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Abstract

Sequence alignment has been an invaluable tool for finding homologous sequences. The sig-
nificance of the homology found is often quantified statistically byp-values. Theory for comput-
ing p-values exists for gapless alignments [Karlin, S., Altschul, S.F., 1990. Methods for assessing
the statistical significance of molecular sequence features by using general scoring schemes. Proc.
Natl. Acad. Sci. USA 87, 2264–2268; Karlin, S., Dembo A., 1992. Limit distributions of maxi-
mal segmental score among Markov-dependent partial sums. Adv. Appl. Probab. 24, 13–140], but
a full generalization to alignments with gaps isnot yet complete. We present a unified statisti-
cal analysis of two common sequence comparison algorithms: maximum-score (Smith–Waterman)
alignments and their generalizedprobabilistic counterparts, including maximum-likelihood align-
ments and hidden Markov models. The most important statistical characteristic of these algorithms
is the distribution function of the maximum scoreSmax, resp. the maximum free energyFmax,
for mutually uncorrelated random sequences. This distribution is known empirically to be of the
Gumbel form with an exponential tailP(Smax > x) ∼ exp(−λx) for maximum-score align-
ment andP(Fmax > x) ∼ exp(−λx) for some classes of probabilistic alignment. We derive an
exact expression forλ for particular probabilistic alignments. This result is then used to obtain
accurateλ values for generic probabilistic and maximum-score alignments. Although the result
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demonstrated uses a simple match–mismatch scoring system, it is expected to be a good starting
point for more general scoring functions.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Alignment algorithms remain important in the analysis of biological sequences. In
database searches, local similarities between sequences have to be distinguished from
random matches. In at least two ways, this problem has become more challenging in recent
years. With the increasing size of databases, random matches become more likely, and
this effect decreases the confidence level of the sequence similarities found (Spang and
Vingron, 2000).

The degree of similarity between two or more sequences is often measured by
the alignment score. The common algorithms like BLAST and FASTA find a definite
alignment of maximal scoreSmax for a given pair of sequences (Altschul et al., 1990;
Pearson, 1988). Its statistical significance can becharacterized by the so-calledp-value,
i.e., by the probabilityP(Smax > x) that a score valueSmax > x occurs in alignments of
uncorrelated random sequences. The underlying probability distribution function is known
to be of Gumbel form (Gumbel, 1958), P(Smax > x) = 1 − exp(−κ exp(−λx)), for
alignments without gaps and it is widely believed that the same functional form also
applies to gapped alignments. The Gumbel parametersλ and κ , however, are known
analytically only for the special case of gapless alignments (Karlin and Altschul, 1990;
Karlin and Dembo, 1992) and have to be obtained by simulation otherwise. Known
analytical approximations are restricted to the case of very largegap cost (Siegmund and
Yakir, 2000; Metzler, 2002) or employ heuristics using a greedy approximation to the
original Smith–Waterman algorithm (Mott and Tribe, 1999).

A somewhat different alignment approach utilizes the concept of likelihood or hidden
Markov models; examples include HMMer (Eddy, 1998) and SAM (Karplus et al., 1998).
These produce a probability distribution over alignments which is inferred from an
underlying stochastic model of sequence evolution. The well known forward–backward
algorithm serves for the computation of the likelihood and the most probable alignment
can be filtered out by the Viterbi algorithm (see e.g.,Durbin et al. (1998)). Again, there is
to date no complete statistical theory to assess the significance of the results.

The alignment problem has an interesting connection to the statistical physics of
disordered systems. This has been exploited to develop thescaling theory of gapped
alignments discussed in a number of recent publications. Along these lines,Bundschuh
(2002)has obtained the Gumbel parameterλ for a particular limit of gapped alignment
called the longest common subsequence problem. Using the forward–backward version,
Kschischo and Lässig (2000)have generalized the scaling theory to probabilistic
alignments and identified the maximal free energyFmax as the relevant quantity
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for significance estimates.1 Yu and Hwa (2001)have established that the probability
distribution of Fmax is of the Gumbel form, have provided a general criterion for
determining the parameterλ, andhave obtainedλ exactly for a family of probabilistic
alignments.

In this paper, we derive an accurate approximation for the Gumbel parameterλ of local
maximum-score alignments with gaps. We refer to this approximation as thecooling map.
Accurateλ values can be obtained without the need of extensive numerical simulations
of random sequences. We use the idea that maximum score alignments can be obtained
as the limit case of probabilistic alignments. The limit is governed by a variableτ which
we call the temperature. The well known phase transition (Arratia and Waterman, 1994)
of Smith–Waterman alignment (Smith and Waterman, 1981) was shown to exhibit scale
invariance (Drasdo et al., 1998; Kschischo and Lässig, 2000), which allows one to compare
alignments with different parameters. This leads to a scaling formula forλ as a function
of the parameters in the alignment. To fix the scale of this scaling function, it is sufficient
to analyze two special cases of probabilistic alignment with exact Gumbel parameterλ.
We then use scaling theory to extract the Gumbel parameterλ of generic alignments from
these ‘solvable’ families. Although the procedure is illustrated with a match–mismatch
scoring function, it should be valid for position-independent scoring functions like the
popular PAM matrices (Dayhoff et al., 1978). Currently, the theoryis restricted to linear
gap scores. We believe that it provides a good starting point for more general scoring
functions.

This paper is organized as follows. InSection 2wegive a brief introduction to sequence
alignment and define the most important quantities. The main results of this paper including
the cooling map for the calculation ofλ are summarized inSection 3. More detailed
explanations are given afterwards. We conclude with a discussion of the perspectives and
limitations of the method.

2. Review of sequence alignment

We give a brief introduction to sequence alignment and describe a simple scoring
scheme for local alignments. We describe probabilistic alignment algorithms and the
limiting procedure from probabilistic to maximum-score alignment. The phase diagram
separating the local and global regimes of local probabilistic alignment is introduced.

2.1. Definition of alignments

A local alignment of two sequencesa = {ai } (i = 1, . . . , M) andb = {bj } ( j =
1, . . . , N) is defined as an ordered set of pairings(i , j ) and of gaps(i ,−) and (−, j )
involving the elements of two contiguous subsequences{am′, . . . , am} and{bn′, . . . , bn};
seeFig. 1(a). Its length is defined as the total number of aligned elements,L ≡ m−m′ +
n− n′ < M + N.

