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Lässig and Kinzelbach Reply: Kardar-Parisi-Zhang di-
rected growth in high dimensions has been controvers
for some time due to an apparent discrepancy betwe
numerical results and theoretical claims of a finite upp
critical dimensiond.. The issue has become more dis
turbing since we have found recently [1] thatd. is #4,
without using any approximation scheme for the strong
coupling phase. In recent Comments, Ala-Nissila [2] an
Kim [3] report improved numerical results obtained from
restricted solid-on-solid growth model and from the finite
temperature transfer matrix of the equivalent directed pol
mer system, respectively. As we show here, the data s
have a very short scaling regime and give no evidence
nontrivial strong-coupling exponents ind # 4. They are
compatible with our findings ifcorrections to scalingare
taken into account.

A surface governed by the strong-coupling fixed poin
of the Kardar-Parisi-Zhang equation has a finite roughne
exponentx for d , d., and is expected to be logarithmi-
cally roughsx ­ 0d for d $ d.. Consider the width of
the surface,w2std ; kfhsr, td 2 khsr, tdlg2l, and the height
difference correlation1

2 kfhsr1, td 2 hsr2, tdg2l ; Cjr1 2

r2j, td, which has a stationary limitCsrd ; limt!` Csr, td.
In an infinite system, this should be of the form

C`srd ­

Ω
sryr0d2x , sd , d.d ,
1 1 c lnsryr0d 1 . . . , sd $ d.d ,

(1)

with a constantc . 0 and the dots denoting subleading
terms. For finitet andr * r`std, Csr, td saturates to the
square widthw2

`std. For the initial conditionhsr, 0d ­ 0,
the saturation value is

w2
`std ­

Ω
styt0d2xyz , sd , d.d ,
1 1 scyzd lnstyt0d 1 . . . , sd $ d.d ,

(2)

with the dynamical exponentz ­ 2 2 x. The saturation
lengthr`std, defined byC`fr`stdg ­ w2

`std, also measures
the asymptotic displacement fluctuations of the directe
polymer,kr2stdl` ­ r2

`std. We expect the form

r`std
r0

­

Ω
styt0d1yz , sd , d.d ,
styt0d s1 1 c0 lnstyt0d 1 . . .d , sd $ d.d .

(3)

In any real system, these scaling laws are broken
large scales since the system is of finite sizeL and on
small scales sincer, t, andh are discrete variables (taken
to be integer valued). These lattice corrections becom
significant for r , r0 in (1) and t , t0 in (2) and (3).
The scalesr0 and t0 characterize theonset of rough-
ness[4]. We write w2std ­ w2

`stdW fr`stdyL, r0yr`stdg
andkr2stdl ­ r2

`stdRfr`stdyL, r0yr`stdg. The asymptotic
scaling characterized by Eqs. (1)–(3) emerges only if a
arguments of the crossover functionsW andR are small.
Numerical simulations in low dimensions show clear ev
dence of a scaling regime (of sizeLyr0 , 103 in d ­ 1
for the data of Ref. [5] atL ­ 3000). With increasing
dimension, however, the available system sizes decre
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and for the solid-on-solid model,r0 increases. The data
of Refs. [2] and [3] ford ­ 4 have a “scaling regime” of
less than half a decade(Lyr0 , 100.4 at L ­ 100 [2,6]
and rmaxyr0 , 100.5 even if r0 , 1 at low temperatures
[3]). For d . 4 [2], not even the onset of scaling is
reachedsL , r0d. Hence, these data are insensitive to
the alternative of Eqs. (2) and (3).

The leading lattice correction to scaling for the solid-on
solid model can be obtained from a continuum equation

≠th ­ n=2h 1
l

2
s=hd2 1 h 1 m sinh , (4)

with an extra term that breaks the invariance under tran
lations ofh. For d $ d., wherehsr, td has logarithmic
correlations, we expect the vertex operators expf6ihsr, tdg
to become scaling fields, just as for Gaussian surface
sl ­ 0d in d ­ 2. We denote byy the scaling dimen-
sion of the conjugate couplingm. As long asy , 0
(which is the case for the model of Ref. [2]), we then
have a power-law correctionW , 1 1 Osssstyt0dyyz ddd for
t0 & t ø t0sLyr0dz to the logarithmic scaling of Eq. (2)
which may indeed explain the upward curvature in the
double-logarithmic plot ofw2std in [2]. We stress again
that these lattice effects persist in the limitL ! `, unlike
the initial-time oscillations ofw2std [2]. The periodic driv-
ing force may even turn relevant (i.e.,y . 0) for different
model parameters. In that case, the lattice model has
roughening transition at zero temperature, which does n
exist for the continuum system atm ­ 0.
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