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Abstract

Seajuence alignment has been an invaluable tool for finding homologous sequences. The sig-
nificance of the homology found is often quantified statisticallygsyalues. Thery for comput-
ing p-values exists for gapless alignments [Karlin, S., Altschul, S.F., 1990. Methods for assessing
the statistical significance of molecular sequerestdres by using general scoring schemes. Proc.
Natl. Acad. Sci. USA 87, 2264-2268; Karlin, S., Dembo A., 1992. Limit distributions of maxi-
mal segmental score among Markov-dependent partial sums. Adv. Appl. Probab. 24, 13-140], but
a full gereralization to dgnments with gaps isiot yet complete. We present a unified statisti-
cal analysis of two common sequence comparison algorithms: maximum-score (Smith—-Waterman)
alignments and their generalizgdobabilistic counterparts, inofling maximume-likelihood align-
ments and hidden Markov models. The most important statistical characteristic of these algorithms
is the distribution function of the maximum sco8nax resp. the raximum free energymax
for mutually uncorrelated random sequences. This distribution is known empirically to be of the
Gumbel form with an exponential tailP(Snax > X) ~ exp(—ix) for maximum-score align-
ment andP(Fmax > X) ~ exp(—Ax) for some classes of probabilistic alignment. We derive an
exact expression fon for particular probabilistic alignments. This result is then used to obtain
accurateir values for generic probabilie and maximum-score @hments. Although the result
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demonstrated uses a simple match—mismatch scoring system, it is expected to be a good starting
point for more general scoring functions.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Alignment algorithms remain important in the analysis of biological sequences. In
database searches, local similaritieswsn sequences have to be distinguished from
random matches. In at least two ways, thigstgem has become more challenging in recent
years. With the increasing size of databases, random matches become more likely, and
this effect decreases the confidenceelesf the sequence similarities foun8gang and
Vingron, 2000.

The degree of similarity between two or more sequences is often measured by
the alignment score. The common algorithms like BLAST and FASTA find a definite
alignment of maximal scor&yax for a given pair of sequenceslfschul et al., 1990
Pearson, 1988 Its statistical significance can lobaracterized by the so-callg@value,

i.e., by the probabilityP (Snax > X) that a score valu&ynax > x occurs in alignments of
uncorrelated random sequencélse underlying probability distribution function is known

to be of Gumbel form Gumbel, 1958, P(Snax > X) = 1 — exp(—« exp(—AXx)), for
alignments without gaps and it is widely believed that the same functional form also
applies to gapped alignments. The Gumbel parametessd «, howevey are known
analytically only for the speal case of gapless alignmentsaflin and Altschul, 1990
Karlin and Dembo, 1992and have to be obtained by simulation otherwise. Known
analytical approximations are restdd to the case of vgrlargegap cost iegnund and
Yakir, 2000 Metzler, 2002 or employ heurigcs using a greedypmproximation to the
original Smith—Waterman algorithmMott and Tribe, 1999

A somewhat different alignment approactilizes the concept of likelihood or hidden
Markov models; examples include HMMeEddy, 1998 and SAM Karplus et al., 1998
These produce a probability distribution ovaignments which is inferred from an
underlying stochastic model of sequence evolution. The well known forward—backward
algorithm serves for the computation of the likelihood and the most probable alignment
can be filtered out by the Viterbi algorithm (see elurbin et al. (1998). Again, there is
to date no complete statistical theory to assess the significance of the results.

The alignment problem has an interesting connection to the statistical physics of
disordered systems. This has been exploited to developdakng heory of gapped
alignments discussed in a humber of regeublications. Along these line8undschuh
(2002) has obtained the Gumbel parametefor a particular limit of gapped alignment
called the longest common subsequence problem. Using the forward—backward version,
Kschischo and Léassig (2000have generadized the scaling theory to probabilistic
alignments and identified the maximal free enerByax as the relevant quantity
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for significance estimatés.Yu and Hwa (2001)have established that the probability
distribuion of Fpax is of the Gunbel form, have provided a general criterion for
deternining the parametek, and have obtained. exactly for a family of probabilistic
alignments.

In this paper, we derive an accurate approximation for the Gumbel parainaftércal
maximum-score alignments with gaps. We refer to this approximation aetiieg map
Accuratex values can be obtained without the need of extensive numerical simulations
of random sequences. We use the idea that maximum score alignments can be obtained
as the limit case of probabilistic alignments. The limit is governed by a variatlkich
we call the temperature. The well known phase transithmgtia and Waterman, 1994
of Smith—Waterman alignmengith and Waterman, 19§was shown to hibit scale
invariance Drasdo et al., 1998 schischo and Lassig, 20pAvhich dlows one to compare
alignments with different parameterThis leads to a scaling formula faras a function
of the parameters in the alignment. To fix tleake of this scaling function, it is sufficient
to analyze two special cases of probabilistic alignment with exact Gumbel parameter
We then useaaling theory to extract the Gumbel parameterf generic alignments from
these ‘solvable’ families. Although the prahgre is illustrated with a match—mismatch
sworing function, it should be valid for posih-independent scoring functions like the
popular PAM matriceslayhoff et al., 1978. Currently, the theorys restricted to linear
gap scores. We believe that it provides a good starting point for more general scoring
functions.

This paper is organized as follows. &®ction 2ve give a brief introduction to sequence
alignment and define the mostimportant quantities. The main results of this paper including
the cooling map for the calculation &f are summarized irBection 3 More deailed
explanations are given afterwards. We cam# with a discussion of the perspectives and
limitations of the method.