1 Notice that in Kschischo and Lässig (2000)the free energy considered contains both the forward and
backward contributions, while the maximal free energy defined in this paper only contains the forward part.
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Fig. 1. (a) One possible local alignment of two sequencesa andb with elements taken from a 4-letter alphabet. In
the grid figure, themth element of sequencea has itsi coordinate equal tom−1/2, and similarly thenth element
of sequenceb has its j coordinate equal ton − 1/2. Only the aligned subsequences are shown, with 6 pairings
(five matches, one mismatch) and two gaps. (b) Uniquerepresentation of this alignment as directed pathA (thick
line) on an alignment grid.

In contrast to local alignments which allow for unpaired regions to both sides of the
aligned subsequences, global alignments align the two sequences from head to toe and
thus have lengthL = M+N. An alignment can be uniquely represented as adirected path
A on the two-dimensional grid ofFig. 1(b).

2.2. Scoring of alignments

The elements of the sequences come from an alphabetχ of sizec. For DNA sequences
this will be the four basesA, C, G, T and for protein sequences the 20 amino acids. Each
lettera occurs with frequencyp(a); we have

∑
a∈χ p(a) = 1. The score of an alignment

is defined as the sum of the scores of its pairings and gaps. A scoring system has to specify
the substitution scoress(a, b) for all pairings (a, b) and the gap scoresg. (Hereone often
distinguishes further between gaps following a pairing and gaps following another gap;
this is called the affine gap cost.) It will prove convenient to normalize the scoring function
in such a way that random pairings have a specified score average 2σ and variance 1,∑

a,b∈χ
p(a)p(b)s(a, b)= 2σ,∑

a,b∈χ
p(a)p(b)(s(a, b)− 2σ)2 = 1.

(1)
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In the remainder of this paper, we use random sequences composed of equally
distributed letters (p(a) = 1/c for a ∈ χ) with c = 4 and a simple scoring system that
distinguishes only between matches (s(a, b) = s+ for a = b), mismatches (s(a, b) = s−
for a �= b), and gaps. Normalized according to (1), the scores can be written in the form

s+ =
√

c− 1+ 2σ

s− = −1/
√

c− 1+ 2σ

sg = −γ + σ

(2)

with two adjustable parameters, the gap costγ and the score gain per aligned element,σ .
The results below are generalizable to position-independent scoring matricess(a, b) (such
as the PAM matrices (Dayhoff et al., 1978) for aminoacid pairings). Eq. (1) can be fulfilled
by a simple rescaling of the matrix entries.

2.3. Alignment algorithms

The celebrated Smith–Waterman (Smith and Waterman, 1981) algorithm finds the local
score maximaSi, j for all points of the alignment grid.Si, j is defined as the maximum score
over the set of alignment paths ending at the point(i , j ),

Si, j ≡ max
A|i, j

S(A). (3)

Here, the score is given as the sum over pairings and gaps in the alignmentA

S(A)=
∑

pairings a,b

s(a, b)+
∑
gaps

sg

=σ L +
∑

pairings a,b

(s(a, b)− 2σ)−
∑
gaps

γ. (4)

The Smith–Waterman dynamic programming algorithm reads

Si, j = max{0, Si−1, j + sg, Si, j−1 + sg, Si−1, j−1 + s(ai , bj )}, (5)

wheres(ai , bj ) denotes the score for a pairing ofai andbj . The total maximum score
for a given pair of sequences is then simplySmax = maxi, j Si, j . The lower cutoff score 0
is essential for local alignment and is absent from the corresponding algorithm for global
alignment.

A probabilistic alignment takes into account alignment paths of arbitrary score. Each
pathA is associated with a weight factor exp[S(A)/τ ] given in terms of its score and the
additional parameterτ > 0. That is, the maximum (3) is replaced by the sum

Zi, j ≡
∑
A|i, j

exp[S(A)/τ ] (6)

overall alignment paths ending at the point(i , j ). The exponential weighting of different
paths is motivated by the additivity of the alignment score: when the alignment is composed
of two pieces, the sum of the corresponding scores is just the score of the whole alignment.
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A similar dynamic programming (see, e.g.,Kschischo and Lässig (2000), Yu and Hwa
(2001)) is available for probabilistic alignment. The recursion relation reads

Zi, j = 1+ ν[Zi−1, j + Zi, j−1] + v(ai , bj )Zi−1, j−1, (7)

where

v(a, b) = exp[s(a, b)/τ ], ν = exp(sg/τ) (8)

are the weights of pairings and gaps, respectively. The+1 term corresponds to the lower
cutoff score 0 in (5) and isonly present in the case of local alignment.

Apart from the scoring matrix (2), probabilistic alignments have three parameters. The
average gap frequency and length of the paths are controlled byγ andσ , respectively,
while τ governs the relative weight of paths with different scores. Note, thatZi, j denotes
a weight and not a probability. This important difference from the forward algorithm of
hidden Markov models will be used later.

Probabilistic alignments are related to standard Smith–Waterman alignments in a simple
way. From (6), we obtain

Si, j = lim
τ→0

Fi, j , (9)

whereFi, j ≡ τ ln Zi, j . Therefore, the total maximumFmax ≡ maxi, j Fi, j is the finite-
temperature counterpart of the score maximumSmax. Indeed,Yu and Hwa (2001)have
shown thatFmax obeys Gumbel statistics for independent random sequences.

In analogy with statistical physics, the parameterτ is called thetemperature; the
quantities Zi j are the localpartition function. Thetotal partition functionZ is the sum over
paths analogous to (6) without constrained end point. It can be computed as

∑
i, j Zi, j . The

quantities Fi, j and F ≡ τ log Z are called the local and totalfree energies, respectively.
This connection has been used byZhang and Marr (1995), Miyazawa (1996)andHwa and
Lässig (1998).

