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Abstract

This is an introductory review on how genes interact to produce biological functions.
Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific binding
sites can be identified by genomic analysis, and these undergo a stochastic evolution process
governed by selection, mutations, and genetic drift. We focus on the links between the biophysical
function and the evolution of regulatory elements. In particular, we infer fitness landscapes of
binding sites from genomic data, leading to a quantitative evolutionary picture of regulation.

Introduction

Genomic functions often cannot be understood at the
level of single genes but require the study of gene net-
works. This systems biology credo is nearly commonplace
by now. Evidence comes from the comparative analysis of
entire genomes: Current estimates put, for example, the
number of human genes at around 22000, hardly more
than the 14000 of the fruit fly, and not even an order of
magnitude higher than the 6000 of baker's yeast. The
complexity and diversity of higher animals therefore can-
not be explained in terms of their gene numbers. If, how-
ever, a biological function requires the concerted action of
several genes, and conversely, a gene takes part in several
functional contexts, an organism may be defined less by
its individual genes but by their interactions. The emerg-
ing picture of the genome as a strongly interacting system
with many degrees of freedom brings new challenges for
experiment and theory, many of which are of a statistical
nature. And indeed, this picture continues to make the
subject attractive to a growing number of statistical physi-
cists.

Genes encode proteins, and proteins perform functions in
the cell. Hence, a gene takes part in a biological function
only if it is expressed, i.e., if the protein produced from it is
present in the cell. Genes interact by regulation: the protein
of one gene can influence the production of protein from
another gene. Gene regulation can take place during tran-
scription, the process by which the cell reads the informa-
tion contained in a gene and copies it to messenger RNA
(which is subsequently used to make a functional pro-
tein). This is the most fundamental level of interactions
between genes: the transcription of one gene may be
enhanced or reduced by the expression of other genes.
Transcriptional regulation is thus a good starting point for
theory. We should keep in mind, however, that it is not
the only mode of gene interactions. Especially in eukaryo-
tes, additional regulation mechanims involving histones,
chromatin, micro-RNAs etc. become relevant, which are
just entering the stage of model building. An excellent
introduction to the biology of regulation can be found in

[1].
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This article is a primer on theoretical aspects of gene inter-
actions, and we limit ourselves to transcriptional regula-
tion. Clearly, the subject has rather diverse aspects:

(1) Transcription is a biophysical process, which involves
the interaction of DNA and proteins. Its regulation takes
place through the binding of proteins to DNA at specific
loci in the vicinity of the gene to be regulated. Already at
this level, this process is rather complex and not yet fully
understood. What enables the protein to find one or a few
specific functional sites in a genome of up to billions of
base pairs, bind there with sufficient strength to influence
transcription, and leave again once its task is performed?

(2) Given that the protein can find its functional sites, can
we as well? If that is possible, we can predict the specific
gene interactions building regulatory networks from
sequence data. The analysis of regulatory DNA is a major
topic of research in bioinformatics, with the aim of identi-
fying statistical characteristics of functional loci and of
building search algorithms.

(3) Regulation is also becoming an important part of evo-
lutionary biology [2,3]. If regulatory networks are to explain
the differentiation of higher animals, there must be effi-
cient modes of evolution for the interactions between
genes. At the level of regulary DNA, these modes remain
largely to be explored. It is clear, however, that the under-
lying evolutionary dynamics is the basis of a quantitative
understanding of regulatory networks.

All three aspects of regulation contribute to a unified the-
oretical picture. Key concepts such as the biophysical
binding energy, the bioinformatic scoring function, and
the evolutionary fitness turn out to be rather deeply
related. We will focus on these crosslinks between differ-
ent fields, which are likely to become important for future
research. A challenge for an introductory presentation is
the diversity of relevant background material, only a
rather ecclectic account of which can be presented here.
Yet, I hope it transpires even from this short introduction
that present quantitative genomics is an area of science
shaped by a remarkable confluence of ideas from different
disciplines.

