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The strong-coupling regime of Kardar-Parisi-Zhang surface growth driven by short-ranged no
is shown to have an upper critical dimensiond. less than or equal to four [where the dynamic
exponentz takes the valuezsd.d ­ 2]. To derive this, we use the mapping onto directed polymers
with quenched disorder. Two such polymers coupled by a small contact attraction of strengthu are
shown to form a bound state at all temperaturesb21 # b21

c , the roughening temperature of a single
polymer. Comparing singularities of the (de-)localization transition atu ­ 0 below b21

c and atb21
c

then yieldsd. # 4. [S0031-9007(97)02298-9]
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The Kardar-Parisi-Zhang equation [1] has been intr
duced as the simplest nonlinear evolution equation

≠thsr, td ­ n =2hsr, td 1
l

2
f=hsr, tdg2 1 hsr, td (1)

for a continuous “height field”hsr, td driven by Gaussian
noise hsr, td with khsr, tdl ­ 0 and khsr, tdhsr 0, t0dl ­
s2ddsr 2 r0ddst 2 t0d. It appears ubiquitously in a
number of nonequilibrium statistical problems such a
fluid dynamics or dissipative transport, as well as i
systems with quenched disorder; for example, flux line
in a dirty type-II superconductor (see [2] for reviews).

The morphology of a growing surface governed by (1
is well known in low spatial dimensions. The asymptoti
scaling of the spatiotemporal height correlations

kfhsr1, t1d 2 hsr2, t2dg2l , r2x C styrzd , (2)

(with r ; jr1 2 r2j andt ; jt1 2 t2j) defines therough-
ness exponentx and thedynamic exponentz. In the
Gaussian dynamics (l ­ 0), one hasx ­ s2 2 ddy2 and
z ­ 2. For l fi 0, Galilei invariance imposes the rela-
tion x 1 z ­ 2 [3]. In dimensionsd # 2, any small
nonlinearity sly2ds=hd2 is a relevant perturbation of the
Gaussian theory and leads to new values of the e
ponents (x ­

1
2 , z ­

3
2 in d ­ 1 [4] and x ø 0.386,

z ø 1.612 in d ­ 2 [5]). In the renormalization group,
there is a crossover between the Gaussian fixed po
which is (infrared-)unstable, and thestrong-couplingfixed
point, which is stable. Ford . 2, a Gaussian surface is
smooth. A small nonlinearitysly2ds=hd2 does not al-
ter this asymptotic scaling. There is now a roughenin
transition to the strong coupling regime at finite value
6lc [6–8]. In the renormalization group, the transition
is represented by a third fixed point. Thiscritical fixed
point is unstable and appears between the Gaussian fi
point and the strong-coupling fixed point which are now
both stable [9,10]. The critical point is characterized b
the dimension-independent critical exponentsx? ­ 0 and
z? ­ 2 [11,12].
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It is a notorious difficulty of the strong-coupling regime
that above dimension one its properties are inaccessi
to any known systematic approximation, let alone to a
exact solution. In particular, renormalized perturbatio
theory with an´ expansion aboutd ­ 2 fails to produce
a strong-coupling fixed point [12]. This feature, which
the Kardar-Parisi-Zhang equation shares with other driv
systems such as fully developed turbulence, is a ma
open problem in nonequilibrium statistical physics. In
this Letter we discuss a (modest) step towards its event
solution. We find that the Kardar-Parisi-Zhang equatio
has an upper critical dimensiond. # 4, where the
exponents in the strong-coupling regime take the valu
z ­ 2 and x ­ 0, equal to those governing the limit
d °! ` [13,14] (and thus presumably the whole interva
d. # d , `). As d. is approached from below, the
exponents tend to these values continuously. Hence
upper critical dimension could serve as the starting poi
for a controlled expansion. However, the reader shou
be cautioned that the name “upper critical dimension
may be misleading sinced. does not mark the borderline
to simple mean-field behavior as in the standard theo
of critical phenomena, but instead to an even mo
complicated state in high dimensions with presume
glassy characteristics [14,15].