2.4. Normalization of probabilistic alignments

We now turn to specific probabilistic alignments given, for example, by a hidden
Markov model producingcorrelatedsequence pairs with a joint probability distribution
Q[a, b]. In thiscase, the total partition functionZ[a, b] := Z for a given pair of sequences
has the important interpretation as the ratio of their probability in the Markov model and
their ‘null probability’ Q0[a, b] without evolutionary correlations,

Z[a, b] = Q[a, b]
Q0[a, b] , (10)

seeKschischo and Lässig (2000)andYu et al. (2002). HereQ0[a, b] is given by

Q0[a, b] =
∏
a∈a

p(a)
∏
b∈b

p(b). (11)

The free energy is the appropriate generalization of the log odds score to gapped alignment.
The alignment weights (8) are then determined by the mutation and insertion/deletion
probabilities of the underlying Markov model for sequence evolution. We do not need
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the details of this mapping here. It is important to note that the Markov model imposes
a normalization condition2 on the weights (8). Then, the parameterss(a, b) and sg are
no longer independent. In the parametrization (1), we can expressσ in terms of the other
scoring parameters. For the scoring system (2), we write

σ = σ1(γ, τ ). (12)

As can be inferred3 from Yu et al. (2002), even underposition-specificscoring functions
this family of alignments hasλτ = 1. In Section 4.2, we show that there exists a second
family of ‘solvable’ alignments which hasλτ = 2. This family is given by another
normalization condition, which reads for the scoring system (2)

σ = σ2(γ, τ ). (13)

The functionsσ1,2(γ, τ ) are roots of a quadratic and a quartic equation, respectively; see
Section 4.2.

2.5. The phase diagram of local alignment

For local alignments, there are two different regimes, thelocal and theglobal regimes.
In the following, we discuss the statistics of alignments over an ensemble of random
sequences without mutual correlations, which is the ‘null model’ for significance estimates
used in Eq. (10). Averages over this null ensemble are denoted by〈· · ·〉0. Of particular
importance for understanding the local and global regimes are the average free energy

〈F〉0 =
∑
a,b

Q0[a, b]τ ln Z[a, b] (14)

and its local counterparts〈Fi, j 〉0. The properties of these quantities are determined by
which paths contribute most to the local partition sumsZi, j for typical sequence pairs. The
contribution of a given path having lengthL is determined by the score gain per aligned
elementσ , leading to a score termσ L; see Eq. (4). Consequently, long paths dominate for
sufficiently largeσ but are strongly suppressed for smallσ .

For sequence pairs of long sequences andi ≈ j → ∞ the asymptotic behavior of the
ensemble-averaged local free energy〈Fi, j 〉0 is given by4

〈Fi, j 〉0 
 [σ − σc(γ, τ )] · (i + j ) for σ > σc

〈Fi, j 〉0→ F0(γ, σ, τ ) for σ < σc
(15)

with a parameter-dependent threshold valueσc(γ, τ ) < 0 (Kschischo and Lässig, 2000).
Both regimescan be characterized by the average lengthL = ∂〈F〉0/∂σ of a local
alignment (compare Eqs. (4) and (6)). In the global alignment regime(σ > σc(γ, τ )), the
entire sequences are aligned, i.e.,L 
 2N. In the local alignment regime(σ < σc(γ, τ )), L

2 For hidden Markov models this condition correspondsto the conservation of transition probabilities.
3 In Yu et al. (2002), the substitution scores are rescaled to keepτ = 1, and the resultλ = 1 in this

normalization. Here we allow for a general temperatureτ without rescaling the substitution scores. It is easy
to see the result then readsλτ = 1 regardless of the value ofτ .

4 We use
 to indicate asymptotic equality and∼ for asymptotic proportionality. The symbol≈ indicates
approximate equality of two numerical values.
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Fig. 2. Phase diagram of probabilistic sequence alignment forγ = 5.5. The critical lineσc(γ, τ ) separates the
local (σ < σc) and the global(σ > σc) alignment regimes. The dots show numerical simulations which compare
favorably with the curve obtained from (31) in Section 3.2. The curvesσ1(γ, τ ) andσ2(γ, τ ) correspond to the
two families of solvable cases; seeSection 4.2for details.

reaches a finite limitL0(γ, σ, τ ) ≡ ∂ F0(γ, σ, τ )/∂σ . The two regimes are separated by
a phase transition. In the zero-temperature limit, this is the well known transition (Arratia
and Waterman, 1994) of maximum-score alignments (Smith and Waterman, 1981). This
transition persists for probabilistic alignments, but the transition pointσc(γ, τ ) changes
with temperature.Fig. 2shows the temperature dependence ofσc(γ, τ ) for a given value of
γ . The numerical data are in good agreement withthe transition curve which we compute in
Section 3.2below; see Eqs. (31) and (32). The two linesσ1(γ, τ ) andσ2(γ, τ ) of ‘solvable’
alignments are also shown inFig. 2.

3. Approximating the Gumbel parameter λ

The cooling map allows for a rapid and accurate evaluation of the Gumbel parameter
λ for local maximum score alignments withgaps. In this section we collect the two
main results underlying the cooling map and detail our practical implementation for the
calculation ofλ.

The two basic results are:

(1) The parameter dependence of the Gumbel parameter has the functional form

λ(γ, σ, τ ) = b(γ, τ )Φ(σ − σc, γ ). (16)

The functionΦ contains the universal singularity

Φ 
 |σ − σc(γ, τ )|1/2, (17)

as the phase transition is approached from the local regime. The exponent 1/2 is
independent of the parameter values. The explicit temperature dependence ofλ is
determined by the prefactorb(γ, τ ). This nonuniversal amplitude is directly related
to the amplitude ofF0 (seeFig. 5 and Eq. (36)). It is seen to be approximately
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independent of temperature in the range 0< τ < 0.5 and increases strongly for
τ > 1 as more andmorepaths contribute to the partition function.

(2) There are functionsσ1(γ, τ ) andσ2(γ, τ ) with

σ = σ1(γ, τ )⇐⇒ λτ = 1 for τ > 0 (18)

and

σ = σ2(γ, τ )⇐⇒ λτ = 2 for τ > 0. (19)

In the following discussion we keep the gap parameterγ at a fixed value as was done
in the phasediagram inFig. 2. In Section 4.1we derive Eqs. (16) and (17) from scaling
theory. The second result determinesthe Gumbel parameter along the linesσ = σ1(γ, τ )

andσ = σ2(γ, τ ) in the phase diagram. Analytical results for both functions can be found
in Section 4.2.