Biophysics of transcriptional regulation

The fundamental step in the regulatory interaction
between two genes is a binding process: the protein pro-
duced by the first gene acts as a transcription factor for the
second gene, i.e., it binds to a functional site on the DNA
close to the second gene and thereby enhances or sup-
presses its transcription. Binding sites are short, typically
segments of 10 to 15 base pairs in prokaryotes and even
shorter segments in eukaryotes. They are primarily located
in the cis-regulatory region of a gene, which lies just
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upstream of its protein-coding sequence and extends over
hundreds of base pairs in prokaryotes and over thousands
of base pairs in eukaryotes. The scenario of transcriptional
regulation is sketched in Fig. 1. A transcription factor
bound to a functional binding site regulates the down-
stream gene by recruiting or repelling RNA polymerase.
This protein-protein interaction catalyzes or suppresses
the process of transcription of the gene. All these binding
processes should not be understood as on or off; they hap-
pen with certain probabilities, which are determined by
the binding energies and the numbers of the molecules
involved.

Factor-DNA binding energies

The interaction of a transcription factor protein with DNA
is two-fold: There is a position-unspecific attraction with
energy E, and a specific interaction, whose energy
depends on the particular locus where the factor binds.
The unspecific part is the electrostatic interaction between
the positively charged protein and the negatively charged
DNA backbone, while the specific part involves hydrogen
bonds between the binding domain of the protein and the
nucleotides of the binding locus. A locus is specified by its
starting position r and its length € (with relevant values €
of order 10). The specific binding energy E(r) depends on
€ consecutive nucleotides a = (ay,..., al) counted down-
stream from the starting position, the sequence state or gen-
otype of that locus. Switching between unspecific and
specific binding takes place via a conformation change of
the factor protein. As a result of these interactions, the fac-
tor protein can be in three thermodynamic states as
shown in fig. 2: unbound (i.e., freely diffusing), unspecif-
ically bound (i.e., diffusing along the DNA backbone),
and specifically bound.

The biophysics of factor-DNA binding has been estab-
lished in a series of seminal papers [4-7]. More recently,
the characteristics of specific binding have been measured
for some bacterial transcription factors [8-12]. These can
be summarized as follows:

(a) The single nucleotides of a binding locus a = (a;, ..., a€)
give approximately independent contributions to the
binding energy,

’
E@) =Y &(a).
in1

(b) At each position i, there is typically one preferred
nucleotide a] with g(af) = min,g(a). Hence, there is a

unique "ground state" sequence a* = (dj ,... a; ) with min-
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Figure |

Transcriptional regulation. Transcription is the synthesis of messenger RNA (1) whose genetic code is a copy of the coding
DNA (2) of a gene, by means of RNA polymerase (3). A transcription factor (4) bound to a DNA target site interacts with
RNA polymerase molecules, (a) enhancing or (b) reducing the transcription rate of a nearby gene.
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Figure 2

Thermodynamic states of a transcription factor. (1) Unbound state, with three-dimensional diffusion. (2) Unspecific
bound state, with one-dimensional diffusion along the DNA backbone. (3) Specific bound state. The binding energy depends on
the genotype at the binding locus, which has length € and whose position is specified by the coordinate r.

imal binding energy E* = E(a*), i.e., with strongest bind-
ing.

(c) Mismatches with respect to the minimum-energy
sequence involve energy costs &(a) - &(a; ) = 1 - 3 k;T per

nucleotide.

(d) There is an energy difference E, - E* ~15 kT between
unspecific and strongest specific binding. Experimental
data for the binding energies ¢(a) are known only for a
few transcription factors.

Approximate values for these energies can also be inferred
from nucleotide frequencies in functional binding sites
[10]. A promising recent approach is to infer binding
energies from large-throughput expression data [13]. For
order-of-magnitude estimates, one often uses the so-
called two-state approximation [7], which is homogene-
ous in the nucleotide positions and distinguishes only
between match and mismatch:

e ifa; #af
(2)

gi(a)—¢&(ai)= _ .
0 ifg; =a

with £~ 2k;T . In this approximation, the binding energy
of a sequence a is simply related to the Hamming distance
d(a, a*), i.e., the number of nucleotide mismatches
between a and a*,

E(a) =E* + &-d(a, a*). (3)

Energy distribution in the genome

Fig. 3(a) shows the sequence of energy values E(r) found
in a segment of the E. coli genome for a specific transcrip-
tion factor, the cAMP response protein (CRP) This "energy
landscape" looks quite random, i.e., consecutive energy
values are approximately uncorrelated. The distribution
Wy (E) of energies over the entire noncoding part of the
E. coli genome is shown in fig. 3(b). We can compare this
with the distribution W{(E) obtained from a random
sequence with the same nucleotide frequencies (i.e., from
a scrambled genome). According to eq. (1), the binding
energy E is then a sum of independent random variables
&, and its distribution becomes approximately Gaussian
by the law of large numbers. Fig. 3(b) shows that the
actual distribution Wy, (E) is indeed of the same form as
W, (E) for most energies. However, a closer look at the
low-energy tail of the distribution shows that there are sig-
nificantly more strong binding sites than expected from a
random sequence [14-16]. So at least some of them are
there not by chance but for a reason.

