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Dynamical Anomalies and Intermittency in Burgers Turbulence
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We analyze the field theory of fully developed Burgers turbulence. Its key elements are shock fields,
which characterize the singularity statistics of the velocity field. The shock fields enter an operator prod-
uct expansion describing intermittency. The latter is found to be constrained by dynamical anomalies
expressing finite dissipation in the inviscid limit. The link between dynamical anomalies and intermit-
tency is argued to be important in a wider context of turbulence.
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A field theory of hydrodynamic turbulence is difficult
in two ways: It is far from equilibrium and far from the
realm of standard perturbative renormalization [1]. New
nonperturbative concepts have been established for simpler
model systems sharing some characteristics of turbulent
fluids. In particular, the stochastic Burgers equation

≠tv 1 �v ? =�v � n=2v 1 =h (1)

has become an important model for turbulence, recently
studied by a variety of methods [2–11]. It governs the time
evolution of a vortex-free velocity field v�r, t� � =h�r, t�.
The equivalent scalar equation

≠th � n=2h 1
1
2 �=h�2 1 h , (2)

is known as the Kardar-Parisi-Zhang equation [12,13]. The
driving potential h�r, t� is Gauss distributed with mean
h�r, t� � 0 and correlations

h�r, t�h�r0, t0� � ´r2
0 d�t 2 t0�G�jr 2 r0j�r0� (3)

over a characteristic scale r0. The function G is taken to
be analytic with G�r� � 1 2 G2r2 1 O�r4� and G2 .

0. There is a second characteristic scale, the dissipation
length a0 � n3�4´21�4. Burgers turbulence occurs at high
values of the Reynolds number R � �r0�a0�4�3 and shows
strong intermittency. For example, the longitudinal veloc-
ity difference moments of order k � 2, 3, . . . take the form

��yk�r1� 2 yk�r2��k� 	 jr1 2 r2j
2kxv1x̃k r

2x̃k
0 (4)

in the inertial scaling regime r0�R ø jr1 2 r2j ø r0
[3,4]. The third moment grows linearly with jr1 2 r2j,
i.e., xv � 21�3 and x̃3 � 0. The other moments, how-
ever, acquire a singular dependence on r0, which defines
the intermittency exponents x̃k . The turbulent state is
associated with a particular strong-coupling limit of
Eq. (1), called the turbulent limit in the sequel: n ! 0 at
fixed driving given by (3). In that limit, the velocity field
acquires discontinuities called shocks (see Fig. 1). It is
these singularities that cause intermittency.
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Burgers equation has a number of further applications.
It has been proposed as a model for galaxy formation [14].
The Kardar-Parisi-Zhang equation (2) models stochastic
surface growth described by the “height” field h�r, t�, and
is related to directed polymers in a quenched random
medium. In these contexts, the driving force is usually
taken to be random in time and space,

h�r, t�h�r0, t0� � g2d�t 2 t0�d�r 2 r0� . (5)

For n3�g2 ! 0, there is again a strong coupling limit,
which, however, is quite different from the turbulent limit.
The scaling is probably nonintermittent,

��h�r1� 2 h�r2��k� 	 jr1 2 r2j
2kxh . (6)

The exponent xh depends on the dimension d. The value
xh � 21�2 for d � 1 is well known [15], while xh �
22�5 for d � 2 has been obtained only recently [13,16].