3.1. The cooling map

Eq. (16) allows us to relate theλ values at two different points(σ (0), τ (0)) and
(σ (1), τ (1)) in the local alignment regime of thephase diagram. We find

λ(γ, σ (0), τ (0))

λ(γ, σ (1), τ (1))
= b(γ, τ (0))

b(γ, τ (1))

Φ(σ (0) − σc(γ, τ (0)), γ )

Φ(σ (1) − σc(γ, τ (1)), γ )
. (20)

In the special case, when the two points have equal distances|σ (0) − σc(γ, τ (0))| =
|σ (1) − σc(γ, τ (1))| from the critical line σc, only the ratiob(γ, τ (0))/b(γ, τ (1)) of the
prefactors is important. To fix this ratio, we use the solvable cases (18) and (19). Placing
the twopointsσ (1) = σ1(γ, τ (1)) andσ (0) = σ2(γ, τ (0)) on the solvable lines and adjusting
the temperature valuesτ (0) andτ (1) according to the condition

|σ1(γ, τ (1))− σc(γ, τ (1))| = |σ2(γ, τ (0))− σc(γ, τ (0))|, (21)

we find with (18) and (19)

b(γ, τ (1))

b(γ, τ (0))
= τ (0)

2τ (1)
. (22)

The mapτ (1) = R(τ (0)) under the condition (21) is illustrated graphically inFig. 3. Since
R(τ ) is always smaller thanτ we refer to the map as thecooling map.We define it here
more formally as

|σ1(γ, R(τ ))− σc(γ, R(τ ))| = |σ2(γ, τ )− σc(γ, τ )|, (23)

and rewrite Eq. (22) as

b(γ, R(τ ))

b(γ, τ )
= τ

2R(τ )
. (24)

3.2. λ for maximum score alignment

We now turn to the calculation ofλ in the limit τ → 0. Consider two points(σ, τ ) and
(σ + ρ, R(τ )) not necessarily on the solvable lines. If both points have equal distances
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Fig. 3. Illustration of the cooling map. The initial temperatureτ (0) is mapped toτ (1) = R(τ (0)). The map
preserves the distance from the phase transition lineσc. The mapcan be iterated to lower and lower temperatures
(dots).

from thephase transition line(|σ + ρ − σc(γ, R(τ ))| = |σ − σc(γ, τ )|), then

ρ = σc(γ, R(τ ))− σc(γ, τ ) = σ1(γ, R(τ ))− σ2(γ, τ ), (25)

see Eq. (23). The relation between the Gumbel parameters at both points is

λ(γ, σ + ρ, R(τ )) = τ

2R(τ )
λ(γ, σ, τ ). (26)

By iterating the cooling map (seeFig. 3) from the initial point τ (0) = τ , we obtain
(n = 1, 2, . . .)

λ(γ, σ + ρ(n), τ (n)) = B(n)λ(γ, σ, τ ) (27)

with

τ (n) = R(τ (n−1))

ρ(n) =
n∑

k=1

(σ1(γ, τ (k))− σ2(γ, τ (k−1)))

B(n) =
n∏

k=1

τ (k−1)

2τ (k)
.

(28)

These sequences are rapidly converging. Their limit

λ(γ, σ + ρ(∞)(γ , τ ), 0) = B(∞)(γ , τ )λ(γ, σ, τ ) (29)

is practically reached after only a few iterations. With an initial point on the solvable line
σ = σ1(γ, τ ), weobtain

λ(γ, σ1(γ, τ )+ ρ(∞)(γ , τ ), 0) = B(∞)(γ , τ )/τ, (30)

a parametric representation of theλ values for maximum-score alignment.
The computed values agree very well with those from numerical simulations, as shown

in Fig. 4. The formula (30) also illustrates why the so-called Viterbi algorithm is often
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Fig. 4. (a) The Gumbel parameterλ for maximum-score alignment as a function ofσ for γ = 5.5. Dots represent
numerical results from pairs of independent random sequences of lengthN = 1500. The curve is obtained from
(30). (b) The same values ofλ as a function of the distance from the phase transition point|σ − σc(γ, τ = 0)| in
a log–log plot. The asymptotic singularity is given by (17).

inaccurate. This is a zero-temperature alignment derived from a maximum-likelihood
point; its parameters are(γ, σ1(γ, τ ), 0). However,its properties are not simply related
to those at the maximum-likelihood point(γ, σ1(γ, τ ), τ ) since the correction termsρ(∞)

andB(∞) are neglected.
Since the functionσ1(τ ) converges rapidly toσc(τ ) for large values ofτ , we can also

compute the zero-temperature phase transition point from the same cooling map,

σc(γ, 0) = lim
τ→∞[σ1(γ, τ )+ ρ(∞)(γ , τ )]. (31)

Using the fact thatλ(γ, σc(γ, τ ), τ ) = 0 and comparing with (29), we have

λ(γ, σc(γ, τ )+ ρ(∞)(γ , τ ), 0) = 0= λ(γ, σc(γ, 0), 0).

The entire phase transition curveσc(γ, τ ) is then accurately expressed as

σc(γ, τ ) = σc(γ, 0)− ρ(∞)(γ , τ ), (32)

seeFig. 2.
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3.3. Practical implementation

A practical implementation requires knowledge of the cooling map (23). It is important
to have an accurate low-temperature limit. With the scale of the temperature explicitly
included, we find that the following low-temperature approximation works very well:

R(τ )

τ̃
= τ

2τ̃
+ exp

(
−c1

τ̃

τ
+ c2

)
(33)

with

τ̃ (γ ) = arg max
τ

σ1(γ, τ ) (34)

chosen as our scale for temperature. The two constantsc1 = 3.4 andc2 = 1.1 were
obtained from a fit to the data.A heuristic derivation of (33) will be given inAppendix C.
Alternatively, the cooling map could beobtained from an iteration according to the
definition (23). This requires the knowledge ofσc(γ, τ ), which can be rapidly computed
(Kschischo and Lässig, 2000). Analytical expressions forσ1(γ, τ ) andσ2(γ, τ ) are given
in Eqs. (39) and (43). In Algorithm 1these calculations are used as subroutines.