Search kinetics

All three thermodynamic modes of a factor molecule —
free diffusion, unspecific binding, and specific binding -
are important for the search kinetics towards a functional
site [4-6]. The unspecific attraction causes the transcrip-
tion factor to be bound to DNA with a finite probability,
i.e., a given molecule spends about equal amounts of time
on and off the DNA backbone. Hence, the search process
is a mixture of effectively one-dimensional diffusion
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Transcription factor binding energies of the E. coli genome. (a) Energy "landscape” E(r) for specific binding of the CRP
factor at 200 consecutive positions r in an intergenic region, with a binding site at position 59. (b) Count histogram W, (E)
with energy bins of width 0.1 obtained from all intergenic regions, together with the distribution W(E) for a random sequence
(dashed line, shown with a 30 fold zoom into the region E < 14). From [16].

along the DNA backbone and three-dimensional diffu-
sion in the surrounding medium. This proves more effi-
cient than purely one- or three-dimensional diffusion. In
the 1D mode, the factor diffuses in a flat energy landscape
if it is in the conformation of unspecific binding, or in the
landscape E(r) if it is in the conformation of specific bind-
ing. In this way, it can sample the low-energy part of the
landscape E(r) while avoiding its barriers. The main obsta-
cles on its way to a functional site are spurious binding
sites, which have a low energy E(r) by chance and act as
traps. We lack a completely satisfactory picture of the
search kinetics, which is an area of current research
[14,17]. However, this process proves to be remarkably
fast. Typical search times are less than a minute, i.e., sub-
stantially shorter than typical functional intervals in a cell
cycle of at least minutes. Therefore, the regulatory effect of
a site is related to its probability of binding a factor mole-
cule at equilibrium, which can be evaluated by standard
thermodynamics.

Thermodynamics of factor binding

We start with the idealized but instructive problem of a
single factor protein interacting with a genome of length L
> 1, which contains a single functional site, while the rest
of the sequence is random. Since the protein is bound to
the DNA with a probability of about 1/2, we neglect the
unbound state for the subsequent probability estimates
and study only the bound protein, which is at equilibrium

between specific and unspecific binding. At each position
1, the likelihood of these two states is given by the Boltz-
mann factors exp [-E(r)/kgT] and exp [-E,/kgT], respec-
tively. Hence, the partition function for a single protein
has the form

7 = ie—E(T)/kBT + LE_E” /kBT. (4)
r=1
The functional site, which is assumed to be positioned at
r =15, must have a low specific binding energy E = E(r7). We
now single out this position and write

7 = o ElkT D o= E() kT o=Ey [ 15T

T#Tf (5)

e E/ksT Zy,

where Z, is the partition function of a completely random
sequence. The probability of the factor being bound spe-
cifically at the functional site is then

“E/kyT
e 1

= = 6
p(E) 7 1+e(E_FO)/kBT ! ( )

where F, = -k;T log Z, is the free energy for a random
genome. Thus, the binding probability depends on the
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binding energy in a sigmoid way, with a threshold energy
E = F,between strong and weak binding.

This strongly nonlinear dependence is known to physi-
cists as a Fermi function.

