiffusive { > 3), and its free energy acquires an jty, the two lines share a common “tube” of width,
anomalous dimensiorw < 0. These disorder-induced along the minimum energy path(z) for a single line.
fluctuations persist in the limiB~' — 0 [21], that is,  For any fixedp > 0, the probability of finding the lines at
in the ensemble of minimum energy pathg). In  a distancer > p approaches zero fg8 ~' — 0, signal-
the weak-coupling (high-temperature) regime &t> 2,  ing theuniquenes$26] of the ground state. At any finite
thermal fluctuations dominate (= %) and hyperscaling temperature, however, the lines make thermally activated
is preservedd¢ = 0). The roughening transition between individual excursions on all length scales from the tube
these two phases takes place at a finite temper@ite  ro(r). These excursions generate the power law distribu-
At d = d~ (and probably ford = d-), the exponents tion (10), all positive integer moments of which diverge.
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Additional interactions between the lines probe theThe confinement energy has to vanish in the limit
uniqueness of the ground state as well as the statistig8 "' — 0, where all relative fluctuations of the lines
of the low energy excursions [27]. For example, a mutuakre suppressed even without attractive forces. Therefore,
repulsion (7) withu < 0 forces one of the lines onto a instead of the temperature-independent Casimir energy
distant excited path. (In superconductors this is importangi‘“*“/{ analogous to (6), one expects
to stabilize a dilute ensemble of flux lines in the strong-
coupling regime against collapse.) For the purpose of
this Letter it is more useful to study a weak attractive S5f, ~ ,8’1511/ g, (13)
interaction ¢ > 0), which localizes the two lines to
each other. The normalized bound state distribution ) o ) )
has the formP(r,&,) = N~'(&,)P(r)F(r/&,). On aterm that is ana_lytlc in the scallng yana_t;di?1 and
scalesr = ¢, it falls off exponentially as given by the r€Spects hyperscaling [31]. The variation®f, + &f.
scaling functionF, but in the scaling regime < ¢,,  With respect tof, then leads to (8).
its dependence o, originates only from the overall ~ (b) Roughening transitior—In contrast to the strong-
normalization N(¢,) = [d%rP(r)F(r/é1). The mth cqullng_ fixed p.omt', the renormgllzatlon group for the
moment ¢ = 1,2,...) of P(r, £,) has the characteristic critical fixed point in2 < d <4 is well understood.

scale The polymer partition function (3) has been shown to
Vm be one-loop renormalizablg12,20]. It is this property
g(l’") = <f dr r"P(r, @)) ~ Bfl/mfll*w/’”f . that produces the exact dimension-independent exponents
x* =0 and z* = 2; these values agree with previous

(11)  results from numerical work id = 3 [32], from dynamic

Pair interactions have been treated in Ref. [24] byrenormalization group calculations to one-loop [9] and
renormalized perturbation theory for the HamiltoniantWo-loop [10] order, and from scaling arguments [11].
(7), based on the short-distance expansiof)W (1) ~ At the critical point Ae, .small'varlatlons ofA are a
Bt — '|"“W(z) at the strong-coupling fixed point of relevant perturbation of dimensiorf = (d - 2)/2 (with
noninteracting lines = 0). For u > 0, one finds a ! @S the basic scale) [12]. The local field conjugate to
bound state with the singularities (8). This is in agreementt: P5(t) = fd_dr' n(r',1)8¢(r(r) — r'), encodes the
with results ind = 1 from numerical work [22,23] and Fandom potential evaluated along the polymer paths.
from the dynamic renormalization of an extended Kardar-This field generates the crossover from the critical
Parisi-Zhang equation [28]. fixed point to the s_trong-couplmg fixed pomh_%» )

It is instructive to cast the field-theoretic derivation of @nd t0 the Gaussian fixed poini & 0). It is now
Ref. [24] into the form of a variational scaling argument; @ Purely formal matter to relate its disorder-averaged
A weak bound state has a localization length that miniCorrelation functions to those of the pair fieN for
mizes its free energy per unit of balancing the free en- # = 0 [24,33]. The simplest example is the stationary
ergy gaind 7, from the overlap of the two lines with the One-point function (@, )(R) obtained from the free
loss 8f, due to the confinement of their relative fluctua- €Nergy per unit ofz in a system of transversal size
tions [29]. The overlap free energy is proportional to theR, f(R) = —B~'limy_... rlog Tr exp(— BH )(T, R).