Require: γ, τ0
τ ← τ0
σ ← σ1(γ, τ ) {From Eq. (39)}
{ Computation of Eq.(28)}
repeat

τ ′ ← R(τ ) {see text forR}
ρ ← ρ + σ1(τ

′)− σ2(τ ) {From Eq. (43)}
B← B × τ/(2τ ′)

until convergence is reached
λ(σ + ρ, 0)← B/τ

Algorithm 1. Pseudocode for the computation ofλ for Smith–Waterman alignment. The
algorithm requires the starting valueτ0 and the gap parameterγ as input. The arrows
indicate the directions of assignments and× denotes multiplication. Comments are
enclosed by curly brackets.

4. Background on the results

In this section we provide some background on the main results used inSection 3for
the approximation of the Gumbel parameterλ.

4.1. Scaling of local alignments

The first result ((16), (17)) is derived from the scaling theory of alignment (Drasdo et al.,
1998; Hwa and Lässig, 1998; Olsen et al., 1999; Drasdo et al., 2000). The score fluctuations
of global alignment belong to the university class of directed polymers in a random
medium; seeHalpin-Healy and Zhang (1995)for a review. For probabilistic alignment,
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Fig. 5. The universal scaling of local alignments. The ensemble-averaged free energy obeys a power law
F0 ∼ |σ − σc(γ, τ )|−1/2 with a universal (parameter-independent) exponent of 1/2. The prefactor, however,
is not universal and changes strongly withτ andγ (hereγ = 1.7).

the fluctuation of the free energy in theglobal alignment regime(σ > σc) is given by

〈F2
i, j 〉0 − 〈Fi, j 〉20 ∼ (i + j )2/3. (35)

This scaling is interesting even for local alignment. For a pair of random sequences, there
are often high scoring islands. Within these islands, the alignment behaves as a global
alignment and the free energy grows linearly(F 
 |σ − σc|L0) with the lengthL0 of the
island (compare with Eq. (15)). Note that these islands occurred through the upward fluc-
tuations of the free energy. Therefore, the amplitude of the fluctuations also sets the bound
for the length and the free energy of typical islands. Comparing the fluctuations (35) with
the linear growth of the free energy withina typical island, one obtains the typical length
of the islandL0 ∼ |σ − σc|−3/2. From thisone deduces

F0 ∼ |σ − σc(γ, τ )|−1/2 (36)

asσc(γ, τ ) is approached from below. The characteristic power law manifests the continu-
ous phase transition between the local and global alignment regimes. The exponent 1/2 is
auniversal property of sequence alignments independent of alignment parameters (Drasdo
et al., 1998) and in particular of the temperature (Kschischo and Lässig, 2000). Fig. 5
shows the singular behavior (36) for different values of the temperature. The exponent is
seen to be temperature independent, while the prefactor varies withτ (asdoes thetransition
pointσc).

The quantityλF0 is dimensionless, thus Eq. (36) suggests scaling (16) and (17) for the
Gumbel parameterλ.

4.2. Solvable probabilistic alignments

In this section, wediscuss two cases in which theλ values can be obtained
analytically. As described inYu and Hwa (2001), the key to understanding the tail of
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the score distribution is inglobal alignment, sincethe value of λ is determined by the
equation

lim
t→∞〈e

λτ ln(W̃t )〉0 = lim
t→∞〈W̃

λτ
t 〉0 = 1, (37)

where the quantitỹWt , defined by Eq. (A.3), depends only on global alignment weights
Eq. (A.2). Details are described inAppendix A.

This normalization condition can be solved explicitly in the two casesλτ = 1 and
λτ = 2. The solution to each of the two cases imposes a different relationship among the
alignment parameters. For our simple scoring system, they are the Eqs. (12) and (13).

The first case〈W̃t 〉0 = 1 has been elaborated byYu et al. (2002). Here we work out the
second case limt→∞〈W̃2

t 〉0 = 1.Weuse the(weak) additional assumption that substitution
scores at different lattice points can be treated as independent. In fact, it has been shown
numerically (Olsen et al., 1999; Bundschuh, 2002) that the effect of such an assumption
is generally negligible. The calculation ofour second case is much more difficult since
the relevant partition function is that of an interacting system. Quite remarkably, the result
can still be expressed as a simple relation between the alignment parameters. The relevant
definitions and results are given below; some details of the derivations can be found in
Appendices AandB.

4.2.1. First condition
As will be shown inAppendix A, to achieve〈W̃t 〉0 = 1, we only need to satisfy

2ν + v = 1, (38)

wherev ≡ 〈v(a, b)〉0 ≡ y fs(τ ) is the average substitution weight,y = exp(2σ/τ), and
fs(τ ) ≡ ∑

a,b exp[(s(a, b))/τ ]p(a)p(b) with p(a) being the background frequency of
charactera. Similarly, we may also write the linear gap weightν asν ≡ y1/2 exp(−γ /τ) ≡
y1/2 fγ (τ ). Thecondition (38) is therefore a quadratic equation iny1/2 and can be readily
solved to yieldσ1(γ, τ ) as

σ1(γ, τ ) = τ log

 fγ (τ )

fs(τ )
+

√(
fγ (τ )

fs(τ )

)2

+ 1

fs(τ )

 . (39)

Here, and in Eq. (43), we suppress theγ dependence. Note that along the phase trajectory
σ1(γ, τ ), theλ value is simply 1/τ .

Although the condition (38) waspointed out inYu and Hwa (2001)andYu et al. (2002),
a formal mathematical derivation was omitted. InAppendix A, a formal derivation for the
condition (38) is given. Thebasic mathematical structure used to obtain this result involves
discrete Laplace transform and Fourier transform. After those are done, the quantity〈W̃t 〉0
can be expressed as a contour integral (arising from the inverse Laplace transform) which
gives us the value 1 for allt ≥ 1 if andonly if thecondition (38) holds.

4.2.2. Second condition
To explain the condition for〈W̃2

t 〉0 = 1, we define the variance
 of the substitution
weight,


 ≡ 〈v2(a, b)〉0− v2. (40)
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Fig. 6. The histogram and the Gumbel fit using the second condition atτ = 1. The circles represent the alignment
score histogram of 500,000 random sequence pairs using the PAM120 scoring matrix and linear gap costγ = 4.5.
Each random sequence generated has lengthN = 600. The solid line corresponds to a Gumbel fit withλ = 2.0
as expected, together with the other fitted parameter lnκ = ln(K N2) = 12.4.