It is easy to generalize the thermodynamic formalism to
more than one factor molecule. Ignoring the overlap
between close sites, each position r can be empty or be
occupied either by an unspecifically or by a specifically
bound factor. Using a chemical potential o, the many-fac-
tor partition function can hence be written as

L
Z(o) =[] 2(o.7), (7)
r=1
where
Z(0,r) =1+ EO)/ kT g0=Eu [ksT (8)

is a sum over the three thermodynamic states at position
r: no factor bound, one factor bound specifically or unspe-
cifically. The chemical potential o is determined by the
number of factor molecules, 1, via the relation n = (d/do)
log Z( o). For actual transcription factor numbers, which
are of order 1 - 104, this relation is well approximated by
[14]

B
o =——+logn. 9
kT g )

The functional site is now occupied by a specifically
bound factor with probability

ecr—E/kBT 1

Z(o.17) 14 o) [egT-logn

p(E) = (10)
The binding probability — and hence the effects of the
functional site on the regulated gene - are thus deter-
mined by the binding energy, the number of factor mole-
cules, and on the genomic background (via the free energy
F,). The dependence p(E) is a Fermi function with thresh-
old energy E = F,, + k;T log n, which is shifted with respect
to the single-molecule case. Clearly, p is also a Fermi func-
tion of log n at fixed binding energy, with a threshold at
log n = (E - F,)/kgT . If there is more than one functional
site in the genome, the calculation remains unaffected as
long as their number is much smaller than n.

Sensitivity and genomic design of regulation

The regulatory machinery can be very efficient: in bacteria,
it has been shown that single factor molecules can have
regulatory effects. We can use eq. (6) to enquire how the
cell can reach this high level of sensitivity, following
mostly ref. [14]. We assume a minimal genome which has
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a single functional site of maximum binding strength E*
and is otherwise random. If a single factor molecule is to
affect regulation, its binding to the functional site must
not be overwhelmed by the remainder of the genome.
This leads to a criterion on the signal-to-noise ratio of reg-
ulatory interactions,

Fyz E*, (11)
which in turn imposes a number of constraints on the
design of regulatory DNA:

(a) In a random genome, there must be at most a number
of order one minimume-energy binding sites. Estimating
the probability to find such a site at a given position as (1/
4)¢, we obtain the condition

L(1/4)¢ =< 1. (12)
This gives a lower bound on the site length, € = log L/log
4. For a bacterial genome (L ~10°), we obtain € = 10,
which gives the right length of functional binding sites.
However, this bound is not fulfilled in eukaryotes.
Indeed, eukaryotic genomes use a different design with
groups of adjacent binding sites.

(b) For each minimum-energy site, there are € suboptimal
sites of Hamming distance 1 from the minimum-energy
sequence. These must not suppress the binding to the
minimume-energy site, i.e.,

exp(-E*/kgT) = € exp [-(E* + &)/kgT| (13)
in the two-state approximation. This gives a lower bound
on the binding energy per nucleotide, ¢/k;T =z log€ =2 - 3.

(c) Finally, the unspecific binding in the entire genome
must not suppress the specific binding to a minimum-
energy site, i.e.,

exp(-E*/kgT) = L exp(-E, /kgT). (14)
This produces a lower bound on the energy gap between
unspecific and optimal specific binding, (E, - E*)/kzT 2
log L = 15.

Quite remarkably, these bounds are fulfilled as approxi-
mate equalities in bacteria. Hence, the machinery of tran-
scriptional regulation operates just at the treshold of
single-molecule sensitivity, i.e, Fy~ E*.

Programmability and evolvability of regulatory networks

Of course, not every regulatory interaction is equally sen-
sitive. To switch genes on or off, the cell uses the depend-
encies of the binding probability both on factor numbers
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and on binding energies. During the cell cycle, the level of
n can vary over several orders of magnitude, say, between
a few and tens of thousands of molecules. At a given value
of n, the effects on the regulated genes differ since their
functional sites have different values of E. The binding
energies can change on evolutionary time scales by muta-
tions of the site sequence, which leads to regulatory differ-
ences between individuals and, ultimately, between
species. Both parameters are thus necessary to encode
pathways in regulatory networks. This is most flexible if
minimume-energy sites are indeed sensitive to a single fac-
tor molecule as discussed above. Differential programma-
bility as a network design principle [14] thus favors
complicated molecular structures with longer binding
sites and larger binding energies. However, this competes
with the evolvability of the system by a stochastic evolution
process [18]. We have seen that the single-molecule sensi-
tivity is just marginally reached in bacteria. This indicates
that the actual machinery may result from a compromise
between programmability and evolvability: binding sites
are just complicated enough to work. It also indicates that
genomic structures can only be understood from their
evolution. This aspect will be developed further below,
after we have introduced sequence analysis aspects in the
next section.