stationary expectation value of the pair field With the disorder correlation and the pair inter-
_ — 4 action regularized on the microscopic scale,
8fy = —ul{¥) ~ —uN"(£1) @, @, ") = ¢28,(r’ — r")8(' — +")  and

~ —ull + 0(5*151“’/5)] . (12) Y1) = 8,(ri(z) — ra(2)), the universal parts [34] of
| (D, (1)) = (P,) and(¥,) are seen to be proportional:

A KD,y = —A7tanf = —A_zazfddr’ddr”ﬁa(r’ -1’

82f
Sn(x’,1)dnk’" 1)

= Bazjddr’ddr”6a(r' —r"8(r() — r)é(x(t) — r"))c

= —Bffzfddr’ddl‘”ﬁa(r’ = ")8(x() — r)X8(x() — 1) = —Bo? (V) . (14)

At A = A., the correlation functions of,, are scale-! Hence the local pair interactiod,(r) is like ®,(t) a
invariant with the exponent* = 1 — y* = (4 — d)/2.  relevant scaling field of dimensior* at the critical fixed
By (14), the same holds for the correlation functions ofpoint. This result is consistent with the one-loop dynamic
v,; for example, renormalization group discussed in Ref. [28]. It is then
_ _ o straightforward to show that the bound state generated by
(PR, A) ~ (@) (R, A) ~ R/ (15
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this interaction has the singularities (9)@&t' [35]. Just [18] M. Schwartz and S.F. Edwards, Europhys. L&@, 310

below that temperature there is a crossover from (9) to (8)  (1992); A. Bouchaud and M. Cates, Phys. Rev4E
at the scale: ~ ,3;1 — ,3*1, R1455 (1993)48, 635 (1993); J. P. Dohertgt al., Phys.

The singularity of¢ | in (9) can again be obtained from Rev. Lett.72, 2041 (1994).
a variational scaling argument. Ag.!, the competing [19] Y. Tu, Phys. Rev. Lett73, 3109 (1994).

G 0] R. Bundschuh and M. Lassig, Phys. Re\64& 304 (1996).
free energy contributions analogous to (12) and (13) ar 1] The ‘renormalized” temperatured [33], a nonlinear
the overlap term

function of the bare continuum variablgg ', A, o2 in (3)

_ — —x*/o* d—d and (4), is an irrelevant scaling variable of dimensiom
6fu = —u(Wy) ~ —ué, = —uéf (16) at the strong-coupling fixed point. If the theory is defined
on a lattice with lattice constant, it is to be identified
with the physical temperature in the strong-coupling limit

— (@ . &) ~ a.
of. ~ &1 =£&07. (17)  [22] M. Mézard, J. Phys. (Pari§]L, 1831 (1990).

It is tempting to speculate about the nature of the[gg’] L-'H',Ta':g’ JHSta(tj- Phys.7, 581 (;994)- 2208
strong-coupling regime in high dimensions. Belaw, 2% '(—'iggg;ze ach and M. Lassig, Phys. Rev. Lelb,
the pair distribution of noninteracting lines at fixed :

o . [25] T. Hwa and D. Fisher, Phys. Rev.49, 3136 (1994).
temperature has the finite limit (10) fér — o, and this [26] The ground state is unique in almost all realizations of the

limit distribution collapses ta5(p) for g~! — 0. For disorder; see the discussion in [3,25] and the results of
d = d-, it is expected that the lines no longer cluster in [23].

the vicinity of the minimal pathr(¢) but exploit multiple  [27] Such interactions have been introduced in the replica
near-minimal paths at any finite temperature [24]. The  theory of spin glasses to study replica symmetry breaking.
pair distribution should then depend @ ! and R in See G. Parisi and M. A. Virasoro, J. Phys. (Pabi@)3317

an essential way. Hence its asymptotic behavior will ~ (1989).

depend on the order in which the zero-temperature limit28] S. Mukherji, Phys. Rev. 50, R2407 (1994).