Using the same notation as before, we can write
 as


 = y2[ fs(τ/2)− f 2
s (τ )]. (41)

The end result of this calculation is the following condition:

(1+ v)
√

(1− v)2 − 4ν2 = 
, (42)

upon the satisfaction of which we can have limt→∞〈W̃2
t 〉0 = 1 and consequentlyλ = 2/τ .

Note that here we also need to have 2ν + v < 1, thatis to say〈W̃t 〉0 decays exponentially
with t . Eq. (42) can be recast in terms ofy, fs(τ ), fγ (τ ) and we then have a quartic
equation iny. Among the four roots ofy, we pick thereal rootr with range 0< r < 1.
We can then call

σ2(γ, τ ) = τ

2
log(r ). (43)

The derivation is very similar to, but more involved than, that ofFriedberg and Yu
(1994)andYu (1999)for a related problem. As in the first case, it involves again Fourier
and Laplace transformations; seeAppendix Bfor the sketch of the process. A complete
derivation that also includes the affine gap functions will be provided in a separate
publication (Yu, 2004).

Our prediction is tested by an extensive numerical simulation atτ = 1 using the
PAM120 scoring matrix and a linear gap costγ = 4.5. Fig. 6 shows the score histogram
obtained from aligning half a million pairs of random sequences of lengthN = 600
together with a Gumbel fit. The tail is given by the parameterλ = 2.0± 0.02 as expected.
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5. Discussion

We have discussed here a unified statistical analysis of probabilistic and maximum-
score alignments withgaps. In particular, we have shown how exact results on particular
alignment families and scaling can be combined to infer the Gumbel parameterλ

accurately.
To compute p-values, the second Gumbel parameterκ has to be determined as well.

While this was not the primary focus of our study, we are currently working in this
direction. However, a preciseλ value can facilitate a rapid estimate ofκ either from a
single but large-size pairwise alignment using the island method (Olsen et al., 1999) or
from the average score of aligning a few random sequence pairs as described inYu et al.
(2002).

Wewould like to emphasize that our method should be readily applicable to position in-
dependent scoring functions, since only the score averageσ of random pairings enters the
theory. Suitable modifications analogous to those inYu et al. (2002), could possibly ren-
der ourmethod applicable to position specific scoring functions. This will be of particular
importance for profile searches (see e.g.,Eddy (1998)).

The implications of our work are two-fold. Conceptually, probabilistic and maximum-
score alignments have long been regarded as rather different statistical entities, linked only
by ad hoc procedures like the Viterbi algorithm. Regarding maximum-score alignments as
the zero-temperature limitof probabilistic alignments opens a new avenue to understand
the mathematics of the former. The statistics of Smith–Waterman alignments may be better
understood beyond the heuristic level.

From a practicalpoint of view, maximum-score alignments retain their importance
since they are easier to interpret than their probabilistic counterparts, and their fidelity
(i.e., the fraction of correctly aligned element pairs) tends to be higher (Kschischo and
Lässig, 2000). On the other hand, a recent work (Yu et al., 2002) indicates comparable
performance between maximum-score alignment and probabilistic alignment when tested
on a real biological database. Thus we expect the alignment tools of the future will be a
judicious combination of probabilistic and maximum-score parts.

Appendix A

In this appendix, we demonstrate that condition (38) is indeed all we need for the first
case. Recall that the quantityZi, j , which consists of weights of all paths terminating at
point(i , j ) regardless of the starting points, satisfies the recursion relation (7). In a simpler
context, we may consider the quantitywi, j that sums the weights of all paths starting at
the origin and terminating at point(i , j ). The quantity wi, j is also the global alignment
weight between subsequences{a1, a2, . . . , ai } and{b1, b2, . . . , bj }. The recursion relation
for wi, j is simply

wi, j = ν[wi−1, j +wi, j−1] + v(ai , bj )wi−1, j−1. (A.1)

To reveal the mathematical structure involved, it is convenient to introduce a new set
of coordinates(x = i − j , t = i + j ) on the alignment lattice as shown inFig. 7. The
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Fig. 7. The alignment lattice.

recursion (A.1) now reads

w(x, t + 1) = ν[w(x + 1, t)+ w(x − 1, t)] + v(x, t)w(x, t − 1) (A.2)

wherev(x, t − 1) ≡ v(ai , bj ) is introduced to reflect that the pairing(ai , bj ) is located at
(x, t − 1). The initial conditions for (A.2) arew(x, t = 0) = δx,0 andw(x, t < 0) = 0.
From this point on, the procedure to solve this problem is very similar to that of
Friedberg and Yu (1994)andYu (1999). Note that at a fixed location(i , j ) the substitution
weight v(ai , bj ), and consequentlyv(x, t − 1), changes when a new pair of sequences is
considered.

We are now ready to write down the precise definition ofW̃t :

W̃t =
∑

x

w(x, t) +
∑
x′

v(x′, t)w(x′, t − 1). (A.3)

Note that in (A.3), if x is summed over even integers, thenx′ will be summed over odd
integers, and vice versa. An explicit example is given inFig. 7, where theopen circles
indicate the vertices whose weights are summed over at timet = 6. And the double slash on
the bonds indicate that no weight flow through those bonds should be included. Basically,
the quantityW̃t sums all theglobal alignment weights arriving at the time slicet in the
alignment lattice.

