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Evolutionary games and quasispecies
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Abstract. – We discuss a population of sequences subject to mutations and frequency-
dependent selection, where the fitness of a sequence depends on the composition of the entire
population. This type of dynamics is crucial to understand, for example, the coupled evolution
of different strands in a viral population. Mathematically, it takes the form of a reaction-
diffusion problem that is nonlinear in the population state. In our model system, the fitness is
determined by a simple mathematical game, the hawk-dove game. The stationary population
distribution is found to be a quasispecies with properties different from those which hold in
fixed fitness landscapes.

Introduction. – The roles of chance and determinism are a central theme in evolutionary
biology. Eigen’s quasispecies theory [1] has been pivotal as a simple quantitative model for
the intertwined effects of random mutations and Darwinian selection. These forces act on
individuals with a genotype defined by an L-letter sequence σ = (σ1, . . . ,σL). The individuals
reproduce at a rate f(σ) called the fitness of the genotype σ, and are subject to random
mutations of the sequence elements at a rate µ. The population is described by a time-
dependent frequency distribution P (σ). The evolution of P (σ) is described by a deterministic
equation in the limit of large population size, when sampling errors in the reproduction-
mutation process become negligible. For small µ, the evolution is dominated by reproductive
success and produces a quasispecies, that is, a stationary population distribution ps(σ) peaked
around the genotype σ∗ of maximal fitness. Large mutation rates, on the other hand, wipe
out fitness differences and lead to a broad distribution. These two regimes are linked by a
crossover which, depending on the fitness “landscape” f(σ), may become a phase transition
in the limit of infinite sequence length. The transition point is called the error threshold.

Quasispecies evolution can be seen as a reaction-diffusion problem in sequence space that is
conceptually related to problems in statistical physics. It takes the form of an (imaginary-time)
Schrödinger equation for the population state, ∂tP = HP , with f(σ) as scalar potential and
the kinetic term describing mutations [2]. This type of problem is mathematically tractable
since H is a linear operator, and has been studied for many different fitness landscapes. In
particular, there can be extended subsets of sequence space —called neutral networks Γx—
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where the sequences encode the same phenotype x and, therefore, the fitness is constant.
The evolution of the phenotype population p(x) =

∑

σ∈Γx
P (σ) can often be described by a

projected equation, ∂tp = Hxp, taking into account the varying number of genotypes coding
for the same phenotype. This means that the selection among different neutral networks is not
only determined by their “fitness” (the reproduction rate) but also by their “robustness”, i.e.,
to the probability that a random mutation leaves a genotype on the same neutral network [3].
In some cases, this effect can be described by a suitably defined “mutational entropy” [4].

The stationary distribution ps(x) may again be a quasispecies around the phenotype x∗

of maximal fitness, while the sequence population within each neutral network Γx remains
broad. Examples are RNA sequences σ with only the folding configuration x(σ) determining
the fitness. In this case, the neutral networks Γx consist of all sequences with the same fold
x [5]. A step towards a more realistic theory of mutation-selection processes is to take into
account the dependence of the fitness on the population state. This is particularly apparent,
for example, in viral evolution. The reproductive success of one viral strand will depend on
the other strands that coexist in the same population. At the level of phenotypes, a well-
known way to describe such coupled systems is evolutionary game theory [6–9]. Here we
limit ourselves to the simplest form of a mathematical game, which is described by a set of
basic strategies i = 1, . . . , s and a matrix A = (Aij) which specifies the relative fitness or
payoff of strategy i played against strategy j. Then the phenotype x is a mixed strategy
(x1, . . . , xs), where 0 ≤ xi ≤ 1 is the probability that the individual plays basic strategy
i. One can then define the average strategy x̄ = (x̄1, . . . , x̄s) by averaging the phenotype
over the whole population. A (simplified) model of the evolutionary process is called adaptive
dynamics (chapt. 9 in [8]. The time-dependent population state is approximated by a sequence
of phenotypically homogeneous states, each evolving from the previous one by invasion of the
neighboring mutant with the highest relative payoff. It can be shown that adaptive dynamics
leads to strategic optimization: every stable fixed point x∗ of the population average is a Nash
equilibrium [10], that is, a mixed strategy that maximizes the payoff against itself (see the
more precise definition below).

In this letter, we extend the quasispecies approach to populations evolving according
to evolutionary games. This is appropriate for the example of viral evolution, where the
frequency-dependent fitness differences are balanced by mutations (occurring with a high rate
of 10−4 per nucleotide per generation). Unlike for standard quasispecies theory, the “Hamil-
tonian” H is now a nonlinear operator acting on the population state. Quite remarkably, the
stationary population distributions ps(σ) and ps(x) can still be calculated exactly in some
cases. We will demonstrate this for sequences playing the hawk-dove game, one of the sim-
plest games with a nontrivial Nash equilibrium. An individual’s phenotype is associated with
a mixed strategy x uniquely determined by its genotype σ. There are extended neutral net-
works Γx consisting of all sequences encoding the same strategy x. The phenotype population
p(x) is found to be a quasispecies. The population average x̄ deviates from the Nash equilib-
rium by an amount depending on the mutation rate. The properties of the quasispecies are
different from those in a fixed fitness landscape. This reflects the fact that the system exhibits
a higher degree of near neutrality, as will be discussed in detail below.