Even the existence of a finite upper critical dimensio
has been very controversial. Numerical work seems
indicate that a strong coupling phase with nontrivia
exponentsz , 2, x . 0 persists in dimensionsd ­
3, 4, . . . , 7 [5]. However, since the available system size
rapidly decrease with increasingd, it becomes difficult
to distinguish the apparent power laws from logarithmi
prefactors or other corrections to scaling that mas
the true exponents. Various theoretical arguments fav
the existence of a finite upper critical dimensiond.

but all of them rest on approximation schemes whos
status is not very well understood. This is the case f
functional renormalization group calculations [16], which
are supported by a Flory-type argument [17], and for
© 1997 The American Physical Society 903
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1yd expansion based on a solution on the Cayley-tr
[7] (criticized, however, in [3]). Recent work treating
the Kardar-Parisi-Zhang dynamics in a mode-coupli
approach gives contradictory results, predicting values
d. between 3 and 4 [15,18] ord. ­ ` [19].

The arguments of this Letter are of a different kin
since they are not tied to any approximation schem
for the strong-coupling regime. We use the know
equivalence of the Kardar-Parisi-Zhang equation to
system of directed polymers and compareexactphysical
properties of this system in the strong-coupling pha
and at the roughening transition. Individual numeric
tests of these properties are possible and would be
highly desirable complement to the existing simulatio
of directed surface growth. The importance ofd ­ 4 for
the roughening critical point has already been stress
recently [12,20]. For2 # d # 4, this universality class
is accessible by renormalized perturbation theory, whi
produces the exponentsx? ­ 0 and z? ­ 2 exactly to
all orders. At d ­ 4, however, there are singularitie
in some observables (for example, in the exponenty?

defined below).
Via the well-known Hopf-Cole transformation,

exp

∑
l

2n
hsrf , tfd

∏
­

Z
D r dfrstfd 2 rfg expf2b0H g

(3)

with the Hamiltonian

H ­
Z tf

0
dt

∑
1
2

µ
dr
dt

∂2

2 lhfrstd, tg
∏

, (4)

the Kardar-Parisi-Zhang equation can be mapped o
the equilibrium problem of a directed polymerrstd
living in the quenched random potentiallhsr, td at
temperatureb21

0 ­ 2n. The polymer is characterized by
its transversal displacement

kfrst1d 2 rst2dg2l , jt1 2 t2j
2z (5)

and by free energy quantities like the “Casimir” term

fcsRd ; lim
T°!`

≠T fFsT , Rd 2 FsT , `dg , Rsv21dyz (6)

in a system of longitudinal sizeT and transversal size
R. (Averages over the disorder are denoted by overba
thermal averages by bracketsk· · ·l.) The asymptotic
scaling in (5) and (6) is related to the growth exponen
by z ­ 1yz and v ­ xyz; the scaling relation due
to Galilei invariance now readsv ­ 2z 2 1. In the
strong-coupling regime ford , d., the polymer becomes
superdiffusive (z .

1
2 ), and its free energy acquires a

anomalous dimension2v , 0. These disorder-induced
fluctuations persist in the limitb21 °! 0 [21], that is,
in the ensemble of minimum energy pathsr0std. In
the weak-coupling (high-temperature) regime ford . 2,
thermal fluctuations dominate (z ­

1
2 ) and hyperscaling

is preserved (v ­ 0). The roughening transition betwee
these two phases takes place at a finite temperatureb21

c .
At d ­ d. (and probably ford $ d.), the exponents
904
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z ­
1
2 and v ­ 0 govern the low-temperature phase a

well, albeit with possible logarithmic corrections.
In its mapping to directed polymers, it is a natura

extension of the model to study an ensemble of linesristd
that live in the same random potential and are coupled
direct mutual forces [22–24]. The simplest case is that
just two lines with the interaction