2. Review of sequence alignment

We give a brief introduction to sequence alignment and describe a simple scoring
scheme for local alignments. We describe probabilistic alignment algorithms and the
limiting procedure from probabilistic to maximum-score alignment. The phase diagram
separating the local and global regimes of&b probabilistic alignment is introduced.

2.1. Definition of alignments

A local alignment of two sequences= {&} (i = 1,...,M) andb = {bj} (j =
1,...,N) is defined as an orded set of pairing<i, j) and of gapgi, —) and(—, j)
involving the elements of two contiguous subsequeriegs, . .., am} and{by, ..., bn};
seeFig. 1(a). Its length is defined as the total number of aligned elementsm — m’ +
n—n <M+ N.

I Notice that inKschischo and Lassig (200@he free energy considered contains both the forward and
backward contributions, while the maximal free enedgfined in his paper only contains the forward part.
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Fig. 1. (a) One possible local alignment of two sequercasdb with elements taken from a 4-letter alphabet. In
the grid figure, thenth element of sequenaehas itsi coordinate equal t;m— 1/2, and similarly thenth element

of sequencé has itsj coordinate equal ta — 1/2. Only the aligned subsequences are shown, with 6 pairings
(five matches, one mismatch) and two gaps. (b) Unmepeeentation of this alignment as directed pétlfthick

line) on an alignment grid.

In contrast to local alignments which allow for unpaired regions to both sides of the
aligned subsequences, global alignments align the two sequences from head to toe and
thus have length = M + N. An alignment can be uniquely represented dgected path
A on the two-dimensional grid dfig. 1(b).

2.2. Scoring of alignments

The elements of the sequences come from an alphabgsizec. For DNA ssquences
this will be the four base#, C, G, T and for protein sequences the 20 amino acids. Each
lettera occurs with frequencp(a); we havezaex p(@) = 1. The score of an alignment
is defined as the sum of the scores of its pajsiand gaps. A scoring system has to specify
the substitution scorexa, b) for all parings (a, b) and the gap scorgy. (Hereone often
distinguishes further between gaps following a pairing and gaps following another gap;
this is called the affine gap cost.) It will prove convenient to normalize the scoring function
in suich a way that random pairings have a specified score averaga@variance 1,

> p@pb)s(a, b) = 2,
a,bey

> p@p)(s@ b)—20)% = 1.

a,bey

1)
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In the remainder of this paper, we use random sequences composed of equally
distributed letters (p(a) = 1/c for a € x) with ¢ = 4 and a simple scoring system that
distinguishes only between matcheé&y, b) = s; for a = b), mismatchesg(a, b) = s_
for a # b), and gaps. Normalized according f,(the scores can be written in the form

Sy =vCc—1420
s.=-1/V/c—1+2 (2)
Sg=-y+o

with two adjustable parameters, the gap gosind the score gain per aligned element,
The results below are generalizable to position-independent scoring mataces (such
as the PAM matricedXayhoff et al., 1978for aminoacid pairings). Eq.X) can be fulfilled
by a simple resaling of the matrix entries.

2.3. Alignment algorithms

The celebrated Smith—Waterme®n(ith and Waterman, 198 hlgorithm finds the local
score maximég j for all points of the alignment grids j is defined as the maximum score
over the set of afjnment paths ending at the poiint j),

S,= mng(A). 3

Here, the sere is given as the sum over pairings and gaps in the align&ent

SA)= Y s@b)+) s

pairings ab gaps

=oL+ > (s@by—20)-) y. (4)

pairings ab gaps

The Smith—Waterman dynamic programming algorithm reads
S.j=max0,S 1) +5.S,j-1+S S-1,j-1+S@&. b))}, (5)

wheres(aj, bj) denotes the score for a pairing af andbj. The tdal maximum score
for a given pair of sequences is then sim@@yax = max j S j. The lowe cutoff score 0
is essential for local alignment and is absent from the corresponding algorithm for global
alignment.

A probabilistic alignment takes into accoudigament paths of arbitrary score. Each
pathA is associated with a weight factor ¢80A)/z] given in terms of its score and the
additional parameter > 0. That is, the maximungj is replaced by the sum

Zij= ) exgSA)/r] 6)

Ali,j

overall alignment paths ending at the poiint j). The exponential weighting of different
paths is motivated by the additivity of the alignment score: when the alignmentis composed
of two pieces, the sum of the corresponding scores is just the score of the whole alignment.
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A similar dynamic programming (see, e.§schischo and Lassig (2000yu and Hwa
(2001) is available for probabilistic alignment. The recursion relation reads

Zij =14v[Zi_1j + Zij-1]l + v(@i, b)) Zi_1,j-1, (7)
where
v(a, b) = exgs(a, b)/t], v =exp(sy/7) (8)

are the weights of pairings drgaps, repectively. The+1 term corresponds to the lower
cutoff score 0 in %) and isonly present in the case of local alignment.

Apart from the scoring matrix?), probabilistic alignments have three parameters. The
avelmge gap frequency and length of the paths are controlled Bypd o, resgectively,
while  governs the relative weight of paths with different scores. Note,Zhatdenotes
a weight and not a probability. This important difference from the forward algorithm of
hidden Markov models will be used later.

Probabilistic alignments are related to standard Smith—Waterman alignments in a simple
way. From 6), we obtain

Sj= lim F.j, 9)
—0

whereF j = tInZ; j. Therdore, the tdal maximumFmnax = max,j F j is the finite-
temperature counterpart of the score maxim8muy. Indeed,Yu and Hwa (2001 have
shown thatFnax 0beys Gumbel statistics for independent random sequences.