Phenotypes and evolutionary game theory. – Consider a population whose phenotypes
correspond to the mixed strategies x of a game with payoff matrix A. That is, an individual
of phenotype x plays the basic strategy i with probability xi (i = 1, . . . , s), and the payoff for
a mixed strategy x against a mixed strategy x′ is assumed to be bilinear:

φ(x | x′) =
s

∑

i,j=1

Aijxix
′
j . (1)
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A Nash equilibrium is defined to be a strategy x∗ that is optimal against itself, i.e.,

φ(x | x∗) ≤ φ(x∗ | x∗) for all strategies x. (2)

In evolutionary game theory, the game payoff determines the relative fitness of individuals.
The population state is a time-dependent phenotype distribution p(x); we suppress the de-
pendence on t in the notation here and below. Assuming random mixing of the population,
the fitness of a phenotype x is given by

∫

dx′φ(x | x′)p(x′) = φ(x | x̄), (3)

where x̄ denotes the average strategy. Hence, the population evolves according to

∂tp(x) =
[

φ(x | x̄) − φ(x̄ | x̄)
]

p(x); (4)

subtracting the average fitness φ(x̄ | x̄) ensures that the normalization of the distribution
p(x) is preserved. In general, this equation does not have a unique stationary solution. It is
easy to see that p(x) is an attractive fixed point if and only if the population average x̄ is
a Nash equilibrium and all phenotypes x in the support of p are degenerate in fitness, i.e.,
φ(x | x∗) = φ(x∗ | x∗).

In this letter, we will focus on the classical hawk-dove game, which has the two basic
strategies “hawk” (i = 1) and “dove” (i = 2); see, e.g., chapt. 6 in [8]. Consider individuals of
a population competing for resources of reproductive value λ. Doves avoid confrontation, while
hawks escalate fights. Thus, on average, two doves will share the resources. A dove meeting
a hawk will leave the entire resources to the hawk. Two hawks will also share the resources
but have to pay a confrontation cost Cλ. These payoffs can be written in matrix form,

A = λ

(

(1 − C)/2 1
0 1/2

)

. (5)

An individual with strategy x plays, by definition, hawk with probability x1 ≡ x and dove
with probability x2 = 1 − x. The unique Nash equilibrium of the hawk-dove game is x∗ =
min(1, 1/C). In the following, we assume C > 1 so that the Nash equilibrium is a mixed strat-
egy. According to eqs. (3) and (5), the relative fitness of an arbitrary mixed strategy is given by

φ(x | x̄) − φ(x̄ | x̄) =
λ

2x∗ (x − x̄)(x∗ − x̄). (6)

Genotypes and mutations. – The phenotype of an individual is assumed to be uniquely
determined by its genotype. We consider here genotypes with L loci contributing additively
to the phenotype. Each locus has c alleles, of which a encode the hawk strategy and c − a
the dove strategy. We denote by q = a/c the relative fraction of hawk coding alleles. Such
genotypes can be represented by sequences σ = (σ1, . . . ,σL) whose letters take the values 0 and
1 representing dove and hawk alleles, respectively. The corresponding phenotype is given by

x(σ) =
1
L

L
∑

α=1

σα, (7)

and takes the discrete values x = k/L, where k = 1, . . . , L is the number of hawk alleles.
During a time interval of duration dt any given locus in an individual’s genotype mutates
with probability µdt into a randomly chosen allele. It is easy to see that in the absence of
selection the mutations change the discrete population distribution,

∂tp(x) = −
[

J(x) − J
(

x − L−1
)]

, (8)
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where J(x) is the net probability current between all genotypes with k = Lx and with k + 1
hawk alleles:

J(x) =
µc

c − 1
L

[

(1 − x)qp(x) −
(

x + L−1
)

(1 − q)p
(

x + L−1
)]

. (9)

This neutral evolution leads to a stationary state p0(x) where all alleles are equally probable:

p0(x) =
(

L
Lx

)

qLx(1 − q)L(1−x). (10)

Hence the average phenotype in the population is x̄0 = q.

Quasispecies equation. – In the following, we describe systematically the interplay be-
tween mutations and selection, which leads to nontrivial stationary population states ps(x).
Assuming that the two kinds of processes act in parallel, we obtain the mutation-selection
equation

∂tp(x) = −
[

J(x) − J(x − 1/L)
]

+
λL

2x∗ (x − x̄)(x∗ − x̄)p(x). (11)

This type of dynamics is usually referred to as paramuse models [2]. The L-dependence in the
fitness has been introduced in order to obtain a well-behaved large-L limit, i.e., a distribution
of the form p(x) ∝ exp[−LF(x)], in analogy with the thermodynamic limit in statistical me-
chanics and with the standard quasispecies theory [1]. Since the phenotype average x̄ depends
on p(x), eq. (11) leads to a nonlinear equation for the stationary population state ps(x).