HI ­ 2u
Z

dt Cstd (7)

in terms of the local pair fieldCstd ; dsssr1std 2 r2stdddd.
For d . 2, this interaction is irrelevant at the Gaussia
fixed point governing the weak-coupling regime. How
ever, for d , d., it turns out to be relevant both at the
strong-coupling fixed point [24] and at the transition fixe
point. Thus for all temperaturesb21 # b21

c , an attrac-
tive contact interaction (u . 0) leads to a bound state
suppressing the relative fluctuations of the lines on sca
jr1 2 r2j * j'. This defines the transversal localizatio
length j'. A set of similar scalesj

smd
' sm ­ 1, 2, . . .d

characterizes the moments of the stationary pair distrib
tion, see Eq. (11) below. Foru °! 0 one has the singu-
larities

j' , u2z yy

j
smd
' , b21ym u2sz 2vymdyy

with y ­ 1 2 v (8)

in the low-temperature phase (b21 , b21
c ), and

j' , j
smd
' , u21y2yp

with yp ­ sd 2 2dy2 (9)

at the critical temperatureb21
c . According to (8),j

smd
'

increases with temperature for any value ofu kept fixed.
This is not surprising since the relative fluctuations of th
lines are thermally activated. An immediate consequen
is the inequalitiesyysz 2 vymd $ 2yp. These in turn
imply an upper bound on the free energy exponentv #

s4 2 ddyd, yielding our main resultd. # 4. We now
discuss the arguments leading to Eqs. (8) and (9) abov

(a) Strong coupling phase.—At low temperatures and
for v . 0, two noninteracting lines (u ­ 0) in the
same random potential have a stationary pair distributi
Psjrjd ; limt,T2t°!` kdfr1std 2 r2std 2 rgl given by

Psrd ­ b21ru with u ­ 2d 2 vyz (10)

in a suitable normalization [24,25]. The nonintegrab
short-distance singularity is cut off on scalesr & j̃',
wherej̃' , b2z yv is the crossover length to the asymp
totic strong-coupling behavior. Thus with finite probabi
ity, the two lines share a common “tube” of width̃j'

along the minimum energy pathr0std for a single line.
For any fixedr . 0, the probability of finding the lines at
a distancer . r approaches zero forb21 °! 0, signal-
ing theuniqueness[26] of the ground state. At any finite
temperature, however, the lines make thermally activat
individual excursions on all length scales from the tub
r0std. These excursions generate the power law distrib
tion (10), all positive integer moments of which diverge.
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Additional interactions between the lines probe t
uniqueness of the ground state as well as the statis
of the low energy excursions [27]. For example, a mutu
repulsion (7) withu , 0 forces one of the lines onto a
distant excited path. (In superconductors this is import
to stabilize a dilute ensemble of flux lines in the stron
coupling regime against collapse.) For the purpose
this Letter it is more useful to study a weak attracti
interaction (u . 0), which localizes the two lines to
each other. The normalized bound state distribut
has the form Psr , j'd ­ N21sj'dPsrdF sryj'd. On
scalesr * j', it falls off exponentially as given by the
scaling functionF , but in the scaling regimer ø j',
its dependence onj' originates only from the overal
normalization Nsj'd ;

R
ddrPsrdF sryj'd. The mth

moment (m ­ 1, 2, . . .) of Psr , j'd has the characteristic
scale

j
smd
' ;

µZ
ddr rmPsr , j'd

∂1ym

, b21ymj
12vymz
' .

(11)

Pair interactions have been treated in Ref. [24]
renormalized perturbation theory for the Hamiltonia
(7), based on the short-distance expansionCstdCst 0d ,
b21jt 2 t0j2vCstd at the strong-coupling fixed point o
noninteracting lines (u ­ 0). For u . 0, one finds a
bound state with the singularities (8). This is in agreem
with results ind ­ 1 from numerical work [22,23] and
from the dynamic renormalization of an extended Kard
Parisi-Zhang equation [28].

It is instructive to cast the field-theoretic derivation
Ref. [24] into the form of a variational scaling argumen
A weak bound state has a localization length that mi
mizes its free energy per unit oft, balancing the free en
ergy gaindfu from the overlap of the two lines with the
loss dfc due to the confinement of their relative fluctu
tions [29]. The overlap free energy is proportional to t
stationary expectation value of the pair field

dfu ­ 2u kCl , 2 uN21sj'd

, 2 uf1 1 Osb21j
2vyz
' dg . (12)
e
tics
al

nt
g-
of
e

on

y
n

nt

r-

f
t:
i-

-
e

The confinement energy has to vanish in the lim
b21 °! 0, where all relative fluctuations of the lines
are suppressed even without attractive forces. Therefo
instead of the temperature-independent Casimir ener
j

sv21dyz
' analogous to (6), one expects

dfc , b21j
21yz
' , (13)

a term that is analytic in the scaling variableb21 and
respects hyperscaling [31]. The variation ofdfu 1 dfc
with respect toj' then leads to (8).