In analogy with statistical physics, the parameters called thetempeature the
quantities Zjj are the locapartition function Thetotal partition functiorZ is the sum over
paths analogous t&)f without constrained end point. It can be compute[q Zij. The
quantities F j andF = tlogZ are called the local and tothke energle,srespacnvely
This connection has been useddiyang and Marr (1995Miyazawa (1996 andHwa and
Lassig (1998)

2.4. Normalization of pbabilistic alignments

We now tumn to specific probabilistic alignments given, for example, by a hidden
Markov model producingorrelatedsequence pairs with a joint probability distribution
Ql[a, b]. Inthiscase, the total partition functiafi[a, b] := Z for a given pair of sequences
has theimportant interpretation as the ratio of their probability in the Markov model and
their ‘null probability’ Qo[a, b] without evolutionary correlations,

Qla b]
Z[a,b] = , 10
[a, b] Qola bl (10)
seeKschischo and Lassig (200@ndYu et al. (2002)HereQo[a, b] is given by
bl =] p@ ][] p®). (12)
aca beb

The free energy is the appropriate generaiaracf the log odds score to gapped alignment.
The alignment weights8] are then deermined by the mutation and insertion/deletion
probabilities of he underlying Markov model for geence evolution. We do not need
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the details of this mapping he It is important to note that the Markov model imposes
a nomdlization conditiorf on the weights §). Then, the parametessa, b) andsg are

no longer independent. lin¢ parametrizationl, we can express in terms of he other
scoring paameters. For the scoring systef), (we write

o =o1(y, 7). (12)

As can be inferretifrom Yu et al. (2002) even underposition-specifiscoring tinctions
this family of alignments hast = 1. In Section 4.2we show hat there exists a second
family of ‘solvable’ alignments which hast = 2. This family is given by another
normalization condition, which reads for the scoring syst&m (

o =02(y, 7). (13)

The functionss1 2(y, t) are roots of a quadratic and a quartic equation, respectively; see
Section 4.2

2.5. The phase diagram of local alignment

For local alignments, there are two different regimes,|toal and theglobal regimes.
In the following, we discuss the statistics of alignments over an ensemble of random
sequences without mutual correlations, which is the ‘null model’ for significance estimates
used in Eqg. 10). Averages over this null ensemble are denoted-by)o. Of paticular
importance for understanding the local and global regimes are the average free energy

(F)o=Y_ Qola blrInZ[a, b] (14)
ab

and its local counterpartd j)o. The propaties of these quantities are determined by
which paths contribute most to the local partition sufyg for typical sequence pairs. The
contribution of a given path having lengthis determined by the score gain per aligned
elementr, leading to a score termL ; see Eq.4). Consequently, long paths dominate for
sufficiently larges but are strongly suppressed for small

For seuence pairs of long sequences ard j — oo the asymptotic beavior of the
ensemble-averaged local free enefBy;j )o is given by*

(Fi.jlo~[o —oc(y,D]-( +]) foro > oc

(Fi.j)o = Fo(y,0,7) foro < oc (15)

with a parameter-dependent threshold valbe’, ) < 0 (Kschischo and Lassig, 20D0
Both regimescan be characterized by the average lenigth= 9(F)o/d0 of a local
alignment (compare Eqs4)and @)). In the global &gnment regimgo > o¢(y, 1)), the
entire sequences are aligned, iles 2N. Inthe lccal alignmentregimé& < o¢(y, 7)), L

2 For hidden Markov models this condition corresporidshe conservation of transition probabilities.

31n yu et al. (2002) the substitution scores are rescaled to keep= 1, and the result. = 1 in this
normalization. Here we allow for a general temperatur@ithout rescaling the substitution scores. It is easy
to see the result then reails = 1 regardéss of the value of.

4\We use~ to indicate asymptotic equality and for asymptotic proportionality. The symbet indicates
approximate equality of two numerical values.
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Fig. 2. Phase diagram of probabilistic sequence alignmen fer 5.5. The critical lineoc(y, ) separtes the
local (o6 < o¢) and the globalo > o¢) alignment regimes. The dots show numerical simulations which compare
favoraby with the curve obtained fronB(Q) in Section 3.2 The cuveso(y, t) andoa(y, t) correspond to the
two families of solvable cases; s8ection 4.2for detils.

reaches a finite limit.o(y, o, 7) = 9Fo(y, 0, t)/do. The two regmes are separated by
aphase transition. In the zero-temperature limit, this is the well known transifloratia
and Waterman, 1994f maximumscore alignmentsmith and Waterman, 1981This
transition persists for probabilistic alignments, but the transition pgit, t) changes
with temperaturerig. 2shows the temgrature dependence&f(y, t) for a given value of
y. The numerical data are in good agreement Withtransition curve which we compute in
Section 3.Delow; see Eqs3(l) and B2). The tvolineso1(y, ) ando2(y, ) of ‘solvable’
alignments are also shown kig. 2

3. Approximating the Gumbel parameter A

The cooling map allows for a rapid and acderavaluation of the Gumbel parameter
A for local maximum score alignments witlaps. In this section we collect the two
main results underlying the cooling map and detail our practical implementation for the
calculation ofx.