In the present case, the stationary solution can be obtained exactly. Indeed, one can
argue that each different locus undergoes an independent mutation-selection process, where
the only interaction is encoded in x̄. Thus one may look for a probability distribution that
factorizes into a product of single-locus probabilities (this is a general property when the
fitness is a linear functional of the genome [11]). Since all loci are equal in the present model,
the stationary distribution ps(x) in the presence of selection is still a binomial, but with a
different average x̄:

ps(x) =
(

L
Lx

)

x̄Lx(1 − x̄)L(1−x). (12)

The scaled variance of this distribution, σ2 ≡ L(x − x̄)2, is linked to x̄ by

σ2 = x̄(1 − x̄). (13)

On the other hand, the equation of motion (11) implies a hierarchy of evolution equations for
the moments of p(x). The leading equation of this hierarchy reads

∂tx̄ =
µc

c − 1
(x̄ − q) +

λ

2x∗σ2(x̄ − x∗). (14)

Inserting eq. (13) we obtain a self-consistency equation for x̄, which is of cubic order. The
resulting values of x̄ and σ2 at stationarity are plotted in fig. 1 against the effective mutation
rate µ/λ together with the results from numerical simulations for L = 16. In accordance with
the results obtained above, there is no L-dependence in these quantities (except for the effects
of rounding errors).

Note that a straightforward application of the well-known Ω-expansion (see, e.g., chapt. IX
in [12]) overestimates the variance of x and therefore does not give the correct result. This
can be seen from the next-to-leading evolution equation for the moments of p(x),

∂tσ
2 =

µc

c − 1
[

− 2σ2 + x̄(1 − 2q) + q
]

+
λ

2x∗L2(x∗ − x̄)(x − x̄)3. (15)
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Fig. 1 – Average strategy x̄ (left) and strategy variance σ2 (right) of the phenotypic quasispecies
as a function of the effective mutation rate µ/λ. The points are simulation data for c = 4, a = 1,
λ = 1, x∗ = 0.2, L = 16. The continuous lines give the solutions of eqs. (13), (14). The dashed lines
represent the solution obtained from the Ω-expansion by neglecting the last term in eq. (15).

In the Ω-expansion it is assumed that the first two moments can be obtained self-consistently
from the truncated system of eqs. (14) and (15), neglecting all higher cumulants as L → ∞.
Indeed, the m-th order cumulant of ps(x) scales like L1−m as required by the Ω-expansion.
However, in eq. (15) the skewness is multiplied by a factor L2, so that its contribution to σ2

remains finite in the limit L → ∞ and the truncation fails.
As a function of µ/λ, the solution ps(x) describes a crossover between two dynamical

regimes:
i) In the fast-mutation regime µ/λ ' 1, the evolution becomes effectively neutral. The

phenotype distribution approaches the asymptotic form p0(x) given by eq. (10); we have

x̄ = q + O
(

λ

µ

)

. (16)

ii) In the slow-mutation regime µ/λ ( 1, the phenotype average approaches the Nash
equilibrium but the variance remains finite,

x̄ = x∗ +
µc

c − 1
2x∗

λσ2
(q − x∗) + o

(

µ

λ

)

, σ2 = x∗(1 − x∗) + O
(

µ

λ

)

. (17)

The salient feature of this crossover is that the phenotypic quasispecies is always broad,
even in the limit µ → 0. (In contrast, the standard quasispecies in a fixed fitness landscape
would be localized around a master phenotype with a variance σ2 = O(µ).) This broadness re-
flects the fact that at a mixed Nash equilibrium, all participating basic strategies have the same
fitness. Hence, as x̄ approaches x∗, the fitness differences between phenotypes become small.

Discussion. – A generic feature of this mutation-selection dynamics is broad equilibria
around Nash points, with a larger degree of sequence divergence than in many fixed fitness
landscapes. It is clear that this method can be applied without major changes to evolutionary
games with unconditional strategies, in which the payoff φ(x | x′) is a linear function of x′.
The expression of the mutational entropy can be easily generalized to games with s pure
strategies, encoded by ai (i = 1, . . . , s) alleles, respectively. Systems where different loci have
a different weight in the genotype-phenotype mapping (7) can be treated along the lines of
ref. [4]. In general, the stationary distribution of strategies will be close to an evolutionary
stable strategy for small mutation rate, if there is one. The situation is different in games
with conditional strategies, like the celebrated Prisoner’s Dilemma game, see [13], and p. 101
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in [8]. In this case, the payoff of a given strategy depends on more properties of the population
than the average strategy alone. This case will be the subject of a separate publication [14].
It is also clear that the present approach can be generalized to the case of asymmetric games,
which can be used to model the co-evolution of different (but interacting) populations.

The main limitation of the quasispecies approach is the assumption of large population
sizes. In finite populations, there are sampling fluctuations, which lie at the heart of the
Neutral Evolution approach [15,16]. Recently, these fluctuations have been incorporated into
phenotypical evolutionary game theory, using a quantum-mechanical formalism [17]. Anal-
ogous finite-population effects in our co-evolutionary sequence dynamics lead to a quantum
field theory, which will also be the subject of future work [14].
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