This Letter studies the field theory of stationary Burg-
ers turbulence. The basic quantities of this field theory are
scaling fields containing powers of the local velocity v
and its gradients, =v , ==v, etc. In particular, the statistics
of the shocks is represented by a family of renormalized
shock fields Sk �k � 1, 2, . . .� that remain finite in the tur-
bulent limit. Another family of fields sk describes velocity
gradients away from shocks. The short-distance properties
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FIG. 1. Stationary Burgers turbulence in one dimension. The
velocity profile y�r , t� at a given time t is an ensemble of shocks
with amplitude 	u0, width 	a, and mutual distance 	r0. The
probability distribution Pr �u� of the longitudinal velocity differ-
ence over a distance a ø r ø r0 is generated by no-shock and
single-shock configurations (lines with arrows).
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of the scaling fields are encoded in an operator product
expansion (OPE). This is a familiar concept in field the-
ory (see, e.g., Ref. [17]). It has recently been extended
to nonequilibrium systems. OPEs have been proposed for
general turbulent systems by Adzhemyan et al. [18], Eyink
[19] (see also Duplantier and Ludwig [20]), and L’vov and
Procaccia [21], for Burgers turbulence by Polyakov [5],
and for the Kardar-Parisi-Zhang equation by Lässig [16].
The Burgers OPE discussed here differs from Polyakov’s
conjecture by the explicit inclusion of the fields Sk and
sk . It is an important tool to understand the dynamics
of Burgers turbulence. The shock singularities prevent a
straightforward evaluation of the equation of motion, and
the stationary state is maintained by a rather subtle balance
of driving forces, convection, and dissipation. We discuss
the resulting distribution of velocity differences (the func-
tional form of which has been much debated [3–11]), as
well as the flux of the energy density and its generaliza-
tions. The energy dissipated per unit of volume and time
remains finite in the turbulent limit n ! 0. In the field
theory of Burgers equation, this is reflected by dynamical
anomalies, i.e., asymptotically finite dissipation terms in
effective equations of motion for the inertial regime. These
are associated with conservation laws which are valid for
the inviscid equation without driving (n � 0, ´ � 0) but
are broken in the driven state at any finite n [5,22]. We
find anomalies given by operator products involving the
shock fields. This is not surprising since dissipation takes
place at the shocks. Dynamical anomalies and intermit-
tency are indeed closely related: They are both generated
by the singularities of the velocity field. This conceptual
link and the underlying theoretical framework are expected
to extend to other turbulent systems, as we briefly discuss
at the end of this Letter.

The basic phenomenology of stationary Burgers turbu-
lence is well established in one dimension [3,10] but ap-
pears to be much the same in higher dimensions [4,6]. The
velocity profile v�r, t� at a given time t looks similar to
that of decaying Burgers turbulence with random initial
data [23–25]. It consists of ramps (i.e., regions where
the velocity derivatives =v , ==v, etc., are finite) sepa-
rated by shock singularities, as sketched in Fig. 1. Shocks
develop out of ramp regions through preshock singulari-
ties ���which have the cubic root form y�r� 2 y�rps� 	
2�e�r 2 rps��1�3 for d � 1 [9]���. The shocks have am-
plitudes of order u0 � �´r0�1�3 and distances of order r0
to their neighbors; the slopes of the ramps are of order
u0�r0. These scales are independent of n, while the typical
shock width a � r0�R � n�u0 vanishes in the turbulent
limit. From these shock characteristics, the velocity statis-
tics can be inferred in an approximate way that appears to
give the correct scaling. Consider, for example, the longi-
tudinal velocity difference u � yk�r1, t� 2 yk�r2, t� [with
yk � v ? �r1 2 r2��r and r � jr1 2 r2j] and the local
excess velocity w�r, t� � v�r, t� 2 �v�. These have nor-
malized probability distributions Pr �u�du and Q�w�ddw ,
respectively. Q�w� depends only on the absolute value
jwj by rotational invariance and parity but Pr �u� is an
asymmetric function of u since the dynamics is not in-
variant under the transformation v ! 2v . Both distribu-
tions are invariant under Galilei transformations v�r, t� !
v�r 2 v0t, t� 2 v0. In the turbulent limit, they are inde-
pendent of n, i.e., of the shock width a. Hence, they can
be written in the scaling form