The two basic results are:

(1) The parameter dependence of thentel parameter has the functional form
AMy,o,1) =b(y, 1)P(0c —0¢, ¥). (16)
The function® contains the universal singularity
¢ = |o — ooy, DI, (17)

as the phase transition is approached from the local regime. The expotieig 1
independent of the parameter values. The explicit temperature dependehds of
deternmined by the prefactob(y, t). This nonuniversal amplitude is directly related
to the amplitude ofFy (seeFig. 5 and Eg. 86)). It is seen to be approximately
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independent of temperature in the range<Ot < 0.5 and increases strongly for
7 > 1 as more and more paths contribute to the partition function.
(2) There are functions,(y, t) andoz(y, 7) with

o=o01(y, 1)< it =1 fort >0 (18)
and

o =02y, 1)< it =2 forr>0. (29)

In the following discussion we keep the gap parametet a fixed value as was done
in the phasaliagram inFig. 2 In Section 4.1lwe derive Eqs.X6) and (L7) from scaling
theory. The second result determiriee Gumbel parameter along the lines= o1(y, )
ando = o2(y, 7) in the phase diagram. Analytical results for both functions can be found
in Section 4.2

3.1. The cooling map

Eq. (16) dlows us to relate the. valuesat two different points(c @, ©) and
(c@D, ¢ D) in the local alignment regimof thephase diagram. We find
My, 0@, 79 by, 1) ¢0@ —oc(y. 1?). )

- . 20
Ay, oD, t@D) by, t®) ¢(c® —oc(y, TD), y) (20)

In the special case, when the two points have equal distgaé®s— o¢(y, @) =
lo® — oc(y, TD)| from the citical line oc, only the ratiob(y, @) /b(y, @) of the
prefactors is important. To fix this ratio, we use the solvable cas®safd (L9). Placing
the twopointse P = o1(y, t™) ande © = o>(y, 7?) on the solvable lines and adjusting
the temperature value$? andr® according to the condition

lo1(y, T — oc(y, TV)| = lo2(y, T @) — oe(y, T, (21)
we find with (L8) and (L9)

b(y, -,;(1)) O

b(y, t©@) T 27D

The mapr® = R(z©) under the conditionZ1) isillustrated graphically ifFig. 3. Since
R(7) is always smaller tham we refer to the map as thmoling mapWe define it here
more formally as

(22)

|Gl(y! R(T)) - GC(V! R(T))I = |02(ys T) - GC(V? 7:)Iv (23)
and rewrite Eq.22) as
bly.R(r)) 7 (24)

b(y.t)  2R(1)’
3.2. A for maximum sare alignment

We now urn to the calculation of in the limit 7 — 0. Consider two pointés, t) and
(o + p, R(r)) not necessarily on the solvable lines. If both points have equal distances
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Fig. 3. lllustration of the cooling map. The initial temperatur® is mapped tor® = Rz ©@). The map
preserves the distance from the phase transitiorolind@he mapcan be iterated to lower and lower temperatures
(dots).

from the phase transition lin€|o + o — oc(y, R(t))| = |o — ac(y, 7)|), then
p = oc(y, R(®)) —oc(y, T) = 01(y, R(x)) — 02(y, 1), (25)
see Eqg. 23). The relation between the Gunilparameters at both points is

My.o+p.R(1)) = %(T)A(y, 0. 7). (26)

By iterating the cooling map (se€ig. 3) from the initial point t© = ¢, we obtain
n=12..)

Ay, o +p™, 1™y = BMi(y, 0, 1) (27)
with
(M — R(t(n_l))

n
p™ = (o1(y. 7®) — oa(y. T V)

k=1 (28)
n k-1
BW =T 1.
I!:[l 27 ®
These sequences are rdpidonverging. Their limit
Ay, o+ p ™y, 1),0) =By, DMy, 0, 7) (29)

is practically reached after only a few iterations. With an initial point on the solvable line
o = o1(y, 1), weobtain

Ay, o1y, ) + 0 (y, 1), 0 = B (y, 1)/1, (30)

a paametric representation of thevalues fa& maximumscore alignment.
The computed values agree very well with those from numerical simulations, as shown
in Fig. 4 The famula @0) also illustrates why the so-called Viterbi algorithm is often
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Fig. 4. (a) The Gumbel parametefor maximum-score alignment as a functioncofor y = 5.5. Dots represent
numerical results from pairs of indendent random sequences of lenbjth= 1500. The curve is obtained from
(30). (b) The same values afas a function of the distance from the phase transition geirt oc(y, T = 0)| in

a log—log plot. The asymptotic singularity is given yr).

inaccurate. This is a zero-temperaturggainent derived from a maximum-likelihood
point; its parameters are/, o1(y, t), 0). However,its properties are not simply related
to those at the maximum-likelihood poitt, o1(y, ), 7) since he correction termg (>
andB(® are neglected.

Since he functiono1(t) converges rapidly to.(t) for large values ot, we can also
compute the zero-temperature phase transition point from the same cooling map,

oc(y.0) = lim [o1(y.7) + p (. D)]. (31)
Using the fact thak(y, oc(y, t), ) = 0 and canparirg with (29), we have

My, oc(y, ) + Oy, 1),0) = 0= Ay, oc(y, 0), 0).
The entire phase transition curwg(y, 7) is then accurately expressed as

oc(y, T) = ac(y, 0) — p ™ (v, 1), (32)
seeFig. 2
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3.3. Practical implementation

A practical implementation requires knowledge of the cooling n8).(It is important
to have an accurate low-temperature limit. With the scale of the temperature explicitly
included, we find that the following low-temperature approximation works very well:

R -
(f) = é + exp(—clE + 02> (33)
T 27 T
with
t(y) = argmaxoi(y, r) (34)

chosen as our scale for temperature. The two constants 3.4 andc, = 1.1 were
obtained from a fit to the daté heuridic derivation of 83) will be given inAppendix C
Alternatively, the cooling map could bebtained from an iteration according to the
definition (23). This requires the knowledge ef(y, ), which can be rapidly computed
(Kschischo and Lassig, 20DQAnalytical expressions far1(y, t) andoz(y, T) are given

in Egs. @9) and @3). In Algorithm 1these calculations are used as subroutines.