Let us first emphasize that〈v(x, t)w(x, t−1)〉0 = 〈v(x, t)〉0〈w(x, t−1)〉0. This is exact
becausev(x, t) = v(a(t+1+x)/2, b(t+1−x)/2) while the alignment weight atw(x, t − 1)

depends only on subsequences{a1, . . . , a(t−1+x)/2} and {b1, . . . , b(t−1−x)/2}. Denoting
〈w(x, t)〉0 by φ(x, t), we may then write down easily the corresponding iterative equation

φ(x, t + 1) = vφ(x, t − 1)+ ν[φ(x + 1, t)+ φ(x − 1, t)] (A.4)
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whereas the quantity〈W̃t 〉0 is obtained by

〈W̃t 〉0 =
∑

x

φ(x, t) + v
∑
x′

φ(x′, t − 1). (A.5)

Eq. (A.4) can be easily solved by going through a discrete Laplace transform and a discrete
Fourier transform. Defining

φz(x) ≡
∞∑

t=0

ztφ(x, t) (A.6)

φk
z ≡

∑
x

e−ikxφz(x) (A.7)

we obtain

φz(x)− δx,0 = z2vφz(x)+ zν[φz(x + 1)+ φz(x − 1)]
φk

z − 1= [z2v + 2zν cos(k)]φk
z .

Apparently, the quantity of interest〈W̃t 〉0 in (A.5) consists of only the zero-momentum
mode. To be explicit, we may write

〈W̃t 〉0 = φk=0(t)+ vφk=0(t − 1),

and consequently

〈W̃t 〉0 =
∮

dz

2π i

[
φk=0

z

zt+1
+ v

φk=0
z

zt

]
=

∮
dz

2π i

1

zt+1

1+ vz

1− z2v − 2νz
. (A.8)

Whenν = (1−v)/2, we may rewrite vz2+2νz−1 asvz2+z−vz−1= (vz+1)(z−1).
And therefore the contour integral becomes

〈W̃t 〉0 =
∮

dz

2π i

1

zt+1

1

1− z
= 1.

Appendix B

We now sketch the derivation of condition (42). Recall that the quantity
 is defined as

〈v(x, t)v(x′, t ′)〉0− v2 = 
δx,x′δt,t ′. (B.1)

Before computing W̃2
t , let us first define the following quantities:

φ(x1, x2, t) ≡ 〈w(x1, t)w(x2, t)〉0, (B.2)

φ>(x1, x2, t) ≡ 〈w(x1+ 1, t + 1)w(x2, t)〉0, (B.3)

φ<(x1, x2, t) ≡ 〈w(x1, t)w(x2 + 1, t + 1)〉0. (B.4)

It has not escaped our attention thatφ>(x1, x2, t) = φ<(x2, x1, t), but we find it more
convenient to have bothφ> andφ< introduced. After some calculation, we can write〈W̃2

t 〉0
as

〈W̃2
t 〉0=

∑
x1,x2

φ(x1, x2, t)
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+
∑
x1,x2

[
δx1,x2 + v2]φ(x1, x2, t − 1)

+ v
∑
x1,x2

[φ>(x1, x2, t − 1)+ φ<(x1, x2, t − 1)].

Following the same route as inFriedberg and Yu (1994), Yu (1999)and similar to what
we did for the first condition, we perform a discrete Laplace transform as well as Fourier
transforms similar to Eqs. (A.6) and (A.7)

φz(x1, x2) ≡
∞∑

t=0

ztφ(x1, x2, t) (B.5)

φk
z(y) ≡

∑
x1,x2

e−ik(x1+x2)δx1−x2,2yφz(x1, x2) (B.6)

φk,l
z ≡

∑
y

e−2ilyφk
z(y). (B.7)

The quantity of interest,〈W̃2
t 〉0, is now rewritten as follows:

〈W̃2
t 〉0=

∮
dz

2π i

{
1+ zv2

zt+1
φk=0,l=0

z +

φk=0

z (y = 0)

zt

+ v
φ>k=0,l=0 + φ

<k=0,l=0
z

zt

}
, (B.8)

whereφk
z(y = 0) is nothing but taking valuey = 0 in Eq. (B.6).

The evolution equations, similar to Eq. (A.4), of φ, φ> andφ< can be derived using the
fundamental relation Eq. (A.2). After some tedious calculations, one arrives at

φk,l
z = 1+ z2
φk

z(y = 0)+ [z2v2 + 2zν2(cos 2k+ cos 2l )]φk,l
z

+ z2νv(e−2ik+2il + 1)φ<k,l
z + z2νv(e−2ik−2il + 1)φ>k,l

z (B.9)

φ>k,l
z = zve2ilφ<k,l

z + ν(e2ik+2il + 1)φk,l
z (B.10)

φ<k,l
z = zve−2il φ>k,l

z + ν(e2ik−2il + 1)φk,l
z . (B.11)

From Eq. (B.8), we see that the calculation can be simplified by settingk = 0 first. To
lighten thenotation, we only retain the variablel . Thus,φk=0,l

z becomesφl andφk
z(y = 0)

becomesφ(y = 0). After somealgebra and calculus, we obtain

φ(y = 0) = 1

(1+ zv)
√

(1− zv)2 − 4zν2−
z2
. (B.12)

Eq. (B.12) can then be substituted into Eq. (B.9) to obtain a complete expression for
φ

k=0,l
z .

In order to ensure limt→∞〈W̃2
t 〉0 = constant, we analyze the pole locations in (B.8) and

obtain the following conditions: (1)φ(y = 0) must not have anyz pole such that|z| < 1;
(2) φ(y = 0) must have a pole atz = 1 under the fact that 2ν + v < 1. Therefore, for a
given
, we need to make sure that poles with|z| < 1 do not occur. To accomplish this, let
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us first observe that ifz→ 0, thenthe denominator inφ(y = 0) becomes 1−0. Therefore,
what we want is that(1+ zv)

√
(1− zv)2− 4zν2 ≥ 
z2 over the range 0< z < 1 and

with equality holds atz= 1. Careful analysis then yields the condition (42).

Appendix C

In this appendix, we will provide the heuristic derivation of the asymptotic behavior (33)
of the cooling map. To achieve this goal, we need to analyze our conditions for solvability
in more detail. To demonstrate this procedure, let us focus on our simple match–mismatch
scoring scheme.