(b) Roughening transition.—In contrast to the strong-
coupling fixed point, the renormalization group for the
critical fixed point in 2 , d , 4 is well understood.
The polymer partition function (3) has been shown t
be one-loop renormalizable[12,20]. It is this property
that produces the exact dimension-independent expone
x? ­ 0 and z? ­ 2; these values agree with previous
results from numerical work ind ­ 3 [32], from dynamic
renormalization group calculations to one-loop [9] an
two-loop [10] order, and from scaling arguments [11]
At the critical point lc, small variations ofl are a
relevant perturbation of dimensiony? ­ sd 2 2dy2 (with
t as the basic scale) [12]. The local field conjugate t
l, Fhstd ;

R
ddr0 hsr0, tdddsssrstd 2 r0ddd, encodes the

random potential evaluated along the polymer path
This field generates the crossover from the critica
fixed point to the strong-coupling fixed point (l °! `)
and to the Gaussian fixed point (l ­ 0). It is now
a purely formal matter to relate its disorder-average
correlation functions to those of the pair fieldC for
u ­ 0 [24,33]. The simplest example is the stationar
one-point function kFhlsRd obtained from the free
energy per unit oft in a system of transversal size
R, fsRd ­ 2b21 limT°!` ≠T logTr exps2bH dsT , Rd.
With the disorder correlation and the pair inter
action regularized on the microscopic scalea,
hsr0, t0dhsr00, t00d ­ s2dasr0 2 r00ddst0 2 t00d and
Castd ; dasssr1std 2 r2stdddd, the universal parts [34] of
kFhstdl ­ kFhl andkCal are seen to be proportional:
l21kFhl ­ 2l21≠lf ­ 2l22s2
Z

ddr0ddr00dasr0 2 r00d
d2f

dhsr0, tddhsr00, td

­ bs2
Z

ddr0ddr00dasr0 2 r00dkdsssrstd 2 r0ddddsssrstd 2 r00dddlc

­ 2bs2
Z

ddr0ddr00dasr0 2 r00dkdsssrstd 2 r0dddlkdsssrstd 2 r00dddl ­ 2bs2 kCal . (14)
o ic
n
by
At l ­ lc, the correlation functions ofFh are scale-
invariant with the exponentx? ­ 1 2 y? ­ s4 2 ddy2.
By (14), the same holds for the correlation functions
Ca; for example,

kCalsR, lcd , kFhlsR, lcd , R2x?yz ?

. (15)
f

Hence the local pair interactionCastd is like Fhstd a
relevant scaling field of dimensionx? at the critical fixed
point. This result is consistent with the one-loop dynam
renormalization group discussed in Ref. [28]. It is the
straightforward to show that the bound state generated
905
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this interaction has the singularities (9) atb21
c [35]. Just

below that temperature there is a crossover from (9) to (
at the scaleu , b21

c 2 b21.
The singularity ofj' in (9) can again be obtained from

a variational scaling argument. Atb21
c , the competing

free energy contributions analogous to (12) and (13) a
the overlap term

dfu ­ 2ukCal , 2uj
2x?yz ?

' ­ 2ujd24
' (16)

following from (15) and a Casimir term of the form (6),

dfc , j
sv?21dyz ?

' ­ j22
' . (17)

It is tempting to speculate about the nature of th
strong-coupling regime in high dimensions. Belowd.,
the pair distribution of noninteracting lines at fixed
temperature has the finite limit (10) forR °! `, and this
limit distribution collapses todsrd for b21 °! 0. For
d $ d., it is expected that the lines no longer cluster i
the vicinity of the minimal pathr0std but exploit multiple
near-minimal paths at any finite temperature [24]. Th
pair distribution should then depend onb21 and R in
an essential way. Hence its asymptotic behavior w
depend on the order in which the zero-temperature lim
and the thermodynamic limitR °! ` are taken. Similar
properties are familiar from glassy systems.
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