Require: y, 10

T <10

o <« o1(y, ) {From Eq (39)}

{Cormputation of Eq(28)}

repeat
7’ < R(7) {see text forR
p < p+o1(t") — o2(7) {From Eq (43)}
B« Bx1t/(21)

until convergence is reached

Mo 4+ p,0) < B/t

Algorithm 1. Peudocode for the computation bffor Smith—Waterma alignment. The
algorithm requires the starting valug and the gap parameter as input. The arrows
indicate the directions of assignments arddenotes multiplication. Comments are
enclosed by curly brackets.

4. Background on theresults

In this section we provide some background on the main results usgekciion 3for
the gproximation of the Gumbel parameter

4.1. Scaling of local alignments

The first result ({6), (17)) is derived from the scaling theory of alignmeBtéasdo et al.,
1998 Hwa and Lé&ssig, 19980Isen ¢ a., 1999 Drasdo et al., 2000The score fluctuations
of global alignment belong to the university class of directed polymers in a random
medium; seeHalpin-Healy and Zhang (1995pr a review. For probabilistic alignment,
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10.0 — -

0.1 ‘
0.01 0.10 1.00

jo—0.(10)

Fig. 5. The universal scaling of local alignmentsheTensemble-averaged free energy obeys a power law
Fo ~ lo — oc(y, )|~ Y2 with a universal (parameter-independent) exponent/@f The prefactor, however,
is not universal and changes strongly witndy (herey = 1.7).

the fluctuation of the free enerdgn theglobal alignment regimér > o¢) is given by
(FZ0 = (Fij)§g~ G+ D> (35)

This scaling is interesting even for local alignment. For a pair of random sequences, there
are often high scoring islands. Within these islands, the alignment behaves as a global
alignment and the free energy grows linealy ~ |0 — o¢|Lg) with the lengthL of the

island (compare with Eql6)). Note that these islands occurred through the upward fluc-
tuations of the free energy. Therefore, the amplitude of the fluctuations also sets the bound
for the length and the free energy of typical islands. Comparing the fluctuag8énhwith

the linear growth of the free energy withéntypical island, one obtains the typical length

of the islandLg ~ |0 — o¢|~%/2. From thisone deduces

Fo ~ |o — oc(y, )| 72 (36)

asoc(y, 1) is approached from below. The charaigtc power law marfests the continu-
ous phase transition between the local alutbgl alignment regimes. The exponeriRls
auniversal property of sequence alignments independent of alignment pararbDessico
et al., 1998 and in particular of the temperaturé&échischo and Lassig, 20D0Fig. 5
shows the singular behavior3g) for different values of the temperature. The exponent is
seen to be temgrature independent, while the prefactor varies wifhs does thetransition
pointog).

The quantityr Fg is dimensionless, thus Eq36) suggests scalingl@) and (L7) for the
Gumbel parametex.

4.2. Solvable probabilistic alignments

In this section, wediscuss two cases in which the values can be obtained
analytically. As described ifvu and Hwa (2001)the key to understanding the tail of
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the score distribution is iglobal alignment sincethe valie of A is determined by the
equation
Jim ¢ (&N o = lim (WT)o = 1, (37)

where the quantltw, defined ly Eq. (A.3), depends only on global alignment weights
Eq. (A.2). Detadls are described idppendix A

This normalization condition can be solved explicitly in the two cases= 1 and
At = 2. The solution to each of the two cases imposes a different relationship among the
alignment parameters. For our simple scoring system, they are thel2jjan( (L3).

The first casQWt)o =1 has een elaborated byu et al. (2002)Here we wok out the
second case |I%w(w Yo = 1. We use the(weak) additional assumption that substitution
scores at different lattice points can be treated as independent. In fact, it has been shown
numerically QOlsen & al., 1999 Bundschuh, 2002that he effect of such an assumption
is generally negligible. The calculation otir second case is much more difficult since
the relevant partition function is that of an interacting system. Quite remarkably, the result
can still be expressed as a simple relation between the alignment parameters. The relevant
definitions and results are given below; some details of the derivations can be found in
Appendices AandB.

4.2.1. First condtion ~
As will be shown inAppendix A to achieve{W; )o = 1, we only need to satisfy

2v4+v=1, (38)

wherev = (v(a, b))o = yfs(r) is the average substitution weiglyt,= exp(20/7), and
fs(t) = Za,bexq(s(a, b))/t]1p(a) p(b) with p(a) being the background frequency of
characten. Similarly, we may also write the linear gap weighasy = y/?exp(—y /1) =
yY/2£, (). Thecondition @8) is therdore a quadratic equation '/2 and can be readily
solved to yieldo1(y, 7) as

3 f, (1) f,(m\? 1
. ”‘”Og(fs(r) +\/< fs(r)> " fs(r))' (39)

Here, and in Eq.43), we suppress thg dependence. Note that along the phase trajectory
o1(y, 1), thea value is mply 1/7.

Although the condition38) waspointed out inYu and Hwa (2001andYu et al. (2002)
a formd mathematical derivation was omitted. Appendix A a formal derivdion for the
condition @8) is given. Thebasic mathematical structure used to obtain this result involves
discrete Laplace transform and Fourierrtsform. After those are done, the quantity )o
can be expressed as a contour integral (arising from the inverse Laplace transform) which
gives us the value 1 for al> 1 if and only if thecondition 38) holds.