Bioinformatics of regulatory DNA

Predicting regulatory interactions between genes is clearly
a key problem in bioinformatics, which is as important as
the analysis of individual genes and proteins. It is not sur-
prising that this problem is very difficult since, as we have
discussed in the previous section, targeting regulatory
input in a large genome is a tremendous signal-to-noise
problem even for the cell itself. Its solution via the analy-
sis of regulatory DNA requires finding statistical criteria to
distinguish between functional binding sites and back-
ground sequence. A general introduction to the relevant
sequence statistics can be found in ref. [19].

Markov model for background sequence

We begin by specifying a stochastic model for the non-
functional segments of intergenic DNA. These are
assumed to be Markov sequences with uniform single-
nucleotide frequencies py(a) (a = A, C, G, T). Hence, the
probability of finding a given sequence has the factorized
form

k
Py(ay,.ax) = [T po(a:)- (15)

i=1
This assumption should not be taken too literally. The
term "nonfunctional" refers to binding of a particular
transcription factor. Intergenic DNA contains plenty of
non-random elements with other functions (e.g., binding
sites for other factors) or without known function (such as
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repeat elements). The salient point is, however, that most
of intergenic DNA is well approximated by a Markov
sequence with respect to binding of a given transcription
factor. To make this more precise, we project the distribu-
tion Py(a) for segments of length € onto the binding
energy E as independent variable. Denoting the projected
distribution for simplicity with the same letter P;, we have

Po(E) = X, Po(a)8(E - E(a))- (16)

This distribution is close to the actual genomic distribu-
tion Wy, (E) for most values of E, as we have seen in fig.
3. It is possible to improve the background model by
introducing small frequency couplings between neigbor-
ing letters [15,16].

Probabilistic model for functional sites
The sequences a = (a,,..., a€) at functional sites of a given
transcription factor are assumed to be drawn from a differ-
ent distribution Q(a). We write this distribution in the
form

Q(a) = Py(a) exp [S(a)]. (17)
The quantity S(a), which is called the relative log likelihood

score of the distributions Pyand Q, will turn out to have an
important evolutionary meaning as well.

The single-nucleotide distribution ¢,(a) at a given position
i within functional lodi is obtained by summing the full
distribution Q over all other positions

qgi(a) = Y

A reeer i1 iy reverly

Q(a). (18)

The set of these marginal distributions, g,(a) (i=1,..., €; a

= A, C, G, T) is called the position weight matrix for binding
sites of a given factor [20]. If the score function is additive

in the nucleotide positions, S(a) = Zle s;(a;), the Q dis-

tribution has a factorized form, Q(a) = Hleqi(ai) with

qi(a) = po(a) exp [s;(a)]. (19)
This additivity assumption is made in most of the existing
literature since the position weight matrix (18) can be
inferred from a sample of known functional site
sequences, which in turn determines directly the single
nucleotide scores (19). This scoring is the basis for a
number of site prediction methods in single species and
by cross-species analysis; see, e.g., refs. [20-24].
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Here we treat functional sites as coherent statistical units
and do not make the assumption of additivity of the score
function [16]. As will be discussed in the next section,
functionality imposes correlations between the nucle-
otide frequencies within a functional site, preventing fac-
torization of the Q distribution. Of course, it is not
possible to reconstruct the full distribution Q(a), which
lives on a 4€-dimensional sequence space, from a limited
sample of experimentally known functional sites. How-
ever, we can again project this distribution onto the bind-
ing energy as independent variable, Q(E) = 2, Q(a)d(E -
E(a)). Since all regulatory effects of a functional site
depend on its sequence a only via the binding energy, we
can also write the score as a function of the energy, S(a) =
S(E(a)) (this will become obvious in the next section).
Hence, the relationship (17) has the same form for the
projected distributions,
Q(E) = Po(E) exp [S(E)]- (20)

Bayesian model for genomic loci
Assuming that functional loci are distributed randomly
with a small probability 4, we now combine the models
for background sequence and for functional sites into a
model for the full distribution of sequences a in intergenic
DNA,