Pr �u� �
1
ur

P

µ
u
ur

,
r
r0

∂
, Q�w� �

1

ud
0
Q

µ
jwj

u0

∂
,

(7)

where ur 	 u0r�r0 is the average velocity increment over
a distance r on a ramp. By Eq. (7), the single-point mo-
ments scale in a simple way,

�jwjk� 	 uk
0 	 r

2xk
0 , xk � 2k�3 . (8)

For r � r�r0 ø 1, the powers of the velocity difference
can be expanded in the number of shocks present between
r1 and r2. One obtains uk 	 p0uk

r 1 p1uk
0 1 O�p2� with

the n-shock probabilities p0 
 1 2 r, p1 
 r 1 O�r2�,
and pn � O�rn� . This implies the bifractal moments
[3,4]

�uk� 	

(
uk

r 	 rkr
22k�3
0 �k , 1�

�r�r0�uk
0 	 rr

�k23��3
0 �k . 1�

. (9)

What does all this mean for the field theory of the
turbulent state? Correlation functions in the inertial
regime should be represented by a field theory with short-
distance cutoff a. Scale invariance emerges in the turbulent
continuum limit a ! 0. Since that limit is nonsingular
for velocity correlations, the scaling dimension of the
field v�r, t� takes the Kolmogorov value xv � 21�3; the
fields vk�r, t� have dimensions xk � kxv �k � 1, 2, . . .�.
Indeed, the distributions (7) and the resulting moments
(8) and (9) are covariant under the scale transformations
r ! br, r0 ! br0, v ! bxv v at fixed ´. Turbulence
does generate short-distance singularities for the moments
of velocity gradients. Defining the longitudinal gradient
= ? v � u�r with a discretization length r 	 a, we write

�= ? v�k�r, t� � Z21
k Sk�r, t� 1 sk�r, t� . (10)

The fields Sk�r, t� and sk�r, t� represent the contributions
from configurations with and without a shock in the dis-
cretization interval. Using Eq. (9), we have

Z21
k �Sk� 	

uk
0

ak21r0
	

r
2x̃k
0

ak21 , x̃k � 2
k 2 3

3
,

(11)

�sk�reg 	 �u0�r0�k 	 r
2x0

k
0 , x0

k � 2k�3 . (12)

The multiplicative renormalization factors Zk 	 ak21 ab-
sorb the short-distance singularities in Eq. (11), which de-
fines the cutoff-independent fields Sk of dimension x̃k .
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The slope fields sk have different dimensions x0
k deter-

mined by the regular part (12) of the ramp slope moments.
We now make the assumption that the velocity field

satisfies an OPE of the form

v�r1� . . . v�rk� � r2kxv 1x̃k CkSk�r1�

1 r2kxv1x0
k cksk�r1� 1 . . . , (13)

with r � jr1 2 r2j. Both sides of this relation are tensors
of rank k whose indices are suppressed. The right-hand
side is a sum over all local scaling fields. The displayed
terms contain the lowest-dimensional Galilei-invariant
fields representing shock and ramp configurations, respec-
tively, multiplied by dimensionless coefficient functions
Ck�r12�r , . . . , r1k�r� and ck�r12�r , . . . , r1k�r� (simple
numbers for k � 2), and powers of r as required by
dimensional analysis. The suppressed terms involve
subleading Galilei-invariant fields and noninvariant fields
such as vk , =vk , etc. By differentiating (13), one obtains
a manifestly Galilei-invariant OPE for velocity gradients,

= ? v�r1� . . . = ? v�rk� 	
kY

i�2

d�ri 2 ri21�Sk�r1�

1 sk�r1� 1 . . . ; (14)

see also [19] for general turbulent systems. Here the shock
fields generate only contact singularities, while the slope
fields have regular coefficients. It is not known whether
there are other singular terms.