4.2.2. Second condition ~
To explain the condition for(V\/tz)O = 1, we define the varianca of the substitution
weight,

= (v%(a, b))o — v°. (40)
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Fig. 6. The histogram and the Gumbel fit using the second conditior=at. The circles represent the alignment
soore histogram of 500,000 random sequence pairgusaPAM120 scoring matrix and linear gap cest 4.5.
Each random sequence generated has leNgth 600. The solid line corresponds to a Gumbel fit witk= 2.0

as expected, together with the other fitted parametersnin(K N2) = 12.4.

Using the same notation as before, we can whitas
A = Y[ fs(t/2) - fE(D)]. (41)
The end result of this calculation is the following condition:
A+v)vA—-v)2—-4h2=A, (42)

upon the satisfaction of which we can havetllmo(VN\J/tz)o = 1 and onsequently. = 2/z.
Note that here we also need to havev < 1, thatis to say(W; )o decays exponentially
with t. Eq. @2) can be recast in terms of, fs(r), f, (r) and we then have a quartic
equation iny. Among the four roots of/, we pick thereal rootr with range O< r < 1.
We can then call

o2y, 1) = % log(r). (43)

The derivation is very similar to, but more involved than, thatFoiedberg and Yu
(1994)andYu (1999)for a related problem. As in the first case, it involves again Fourier
and Laplace transformations; sag@pendix Bfor the sketch of the process. A complete
derivation that also includes the affine gap functions will be provided in a separate
publicéion (Yu, 2004).

Our prediction is tested by an extensive numerical simulation at 1 using the
PAM120 scoring matrix and a linear gap cost= 4.5. Fig. 6 shows the scer hisogram
obtained from aligning half a million grs of random sequences of lendgth = 600
together with a Gumbel fit. The tail is given by the paraméter 2.0 4+ 0.02 as expected.
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5. Discussion

We have discussed here a unified statistical analysis of probabilistic and maximum-
score alignments witlyaps. In particular, we have shown how exact results on particular
alignment families and scaling can be combined to infer the Gumbel parameter
accurately.

To conpute p-values, the second Gumbel paramatdras to be determined as well.
While this was not the primary focus of our study, we are currently working in this
direction. However, a precise value can facilitate a rapid estimate ofeither from a
single but large-size pairwise alignment using the island metiisief e al., 1999 or
from the average score of aligning a few random sequence pairs as descrifiedtial.
(2002)

We would like to emphasize that our method should be readily applicable to position in-
dependent scoring functions, since only the score averagj@gandom pairings enters the
theory. Suitable modifications analogous to thos&uret al. (2002) could possibly ren-
der our method applicable to position specific scoring functions. This will be of particular
importance for profile searches (see ekfddy (1998).

The implications of our work are two-fold. Conceptually, probabilistic and maximum-
score alignments have long been regarded as rather different statistical entities, linked only
by ad hoc procedures like the Viterbi algorithm. Regarding maximum-score alignments as
the zero-temperature limdf probabilistic alignments opens a new avenue to understand
the mathematics of the former. The statistics of Smith—Waterman alignments may be better
understood beyond the heuristic level.

From a practicapoint of view, maximum-score alignments retain their importance
since they are easier to interpret than thaiohabilistic counterparts, and their fidelity
(i.e., the fration of correctly aligned elment pairs) tends to be highafgchischo and
Lassig, 200D On the other hand, a recent worku(et al., 2002 indicates comparable
performance between maximum-score alignment and probabilistic alignment when tested
on a real biological database. Thus we expect the alignment tools of the future will be a
judicious combination of probabilistic and maximum-score parts.

Appendix A

In this appendix, we demonstrate that conditiB8)(is indeed all we need for the first
case. Recall that the quantiB j, which consists of weights of all paths terminating at
point(i, j) regardless of thetarting points, satisfies the recursion relati@h (n a simpler
context, we may consider the quantity j that sums the weights of all paths starting at
the origin and terminating at poirit, j). The quentity wj j is also the global alignment
weight between subsequendes, ap, . .., &} and{by, by, ..., bj}. The recursion relation
for wj j is simply

wij = v[wi—1,j + wi j—1] + v(@, bj)wi—1,j-1. (A1)

To reveal the mathematical structure involved, it is convenient to introduce a new set
of coordinategx = i — j,t = i + j) onthe alignment lattice as shown kig. 7. The
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] t =i+

(x=—1,t=1)

(x=2,1=2) i

Fig. 7. The alignment lattice.

recursion A.1) now reads
wX, t+1) = vwX+ 1L t) + wx — 1, )] + v(X, Hw(x, t — 1) (A.2)

wherev(x,t — 1) = v(a;, bj) is introduced to reflect that the pairing , bj) is located at
(X, t — 1). The initial conditions for A.2) arew(x,t = 0) = §x 0 andw(X,t < 0) = 0.
From this point on, the procedure to solve this problem is very similar to that of
Friedberg and Yu (1994andYu (1999) Note hat & a fixed Iacation(i, j) the substitution
weightv(a;, bj), and onsequently(x, t — 1), changes when a new pair of sequences is
considered.

We are now ready to write down the precise definitiongt

We= ) wix, ) + Y o, hwx', t —1). (A.3)

Note that in A.3), if x is sunmed over een integrs, thenx’ will be summe ove odd
integers, and vice versa. An explicit example is giverFig. 7, where theopen circles
indicate the vertices whose weights are summed over at timé. And the double slash on

the bonds indicate that no weight flow through those bonds should be included. Basically,
the quantityWwy sums all theglobal alignment weights arriving at the time slicén the
alignment lattice.