W(a) = (1 - 2) Py(a) + 2 Q(a). (21)
(At the moment, we are ignoring the possible overlap
between functional sites). In the language of statistics, this
is a probabilistic model with hidden variables. The output
of this model consists of pairs (m, a): First, the model var-
iable m is randomly drawn, labelling a locus as nonfunc-
tional (m = 0) with probability 1 - 4 or as functional (m =
1) with probability A. Then the sequence is drawn from
the corresponding distribution Py(a) or Q(a). However,
only the sequence counts a are available data. The "hid-
den" variable m can be inferred from the data in a proba-
bilistic way using Bayes' formula, which expresses the
joint probability distribution of data and model in terms
of its conditional and its marginal distributions

prob(a, m) = prob(a|m) prob(m) = prob(m|a) prob(a)
(22)

with prob(a) = X,,prob(a|m)prob(m). We can solve for
the conditional probability of the model for given data a,

prob(a | m)prob(m)
Zm prob(a | m)prob(m)

For the probability of functionality, p{a) = prob(m = 1]a),
this formula reads

prob(m|a) = (23)

http://www.biomedcentral.com/1471-2105/8/S6/S7

Q) _ 1 |
W(a) 1+ exp[—S(a) +log 1 :1/1 ]

(24)

pr(a) =

The dependence on S has again the form of a Fermi func-
tion. Its threshold value S = log [(1 - 1)/4] separates
sequences that are more likely to be functional or more
likely to be background.

The full Bayesian model (21) can again be projected onto
the energy variable,

W(E) = (1 - )Po(E) + 2 Q(E). (25)
In this form, it can be tested against genomic data [16]. To
plot the distributions P,, Q, and W as functions of E, we
use eq. (1) with an energy matrix g(a) = g,log [g;(a)/py(a)]
estimated from the position weight matrix up to an over-
all constant g, [10]. For our example of the CRP transcrip-
tion factor, the distribution Q(E) can be estimated from
the about 50 known binding sites in the E. coli genome.
Using this Q distribution and a probability of functional-
ity A = 6 x 104, the full distribution W(E) produces an
excellent fit of the count histogram W, (E) over the entire
range of energies; see fig. 4(a). The log likelihood score
function S(E) = log [Q(E)/Py(E)] is shown in fig. 4(b),
shifted such that the curve has its zero at a point E,» 13
beyond which binding becomes negligible.

The resulting probability of functionality pf(E) as given by
eq. (24) is also shown in fig. 4(b). This indicates the
dilemma for the prediction of individual binding sites
based on sequence data from a single species. Many func-
tional sites have energies in the "twilight" region between
the ensembles AQ and (1 - 1)P, where pf takes values
around 1/2. Hence, depending on the energy cutoff cho-
sen, any prediction is torn between many false negatives
or many false positives.

Dynamic programming and sequence analysis

It is straightforward to generalize the Bayesian approach
to longer segments of intergenic DNA, which are covered
by an unknown number s of non-overlapping functional
sites as shown in fig. 5[22]. The hidden variables are now
the sequence of left initial positions r;= (ry,..., 1) of the
functional sites (with the no-overlap constraintr,, ;> 7, +
Cforv=1,..,s-1). The full sequence distribution in a seg-
ment of length L has the form

—1 g
WL(al,...,aL)=Z Z/IWL(HI,...,(IL |I'f),
l'f

(26)
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Figure 4

Bayesian model for regulatory DNA and score function. (a) Energy count histogram W,,(E) for CRP sites in E. coli as in
fig. 3 (log scale), model distribution W(E) (thick line), and its decomposition (25) into background component (I - A)Py(E) (thin
dashed line) and component A4 Q(E) (E <E;= 13) of functional sites (thin solid line). (b) Log-likelihood score S(E) = log [Q(E)/
Po(E)] (shifted by a constant, thick line) and probability of functionality p(E) (thin line). From [16].

with 7,,; = L + 1. The sum over sequences r; of arbitrary
length s seems formidable at first, but W, is easy to com-
pute from the recursion

where Z is a normalization factor, 4 = A + O(A?) is a
weight factor for each functional locus (the negligible cor-
rection terms originate from the no-overlap constraint),
and Wi(ay,..., a;|ry) is the sequence distribution for given

positions of functional lodi, W, (ay..a) = (1- A)po(a) W, (ay..r a,1) + A Q(al, ...

a,) W.€(ay,..., a,.£) (28)
Wi(ay,...ar | 17) = ) i i
s with the initial condition Wy=1and 4 = 4 + O(12).
pO(al)"'pO(arl_l)H QU vy +1-1)P0 (A, 0)-Po (4, 1) = This type of recursion relation is usually called a dynamic

v=l1

programming algorithm in computer science. In physics, it
} is known as a transfer matrix, and the sum (27) is recog-