The OPE is a consistency condition between renormal-
ized correlation functions in the stationary state. It relates,
for example, the n-point function �v�r1� . . . v�rn�� to the
�n 2 k 1 1�-point functions �Sk�r1�v�rk11� . . . v�rn�� and
�sk�r1�v�rk11� . . . v�rn�� in the limit a ø jrijj ø jrilj, r0
(i, j � 1, . . . , k and l � k 1 1, . . . , n). The coefficient
functions Ck , etc., are assumed to describe local prop-
erties of the inertial regime independent of the cutoffs
a and r0. Hence, the existence of an OPE embod-
ies two important characteristics of the turbulent field
theory: (i) It is renormalized, i.e., the short-distance
singularities of all scaling fields have been removed in
a consistent way. (ii) The large-distance singularities
are created solely by the single-point amplitudes of
negative-dimensional fields, �O � 	 r

2xO

0 . In particu-
lar, the intermittency exponent x̃k in Eq. (4) equals
the scaling dimension of the leading Galilei-invariant
field in the expansion (13). This is indeed the case for
Burgers turbulence, where �uk� 	 �Sk� 	 r

2x̃k
0 , with

x̃k � 2�k 2 3��3 according to Eqs. (9) and (11).
The OPE (13) has important consequences for Burg-

ers dynamics, which we now discuss for simplicity in
d � 1. For purely convective dynamics (n � 0, ´ � 0),
the moments of the excess velocity wk�r, t� are locally con-
served, ≠twk 1 �k��k 1 1��=�wk11� � 0 �k � 1, 2, . . .�.
In the driven state, �wk�r, t�� is pumped with a finite rate
´�≠2

wwk�r, t�� 	 r
2xk22
0 �k � 2, 4, . . .�. This cannot be off-
2620
set by convection since �=�wk11� �r, t�� � 0. Hence, the
stationary state must be maintained by a dynamical anom-
aly [5],

´�≠2
wwk�r�� 1 n��=2w� �r�≠wwk�r�� � 0 . (15)

It is easy to check that the OPE (13) predicts the correct
form of the anomaly. We have

n��=2w� �r�wk21�r�� 	 nd�0� �sk�r��

	 r
2x̃k11�3
0 	 r

2xk22
0 , (16)

using n 	 a
4�3
0 	 ar

1�3
0 and a regularization on the scale

of the short-distance cutoff, d�0� 	 a21. Hence, the OPE
and the resulting anomalies provide a link between the
fields yk and the shock fields Sk . This fixes the intermit-
tency exponents by the scaling relations x̃k � xk22 1 1�3
in accordance with (8) and (11).

The role of dissipation is more subtle for the velocity
differences. Consider again the shock number expansion
Pr �u� � �1 2 r�P0

r �u� 1 rP1
r �u� 1 O�r2� for r ø 1.

By virtue of the OPE (13), the equation of motion for the
conditional distributions P0

r �u� and P1
r �u� is then essen-

tially reduced to that of the families of single-point ampli-
tudes �Sk� and �sk�reg, respectively.

(a) The zero-shock part P0
r �u� is also covariant under

the “convective” scale transformations r ! br , u ! bu
at fixed ´ and r0, and can hence be written in the scaling
form P0

r �u� � �1�ur �P 0�u�ur � discussed in [5]. In other
words, the expansion uk � rksk 1 �1�2�rk11=sk 1 . . .
is dominated by the first term, which depends on the
large-distance scale r0 only through the ramp slope mo-
ment �sk� 	 �u0�r0�k . The convective symmetry is ex-
pected to be broken for 2u * ũr � �er�1�3 by curvature
effects at preshocks. This is precisely the scale where
Pr �u� becomes dominated by the shock part; see (17)
below. In the equation of motion for P 0, dissipation
can be neglected at all points of finite =2y (and even at
preshocks). Furthermore, driving and convection are lo-
cal processes in velocity space. It is straightforward to
show that they are represented by the differential operators
G2≠2

vP
0�v� and �≠vv2 1 v�P 0�v�, respectively [5,10].