and the thermodynamic lim® — o are taken. Similar [29] L. Balents and M. Kardar, Europhys. Le#3, 503 (1993),

f . generalize a scaling argument of this kind by T. Natter-
properties are familiar from glassy systems. mann and R. Lipowsky, Phys. Rev. Lefll, 2508 (1988),

and apply it to a single liner;(7) localized to a rigid
defectr,(r) = 0. This bound state has a normalized dis-
tribution functionP(r, £,) = Fi(r/£&.) without any sin-
gularity ¢, due to translational invariance of a single line
for u = 0. Equation (12) then become%f, ~ £7¢, and

this is to be compared with the temperature-independent

following from (15) and a Casimir term of the form (6),
=1/

[1] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[2] J. Krug and H. Spohn, irSolids Far From Equilibrium,
edited by C. Godréche (Cambridge University Press,
Cambridge, 1990); T. Halpin-Healy and Y.-C. Zhang,

Phys. Rep254, 215 (1995). Casimir termsf. ~ 51‘"71)/{. One obtains the singl_JIa_rity
[3] D.S. Fisher and D.A. Huse, Phys. Rev. 48, 10728 §o~wPrwithy, =1 —d¢ — o ford <1, again in
(1991). agreement with field-theoretic considerations [30,33].
[4] D. Forster, D.R. Nelson, and M. Stephen, Phys. Rev. A[30] T. Hwa and T. Nattermann, Phys. Rev.58, 455 (1995).
16, 732 (1977). [31] This modification can be understood heuristically by
[5] T. Ala-Nissila et al., J. Stat. Phys72, 207 (1993), and noting that the Casimir pressure originates essentially from
references therein. critical fluctuations being cut off on the scale~ ¢,.
[6] J.Z. Imbrie and T. Spencer, J. Stat. Ph§2. 609 (1988). Compared to the case of a single line [29], it should
[7] J. Cook and B. Derrida, Europhys. Left0, 195 (1989); therefore beﬁ({r}t/agduced by a factbir = £1,£1)/Pi(r =
J. Phys. A23, 1523 (1990). £1,&)) ~ &7, reflecting the reduced probability of a
[8] M.R. Evans and B. Derrida, J. Stat. Phg®, 427 (1992). critical fluctuation of sizer ~ &, .
[9] L.-H. Tang, T. Nattermann, and B. M. Forrest, Phys. Rev.[32] B. M. Forrest and L.-H. Tang, Phys. Rev. Lef, 1405
Lett. 65, 2422 (1990); T. Nattermann and L.-H. Tang, (1990); L.-H. Tang, B. M. Forrest, and D. E. Wolf, Phys.
Phys. Rev. A5, 7156 (1992). Rev. A45, 7162 (1992).

[10] E. Frey and U. C. Tauber, Phys. Rev5B, 1024 (1994).  [33] H. Kinzelbach and M. Lassig, J. Phys.28, 6535 (1995).
[11] C.A. Doty and J. M. Kosterlitz, Phys. Rev. Le@9, 1979 [34] In replacing the connected thermal correlator in the

(1992). third line of (14) by the disconnected product in the
[12] M. Lassig, Nucl. PhysB448 559 (1995). fourth line, we have suppressed the full correlator
[13] B. Derrida and H. Spohn, J. Stat. Ph4, 817 (1988). (8(r(t) = r)o(r(r) — r")) = 8(r’ —r"), 2yvhich con-
[14] M. Mézard and G. Parisi, J. Phys. | (FrandeB09 (1991). tributes only the divergent contact terf=6,(0) to the
[15] M.A. Moore et al., Phys. Rev. Lett74, 4257 (1995). right-hand side.

[16] T. Halpin-Healy, Phys. Rev. Let62, 442 (1989); Phys. [35] It should be noted that the same exponent governs
Rev. A42, 711 (1990); T. Nattermann and H. Leschhorn, two Gaussian lines A(= 0) coupled by afinite con-
Europhys. Lett14, 603 (1991). tact attraction: ¢, ~ (u — u.)~'" for u > u. > 0. See

[17] M. Feigelmanet al., Phys. Rev. Lett63, 2303 (1989). R. Lipowsky, Europhys. Lettl5, 703 (1991).

906