Let us first emphasize that(x, t)w(x, t —1))o = (v(X, t))o{w(X, t—1))o. Thisis exact
becauser(x,t) = v(at+14x)/2, bt+1-x),2) While the alignment weight ab(x,t — 1)
depends only on subsequendes, ..., at—14x)/2} and{by, ..., bt_1-x),2}. Dending
(w(x, t))o by ¢ (X, t), we may then write down easily the corresponding iterative equation

dXt+ D =vopX, t =D +v[pX+1t)+d(X—11)] (A.4)
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whereas the quantitQWt)o is obtained by

(Wh)o =Y ¢, 1) +v )y ¢, t—1). (A.5)
X X/

Eq. (A.4) can be easily solved by going through a discrete Laplace transform and a discrete
Fourier transform. Defining

$200 =) Z'p(x, 1) (A.6)
t=0
¢5 = e %(x) (A7)
X
we obtain

$2(X) — 8x.0 = Z2vh2(X) 4+ Zv[2(X + 1) + (X — 1)]
¢X — 1 = [Z%v + 2zv cogk)]pX.

Apparently, the quantity of interegi\t )o in (A.5) consists of only the zero-momentum
mode. To be explit, we may write

(Wh)o = ¢*=0(t) + vp*=0(t — 1),
and consequently
k=0 k=0
(Wh)o = yg gz [ z +vz—} dz 1 1tvz (A.8)

2xi | zZt+1 2| ) 2riAtl 1 — 22y — 2v7°

Whenv = (1—v)/2, we may ewrite vz2+2vz— 1 asvz?2+z—vz—1 = (vz+1)(z— 1).
And therefore the coour integral becomes

(W) _%’ dz 1 1 .
VO= P oriAi1—z

Appendix B
We now sketch the derivation of conditior@). Recall that the quantity is defined as
(WX, DU, )0 — V¥ = Ady xdr v, (B.1)
Before conputing V’Y/tz, let us first define the following quantities:
¢ (X1, X2, 1) = (w(x1, Hw(Xz, D))o, (B.2)
¢ (X1, X2, ) = (w(x1 + 1, t + Dw(xz, ))o, (B.3)
¢~ (X1, X2, ) = (w(xg, Hw(xz + 1, t + D))o. (B.4)

It has not escaped our attention tat(xa, X2, t) = ¢~ (X2, X1, t), but we fird it more
convenientto have bothr and¢ < introduced. After some calculation, we can WI(W[Z)O
as

(W= p(x1, %2, 1)

X1,X2
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+ ) [Adxyx, + v71p(xa, X2, t — 1)

X1,X2

+v ) (67 (X1 Xa. t = 1) + ¢~ (X1, X2, t — D).

X1,X2

Following the same route as friedberg and Yu (1994)u (1999)and similar to what
we did for the first condition, we perform a discrete Laplace transform as well as Fourier
transforms similar to EqsA(6) and A.7)

$2(x1.X2) = ) Z'p(x1. X2, 1) (B.5)
t=0
px(y) = Y e KoabRls, 2 ¢a(X1. X2) (B.6)
X1,X2
K=" e 2Wgk(y). (B.7)
y

The quantity of interest(,VN\J/tz)o, is now rewritten as follows:

~ dz (14202 o k=0(y = 0)
2\ k=0,1=0 z
W >o—7§—2m{ 2 00y 70 =0

=0,l= k=0,1=0
. ¢>k 0.l O+¢Z< > }

n (B.8)

Zt

Where¢‘z<(y = 0) is nothing but taking valug = 0 in Eq. B.6).
The evolution equations, similar to E¢A.@), of ¢, ¢~ and¢ = can be derived using the
fundamental relation EqA(2). After some tedious calculations, one arrives at

K= 14 2A¢K(y = 0) + [220? + 220%(cos X + cos 2) X!

+ szv(efzikJrZil + 1)¢Z<k,l + ZZUU(efZikuiI + 1)¢Z>k,l (B.9)
Z>k,| — 7pell Z<k,| + v(eZik+2" + 1)¢IZ<,I (B.10)
7 = zve g Lo (@ 4 gl (B.11)

From Eq. B.8), we see that the calculation can be simplified by setting O first. To
lighten thenotation, we only retain the variaijeThus,<1>lz<:0’I becomeg' and¢‘z‘(y =0
become® (y = 0). After somealgebra and calculus, we obtain

1
=0) = . B.12
=0 A+ zv)v/ (1 — zv)2 — 4zv2 — AZ2 ( )

Eq. B.12) can then be substituted into Ed.9) to obtain a complete expression for
k=0l

¢z

In order to ensure Ii%w<ﬂ2)o = constant, we analyze the pole locationsBng) and
obtain the following conditions: (1¢(y = 0) must not have any pole such thalz| < 1;
(2) ¢(y = 0) must have a pole & = 1 under the fact thati2+ v < 1. Therefore, for a
given A, we reed to make sure that poles wjih < 1 do not occur. To accomplish this, let
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us first observe that € — 0, thenthe denominator ig (y = 0) becomes %+ 0. Therefore,
what we want is thatl + zv)y/(1 — zv)2 — 4zv2 > AZ? over the ange O< z < 1 and
with equality holds az = 1. Careful analysis then yields the conditiat?].

Appendix C

In this appendix, we will provide the heuristic derivation of the asymptotic beha®@pr (
of the cooling map. To achieve this goal, we need to analyze our conditions for solvability
in more detail. To demonstmthis procdure, let us focus on our simple match—mismatch
scoring sheme.