In particular, the term vP 0�v� describes a change in mea-
sure due to convective squeezing or stretching of the ramps
[10]. We will be interested in solutions with a positive av-
erage ramp slope, i.e., with a net gain in measure, �v� . 0.
The formation of shocks, on the other hand, produces a
measure loss L�v� , 0. In the stationary state, the net
loss offsets the convective gain, �v� 1 �L�v�� � 0. For
consistency with known properties of Pr �u�, the equation
of motion �G2≠2

v 1 ≠vv2 1 v 1 L�P 0 � 0 must have
a normalized, positive solution which behaves asymptot-
ically as P 0 	 v exp�2v3�3G2� for v ¿ 1 [6,9] and
P 0 	 jvj232a for v ø 21, with a $ 0, most likely
a � 1�2 [9]. This requires L�v� � o�v� for v ¿ 1
and L�v� 
 av for v ø 21. The “anomaly” L�v�
can be associated with ultraviolet-finite operator products
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S1�r�sk�r� [26]. It is not clear, however, whether the func-
tions L�v� and, hence, P 0�v� are entirely determined by
the OPE.

(b) The single-shock part P1
r �u� is expected to have the

scaling form P1
r �u� � �r�u0�P 1�2u�u0� 1 O�r2�. The

leading term depends on r only through the shock proba-
bility p1 
 r in accordance with the OPE (13) and the
moments (9). P 1�s� is the scaled shock-size distribu-
tion function. The equation of motion for a single shock
produces a driving term ≠2

sP
1�s� and a convection term

≠sf�s�sP 1�s�, while dissipation can again be neglected.
Here �u0�r0�f�s� is the expectation value of the aver-
age ramp slope to both sides of a shock of size u0s.
For very large shocks �s ¿ 1�, this will be positive and
proportional to the shock size, leading to the asymptotic
equation of motion [27] �≠2

s 1 A≠ss2�P 1 � 0 with a
constant A . 0. This determines the tail of the shock size
distribution, P 1 	 exp�2As3�3� for s ¿ 1, in agree-
ment with instanton calculations [7], while the dynamics
of initial shock growth suggests P 1 	 s for s ø 1 [11].

The distribution Pr �u� should be dominated by the zero-
shock part for small velocity differences juj 	 ur and
by the single-shock part for large negative values u 	
2u0. The crossover scale 2ũr � 2urr22�3 is obtained
by matching the two expressions, P0

r �2ũr � 	 rP1
r �2ũr �.

Thus we conjecture, using the scaling form of Eq. (7),

P �v, r� 

Ω
P 0�v� �vr2�3 * 21�
r2P 1�2vr� �vr2�3 & 21� . (17)

It is easy to verify that this solution is indeed normalizable
and has the correct moments (9). It has �u� . 0 over
ramps and �u� , 0 at shocks, which is compatible with
the constraint �u� � 0 due to translational invariance.

To summarize, Burgers field theory contains two dif-
ferent families of local scaling fields, Sk and sk , which
represent powers of singular and regular velocity gradi-
ents, respectively. The fields Sk live on the shocks; their
amplitudes �Sk� generate intermittency. They are coupled
to the other scaling fields through an OPE. The result-
ing dynamical anomalies fix the intermittency exponents
through scaling relations. The anomalies for velocity dif-
ferences have a simple physical cause: the formation of
singular velocity configurations out of regular ones.

How much of this framework is preserved in Navier-
Stokes turbulence can only be conjectured at present.
Intermittency is still created by the infrared-divergent
one-point amplitudes of negative-dimensional Galilei-
invariant fields. These are associated with the singularities
of the turbulent flow. Vortex filaments, for example, could
play the role of the Burgers shocks [1]. The singularities
have a much more complicated statistics, however. They
lead to multifractal instead of bifractal scaling and may
indeed suppress a coherent convective scaling regime
Pr �u� 
 �1�ur �P 0�v�. A stronger breakdown of con-
vective symmetry may produce anomalies and, hence,
scaling relations compatible with intermittency exponents
x̃k nonlinear in k. Will such relations actually determine
the values of x̃k , leading to a nonperturbative theory of
turbulence?

