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Lassig and Kinzelbach Reply: Kardar-Parisi-Zhang di- and for the solid-on-solid model, increases. The data
rected growth in high dimensions has been controversiadf Refs. [2] and [3] ford = 4 have a “scaling regime” of
for some time due to an apparent discrepancy betweeess than half a decad@./r, ~ 10%* at L = 100 [2,6]
numerical results and theoretical claims of a finite uppeand rmay/ro ~ 10°3 even if ry ~ 1 at low temperatures
critical dimensiond~. The issue has become more dis-[3]). For d > 4 [2], not even the onset of scaling is
turbing since we have found recently [1] tha&t is =4, reached(L < ry). Hence, these data are insensitive to
without using any approximation scheme for the strongthe alternative of Egs. (2) and (3).

coupling phase. In recent Comments, Ala-Nissila [2] and The leading lattice correction to scaling for the solid-on-
Kim [3] report improved numerical results obtained from asolid model can be obtained from a continuum equation
restricted solid-on-solid growth model and from the finite-

temperature transfer matrix of the equivalent directed poly- ah = vVih + A(Vh)z + 1+ psink, (4
mer system, respectively. As we show here, the data still 2

have a very short scaling regime and give no evidence afjith an extra term that breaks the invariance under trans-

nontrivial strong-coupling exponents ih= 4. They are |ations ofh. Ford = d-, whereh(r, r) has logarithmic

compgtible with our findings i€orrections to scalingire  correlations, we expect the vertex operatory exp(r, 1)]

taken into account. to become scaling fields, just as for Gaussian surfaces
A surface governed by the strong-coupling fixed point(x = 0) in ¢ = 2. We denote by the scaling dimen-

of the Kardar-Parisi-Zhang equation has a finite roughnession of the conjugate coupling.. As long asy < 0

exponenty for d < d-, and is expected to be logarithmi- (which is the case for the model of Ref. [2]), we then

CaIIy rough()( = 0) for d = d~. Consider the width of have a power-|aw correctioW ~ 1 + 0((;/[0))'/1) for

the surfacew?(1) = ([A(r,7) — (a(r,1))]*), and the height ) < « 1,(L/ro)* to the logarithmic scaling of Eq. (2)

difference correlation%{[h(rl,;.) — h(r2,0)’) = Clr; = which may indeed explain the upward curvature in the
12|, 1), which has a stationary lim&(r) = lim,—.. C(r,1).  double-logarithmic plot ofv?(z) in [2]. We stress again
In an infinite system, this should be of the form that these lattice effects persist in the limit— o, unlike
Colr) = (r/ro)X, d < d-), ) _theinitial-time oscillations ofv?(r) [2_]. The perioqiic driv-
o L+ cnG/r)) + ..., (d=d-), ing force may even turn relevant (i.e.,> 0) for different

] ] . model parameters. In that case, the lattice model has a
with a constanic > 0 and the dots denoting subleading yq,ghening transition at zero temperature, which does not
terms. For finiter andr = r.(¢), C(r,t) saturates to the exist for the continuum system at = 0.

square widthwz(r). For the initial conditior:(r,0) = 0, We thank H. Kallabis and D. Wolf for useful remarks.
the saturation value is

wl(1) = {(t/to)z)(/z, (d <d-), (2) Michael Lassig and Harald Kinzelbach
” 1L+ (c/2)In(t/t) + ..., (d=d>), 'MPI fiir Kolloid- und Grenzflachenforschung

with the dynamical exponent= 2 — y. The saturation  Kantstrasse 55

lengthr(¢), defined byC..[r..(1)] = w2(t), also measures 14513 Teltow, Germany

S . - 2Universitat Heidelberg, Institut fir theoretische Physik
the asymptotic displacement fluctuations of the directed Philosophenweg 19

polymer (r2(1))., = r2(t). We expect the form 69120 Heidelberg, Germany
rat) _ {(t/to)l/z, (d < d-),
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In any real system, these scaling laws are broken on
large scales since the system is of finite sizeind on [1] M. Lassig and H. Kinzelbach, Phys. Rev. LeT8, 903

small scales since, ¢, andh are discrete variables (taken (1997).

to be integer valued). These lattice corrections become[2] T. Ala-Nissila, preceding Comment, Phys. Rev. L&®,
significant forr ~ ry in (1) andt ~ ¢y in (2) and (3). 887 (1998).

The scalesry and t, characterize theonset of rough-  [3] J.M. Kim, preceding Comment, Phys. Rev. Lei0, 888
ness[4]. We write w2(r) = w2(t) Wlr=(t)/L, ro/r«(1)] (1998).

and{r2(r)) = ri(l)R[rx(t)/L, ro/r-(1)]. The asymptotic [4] The crossover from lattice-dominated to rough growth

) . . has recently been studied in detail for a related model.
scaling characterized by Egs. (1)—(3) emerges only if all See H. Kallabiset al., Int. J. Mod. Phys. B (to be

arguments of the crossover functiod® andR are small. published).

Numerical simulations in low dimensions show clear evi- 5] T, Ala-Nissilaet al., J. Stat. Phys72, 207 (1993).
dence of a scaling regime (of siZe/ry, ~ .103'in d =_1 [6] For w2(r), scaling sets in a, = 10%° [given by w?(ry) =
for the data of Ref. [5] a. = 3000). With increasing 1] and the finite-size saturation is gt = 10** [satisfying

dimension, however, the available system sizes decrease r.(t;) = L]. ThenL/ry ~ (t;/t5)"/> ~ 10°4.
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