Under our simple scoring scheme, we have

fs(t) = Z exfs(a, b)/t] = % exp+/c — 1/7]
a,b

-1
+ CT exg—1/(zvc—1)]. (C.1)

Ast — 0, fs(7) diverges a% exg+/c — 1/7], and the quantity exp-y /] becomes
vanishingly small. Under the first solvability conditiorBg), we consi@ér the low-
temperature limit. Recall that both = exgd—(y + o)/t] andv = exg20/7]fs(r) are
positive. Ast — 0, we must have — 1 snce otherwise the conditior38) breaks down.
This then implies, as — 0,

1 _ Jec—1
fs(f)} -2

That is, it is very close to a straight line with slop&dyy2 and with a correction term
proportional to exp—consyt], which vanishes exponentially fast when- 0.

In a similar fashion, we analyze the case $o(y, 7). Undea the condition 42) and
remembering thati2+ v < 1 for the seond solvable class, we conclude< 1 and
consequently efRo2(y, t)/t]fs(r) < 1. If for T — 0, exg2o2(y, t)/1] fs(r) becomes
zero, the left hand side ofip) approaches 1 while the right hand side dP) reaches 0.
Therefore, ag — 0, exg202(y, 7)/1] fs(r) must approach a finite constant smaller than
onebut larger than zero. Let us call this limiting numherLet uscalculate the leading
term of fs(r/2) — f2(r) ast — 0,

o1y, 1) &~ % In [ + % In(c) + O(e~%®ns¥Ty, (C.2)

2
expwcc— 1/1]} 11 OE—onsity),

fs(z/2) — f&() = € - 1) [
When thezero-temperature limit of exRo2(y, 7)/7]fs(r) approaches a finite positive
constant smaller than onemust approach zero, and we have fratg)(
1-a?= (c— 1)a2.
We theefore havex = /1/c. Consequently, we have, as— 0,

1/Jc]  Jc-1
fs(t)j|__ 2

o2y, 1) & % In [ + 2 In(c) + O (e~ "), (C.3)
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Now let us make the plausible assumption that the phase transition linEigse2 stays
horizontal over a certain range of low temperature. Then it is easy to see havi(#1g
emerges in the cooling map. Our definition of the cooling map requires

- i;1+5ghm@+ow*mwﬂ+wd%RﬁD—Gﬂ%R“m
Jc—1
= =324 2In(©) + 0@ ™) + [o0(y, 7) — 020y, )] (©4)

Because our map moves witbc(y, R(1)) — o1(y, R(z))] = [oc(y, T) — 02(y, T)], we
obtain that

mn:%+mmmmmé (C.5)

Let us further argue that the deviation of the phase transition line from a horizontal line
is of order expp—consft] at low temperature. This is simply because at zero temperature,
the partition function has contributions only from lowest energy paths, while at low but
finite temperatures, suboptimal paths contribute as well. When one sums the Boltzmann
weights from the lowest energy path and from the leading suboptimal paths, we have
a free energy expression given by the lowest energy plus a correction term of order
O(exd—consft]). This increase in the average free energy indicates that one only needs
to lower the average score gain per unitlength by about the same amount to keep the system
in the logphase. That is to say, as— 0, we have

GC(V: T) ~ Uc(y, T = O) — Cle_CZ/T‘

With this extra correction considered, it will add an exponential correction term to the
right hand side of €.4). However, it will still lead to the same fornC(5) for the low-
temperature part. This conaes our heuristic derivation 038).

List of symbols

Symbol Description Section
A K Gumbel parameters 1

c Number of letters in the sequences (e.g., 2.1

¢ = 4 for nucledides)

X Sequence alphabet afletters 2.1
ab Sejuences of nucleotides or amino acids 2.1
A Alignment (path) 2.1
L Length of an alignment 2.1
s(a, b) Score of pairing two lettera, b € x 2.2
Sy, S, Sy Match, mismatch and gap score 2.2
o Average score per paired element 2.2
y Gap parametef; =Sy — o 2.2

T Tempeature 2.2
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Symbol Description Section

S Alignment score fo subsequences up to 2.3
postioni, j

Zij Patition function for subsequences up to 2.3
postioni, j

Fi.j Free energyfi j = tInZ; 2.3

Shax Maximum scoreSmax = max,j S j 2.3

Fmax Maximum scorefFmax = max j Fi j 2.3

z Total partition functionZ = 3 ; Zi | 2.3

v(a,b),v Weight for pairing lettersa,b and gap 2.3
weight

Qola, b] Jaint probability ofrandom sequencesb 2.4

Q[a, b] Joint probability of the sequence pairb 2.4

o1(y, 1), 02(y, T) The two solvable cases 2.4,3,4.2

(Yo Average with respect tQo[a, b] 2.5

Fo Characteristic limit of free energy (local 2.5
regime)

b(y,t)®(c —oc, ¥) Functional form ofa 3,4.1

R Cooling map 3.1
Shiftino 3.2

o™ Iteration of p under the cooling map 3.2

(™ Iteration ofr under the cooling maR 3.2

B B() Iteration of the prefactdn underR 3.2

T(y) Chamcteristic scale, maximum of, (y, 1) 3.3
w.rtr

W Total dobal alignment weight arriving at Appendix A
the gridborder 4.2

y y = exp20/t) 4.2

fs(1) fs(r) = X apeXp(s(@, b)/7) 4.2

f, () f,(r) =exp(—y/1) 4.2

A Variance of substitution weight 4.2

X, t Rotated coatinates in the alignment grid, Appendix A
X=i—j,t=i+]

w(X, t) Global alignment weight Appendix A

d(x, 1) d(X, 1) = (w(x,))o Appendix A

b2(X), X Laplace and Laplace—Fourier transform of Appendix A
o (X, 1)
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