Po(al)---Po(“L)eXP{ D S(ay ey 10-1)

v=1

T - e e
0—————|—I——— --- ---- --- >

7’1 TZ 7’3 e 1/.5—1 rs
Figure 5
Analysis of regulatory sequences. A configuration of s nonoverlapping binding sites is given by the sequence of left initial
positions r= (ry,..., ry) (with r - r,> € for v=1,2,.,s - 1). It can be associated with a path m(r) which takes the values m = |

at the nucleotide positions of binding sites and m = 0 elsewhere. Dynamic programming algorithms based on a Bayesian model
(27) of genomic sequences assign to each site configuration a probability of occurence p (r|a,...., q;) for given sequence data
a,..., a; see eq. (29).
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nized as the corresponding discrete path integral in imag-
inary time 7, if we interpret r;as encoding a path m(r) that
takes the value m = 1 at the nucleotide positions r,..., 1, +

€-1(v=1,..,s) within functional loci and m = 0 other-
wise (see fig. 5). Both concepts prove very useful also in
more general problems of sequence alignment.

In analogy to (24), the probability of a set ryof functional
loci for given sequence data is

WL(al,...,aL | l'f)

29
Wi (4q,....a;) (29)

p(rs | ay,...ar) =

The most likely set r]’? can be obtained by the following

"backward" algorithm: Given the sequence (W,,..., W|)

obtained from the "forward" recursion (28), we can
decide for every point r whether it is more likely to be a
background position or the endpoint of a functional
locus, ignoring all sequence information from positions >
7. This depends on whether the leading contribution to W,

comes from the first or second term on the r.h.s. of (28)
and defines the local optimum model m*(r). The global
optimum set of functional loci respecting the no-overlap

constraint is then r}‘ = {r|b(r) = 1}, where b(r) is given by

the recursion b(r) =€ if b(r + 1) <1 &m*(r) =1 and b(r) =
max(b(r + 1) - 1, 0) otherwise, with the initial condition
b(L+1)=0.

The Bayesian model can easily be extended to sequences
containing several types of binding sites, which bind dif-
ferent transcription factors and are distinguished by their
Q distributions. Dynamic programming algorithms can
thus predict the likely coverage of a sequence with binding
sites of known type [22]. This is the first step in extending
the statistical analysis from single binding sites to entire
regions of regulatory DNA. Indeed, models of this kind
have been applied successfully to predict regulatory ele-
ments in eukaryotes, which typically consist of functional
groups of adjacent binding sites. In the algorithms cur-
rently used, however, the scoring in (27) is strictly addi-
tive for groups of non-overlapping binding sites: it does
not take into account dependencies between the sites
within one functional group or overlapping sites within
one sequence.

Evolution of regulatory DNA

In the statistical picture developed so far, background
sequences and functional sites are reduced to ensembles
Pyand Q. This picture is incomplete in two ways. On one
hand, it is quite disconnected from the biophysical

http://www.biomedcentral.com/1471-2105/8/S6/S7

aspects discussed before: the specific function of binding
sites hardly enters the standard formalism of position
weight matrices. On the other hand, there is not yet any
notion of time and dynamics. Sequences change by vari-
ous mutation processes, and the observed sequence
ensembles derive from this evolutionary dynamics. The
evolution of functional loci is fundamentally different
from that of background sequence: it is subject to natural
selection, that is, the fitness of an organism depends on its
genotype a at a functional locus via the effects on the reg-
ulated gene. At this point, the biophysics of binding enters
the evolution of functional sequences [25-27]. Moreover,
it becomes clear that the statistical framework has to be
extended from individual sequences to distributions of
genotypes in a population. In this section, we develop an
evolutionary picture of regulatory DNA, from which we
obtain expressions for the sequence ensembles P, Q, and
the score function S. The next four paragraphs are a self-
contained introduction to the underlying concepts of
population genetics.

Deterministic population dynamics and fitness

We start by describing the evolution of a large population,
which contains individuals of different genotypes a. Each
genotype is assumed to produce a specific phenotype,
which may influence the reproductive success of the indi-
viduals carrying it. With respect to factor binding, the phe-
notype can be associated with the binding energy E(a),
since presumably all organismic effects of a locus depend
on its genotype only via the binding energy. However, the
discussion in the following paragraphs is more general.