I thank Victor Yakhot for useful discussions.

[1] See, for example, U. Frisch, Turbulence (Cambridge Uni-
versity Press, Cambridge, England, 1995).

[2] Ya. Sinai, J. Stat. Phys. 64, 1 (1994).
[3] A. Chekhlov and V. Yakhot, Phys. Rev. E 52, 5681 (1995);

V. Yakhot and A. Chekhlov, Phys. Rev. Lett. 77, 3118
(1995).

[4] J.-P. Bouchaud, M. Mézard, and G. Parisi, Phys. Rev. E 52,
3656 (1995); J.-P. Bouchaud and M. Mézard, Phys. Rev. E
54, 5116 (1996).

[5] A. M. Polyakov, Phys. Rev E 52, 6183 (1995).
[6] V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996).
[7] E. Balkovsky et al., Phys. Rev. Lett. 78, 1452 (1997); Int.

J. Mod. Phys. B 11, 3223 (1997).
[8] S. Boldyrev, Phys. Rev. E 55, 6907 (1997); Phys. Plasmas

5, 1681 (1998).
[9] W. E et al., Phys. Rev. Lett. 78, 1904 (1997); W. E

and E. vanden Eijnden, Phys. Rev. Lett. 83, 2572 (1999);
chao-dyn/9904028.

[10] T. Gotoh and R. H. Kraichnan, Phys. Fluids 10, 2859
(1998); R. H. Kraichnan, Phys. Fluids 11, 3738 (1999).

[11] J. Bec, U. Frisch, and K. Khanin, chao-dyn/9910001.
[12] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,

889 (1986).
[13] For a recent review, see M. Lässig, J. Phys. C 10, 9905

(1998); cond-mat /9806330.
[14] Ya. Zeldovich, Astron. Astrophys. 5, 84 (1972).
[15] D. Forster, D. R. Nelson, and M. Stephen, Phys. Rev. A 16,

732 (1977).
[16] M. Lässig, Phys. Rev. Lett. 80, 2366 (1998).
[17] See, e.g., J. L. Cardy, Scaling and Renormalization in Sta-

tistical Physics (Cambridge University Press, Cambridge,
England, 1996).

[18] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Sov.
Phys. JETP 68, 733 (1989); Phys. Usp. 39, 1193 (1996).

[19] G. Eyink, Phys. Lett. A 172, 355 (1993); Chaos Solitons
Fractals 5, 1465 (1995).

[20] B. Duplantier and A. Ludwig, Phys. Rev. Lett. 66, 247
(1991).

[21] V. L’vov and I. Procaccia, Phys. Rev. Lett. 76, 2898 (1996);
Phys. Rev E 54, 6268 (1996).

[22] V. Gurarie, in Recent Progress in Statistical Mechanics
and Quantum Field Theory, edited by P. Bouwkneqt et al.
(World Scientific, Singapore, 1995).

[23] S. Kida, J. Fluid Mech. 93, 337 (1979).
[24] Z.-S. She, E. Aurell, and U. Frisch, Commun. Math. Phys.

148, 623 (1992).
[25] S. N. Gurbatov et al., J. Fluid Mech. 344, 339 (1997).
[26] The leading term L�v� 
 av for v ø 21 is given by the

operator product S1�r�sk�r� 	 sk11�r�. The subleading
terms, however, involve the scale r0 explicitly. Polyakov’s
OPE [5,8] contains only the families of ultraviolet-finite
fields yk and =�yk�, or equivalently, the generating fields
exp�qy� and = exp�qy�. In terms of these fields, the anom-
aly L�v� cannot be represented by local operator products.

[27] Both approximations neglect shock-shock interactions,
which are important at intermediate values of s.
2621