Under our simple scoring scheme, we have

fs(τ )=
∑
a,b

exp[s(a, b)/τ ] = 1

c
exp[√c− 1/τ ]

+ c− 1

c
exp[−1/(τ

√
c− 1)]. (C.1)

As τ → 0, fs(τ ) diverges as1c exp[√c− 1/τ ], and the quantity exp[−γ /τ ] becomes
vanishingly small. Under the first solvability condition (38), we consider the low-
temperature limit. Recall that bothν = exp[−(γ + σ)/τ ] andv ≡ exp[2σ/τ ] fs(τ ) are
positive. Asτ → 0, we must havev→ 1 since otherwise the condition (38) breaks down.
This then implies, asτ → 0,

σ1(γ, τ ) ≈ τ

2
ln

[
1

fs(τ )

]
= −
√

c− 1

2
+ τ

2
ln(c)+O(e−const/τ ). (C.2)

That is, it is very close to a straight line with slope ln(c)/2 and with a correction term
proportional to exp[−const/τ ], which vanishes exponentially fast whenτ → 0.

In a similar fashion, we analyze the case forσ2(γ, τ ). Under the condition (42) and
remembering that 2ν + v < 1 for the second solvable class, we concludev < 1 and
consequently exp[2σ2(γ, τ )/τ ] fs(τ ) < 1. If for τ → 0, exp[2σ2(γ, τ )/τ ] fs(τ ) becomes
zero, the left hand side of (42) approaches 1 while the right hand side of (42) reaches 0.
Therefore, asτ → 0, exp[2σ2(γ, τ )/τ ] fs(τ ) must approach a finite constant smaller than
onebut larger than zero. Let us call this limiting numberα. Let uscalculate the leading
term of fs(τ/2)− f 2

s (τ ) asτ → 0,

fs(τ/2)− f 2
s (τ ) = (c− 1)

[
exp[√c− 1/τ ]

c

]2

[1+O(e−const/τ )].

When thezero-temperature limit of exp[2σ2(γ, τ )/τ ] fs(τ ) approaches a finite positive
constant smaller than one,ν must approach zero, and we have from (42)

1− α2 = (c− 1)α2.

We therefore haveα = √1/c. Consequently, we have, asτ → 0,

σ2(γ, τ ) ≈ τ

2
ln

[
1/
√

c

fs(τ )

]
= −
√

c− 1

2
+ τ

4
ln(c)+O(e−const/τ ). (C.3)
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Now let us make the plausible assumption that the phase transition line, seeFig. 2, stays
horizontal over a certain range of low temperature. Then it is easy to see how theτ/(2τ̃ )

emerges in the cooling map. Our definition of the cooling map requires

−
√

c− 1

2
+ R(τ )

2
ln(c)+O(e−const/τ )+ [σc(γ, R(τ ))− σ1(γ, R(τ ))]

= −
√

c− 1

2
+ τ

4
ln(c)+O(e−const/τ )+ [σc(γ, τ )− σ2(γ, τ )] (C.4)

Because our map moves with[σc(γ, R(τ )) − σ1(γ, R(τ ))] = [σc(γ, τ ) − σ2(γ, τ )], we
obtain that

R(τ ) = τ

2
+ Const e−const/τ . (C.5)

Let us further argue that the deviation of the phase transition line from a horizontal line
is of order exp[−const/τ ] at low temperature. This is simply because at zero temperature,
the partition function has contributions only from lowest energy paths, while at low but
finite temperatures, suboptimal paths contribute as well. When one sums the Boltzmann
weights from the lowest energy path and from the leading suboptimal paths, we have
a free energy expression given by the lowest energy plus a correction term of order
O(exp[−const/τ ]). This increase in the average free energy indicates that one only needs
to lower the average score gain per unit length by about the same amount to keep the system
in the logphase. That is to say, asτ → 0, we have

σc(γ, τ ) ≈ σc(γ, τ = 0)− C1e−C2/τ .

With this extra correction considered, it will add an exponential correction term to the
right hand side of (C.4). However, it will still lead to the same form (C.5) for the low-
temperature part. This concludes our heuristic derivation of (33).

List of symbols

Symbol Description Section

λ, κ Gumbel parameters 1
c Number of letters in the sequences (e.g.,

c = 4 for nucleotides)
2.1

χ Sequence alphabet ofc letters 2.1
a, b Sequences of nucleotides or amino acids 2.1
A Ali gnment (path) 2.1
L Length of an alignment 2.1
s(a, b) Score of pairing two lettersa, b ∈ χ 2.2
s+, s−, sg Match, mismatch and gap score 2.2
σ Average score per paired element 2.2
γ Gap parameter,γ = sg − σ 2.2
τ Temperature 2.2
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Symbol Description Section

Si, j Alignment score for subsequences up to
position i , j

2.3

Zi, j Partition function for subsequences up to
position i , j

2.3

Fi, j Free energy,Fi, j = τ ln Zi, j 2.3
Smax Maximum score,Smax= maxi, j Si, j 2.3
Fmax Maximum score,Fmax= maxi, j Fi, j 2.3
Z Total partition function,Z =∑

i, j Zi, j 2.3
v(a, b), ν Weight for pairing lettersa, b and gap

weight
2.3

Q0[a, b] Joint probability ofrandom sequencesa, b 2.4
Q[a, b] Joint probability of the sequence paira, b 2.4
σ1(γ, τ ), σ2(γ, τ ) The two solvable cases 2.4, 3, 4.2
〈·〉0 Average with respect toQ0[a, b] 2.5
F0 Characteristic limit of free energy (local

regime)
2.5

b(γ, τ )Φ(σ − σc, γ ) Functional form ofλ 3, 4.1
R Cooling map 3.1
ρ Shift in σ 3.2
ρ(n) Iteration ofρ under the cooling mapR 3.2
τ (n) Iteration ofτ under the cooling mapR 3.2
B(n), B(∞) Iteration of the prefactorb underR 3.2
τ̃ (γ ) Characteristic scale, maximum ofσ1(γ, τ )

w.r.t τ
3.3

W̃t Total global alignment weight arriving at
the gridborder

Appendix A,
4.2

y y= exp(2σ/τ) 4.2
fs(τ ) fs(τ ) =∑

a,b exp(s(a, b)/τ ) 4.2
fγ (τ ) fγ (τ ) = exp(−γ /τ) 4.2

 Variance of substitution weight 4.2
x, t Rotated coordinates in the alignment grid,

x = i − j , t = i + j
Appendix A

w(x, t) Global alignment weight Appendix A
φ(x, t) φ(x, t) = 〈w(x, t)〉0 Appendix A
φz(x), φk

z Laplace and Laplace–Fourier transform of
φ(x, t)
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