We first assume that the subpopulations of a given geno-
type reproduce separately, i.e., there neither transitions
between genotypes through mutations nor (in a sexually
reproducing population) mixing through genomic recom-
bination. Writing the dynamics of the subpopulations in
the form of simple growth laws,

4 N0 = BN, (1)

% (30)

defines the (Malthusian) fitness F,(t) of each genotype. For
notational simplicity, we now limit ourselves to the case
of just two genotypes a and b, where (30) can be written
as growth laws for the total population size N(t) = N,(¢) +
Ny (t) and for the population fraction x(t) = Ny, (t)/N (t) of
genotype b,

%N(t) = F(t)N(t), (31)

L= MO =20l (32)
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with F (£) = [1 - x(t)]F,(¢) + x(t)Fy(t) and AF,(t) = Fy(t) -
F,(t). This decomposition is useful since the overall

growth rate F (t) is often strongly time-dependent due to
external conditions (e.g., seasonality), while fitness differ-
ences, which reflect intrinsic properties of the phenotypes,
are more stable. Different genotypes coexisting in a popu-
lation frequently produce the same or very similar pheno-
types and thus have equal fitness (AF,;, = 0).

Assuming AF,; to be constant over the time of observa-
tion, the solution of eq. (32) is the evolutionary trajectory

x(t)= X0 eXp[AFab(t_tO)] (33)
1—xo(exp[AF, (t —1p)] 1)

with the initial condition x(¢,) = x,, shown in fig. 6(a). For
AF,;, # 0, the fixed points of this dynamics are the mono-
morphic population states x = 0, and x = 1, of whichx =1
is stable for AF,, > 1 and x = 0 for AF, < 1. The approach
to the stationary state takes place on a characteristic time
scale 7; = 1/AF,;,.

In the important case of neutral evolution (AF,, = 0), the
evolutionary outcome remains indefinite. These results,
which can readily be generalized to more than two pheno-
types, are a simple version of Fisher's fundamental theorem
of natural selection: any population with initially coexisting
phenotypes of different fitness will evolve towards a state
where only the fittest phenotype is present.

Fisher's theorem seems to prove the popularized Darwin-
ian notion of the "survival of the fittest". However, it rests
on very restrictive assumptions that are never fulfilled in a
natural population. The deterministic growth law (32)
neglects mutations and recombinations, as well as the
reproductive fluctuations present in any population due
to its finite number of individuals. These other evolution-
ary forces have to be incorporated in our theoretical pic-
ture before we can even define fitness as a measurable
quantity and before the theory can address the important
case of neutral evolution.

Stochastic dynamics and genetic drift

Stochastic fluctuations of the reproduction process in a
large but finite population have been studied extensively
in population genetics, see [28,29]. They are called genetic
drift, an unfortunate name which may falsely suggest a
deterministic effect. To take these fluctuations into
account, we replace eq. (30) by a stochastic growth law,

d

ENa(t) = F ()N (1) + xa (1), (34)

http://www.biomedcentral.com/1471-2105/8/S6/S7

where y,(f) are Gaussian random variables with

Xa(t)=0 and

Xa(D)2p(t") = Na(1)5(t = £')8, b (35)
This form of noise is simply due to the law of large num-
bers, and the continuum dynamics (34) emerges as an
effective large-N description for a plethora of discrete evo-
lution models, which are defined at the level of individu-
als and have finite generation times. In the application to
real populations, N has to be interpreted as the so-called
effective population size, which can be inferred from
genome data and is in general smaller than the actual pop-
ulation size.

In the case of two genotypes, eq. (34) can again be pro-
jected onto the population fraction x,

% x(t) = AFyp (Ox(0)[1 = 2(6) ]+ 2 (1), (36)

where y,(t) = (&/N,)x.(t) + (&) NR) 1, (t) are Gaussian
random variables with zero mean and

x(

202 0) = IT"%(I- 0). (37)

This dynamics produces stochastic evolutionary trajecto-
ries x(t) as shown in fig. 6(b). To capture their statistics,
we convert the Langevin equation (36) into a Fokker-
Planck equation for the probability distribution of the
genotype composition [28,30],

2ty = -9 1 P 1) - Al (02 (1 — X)P(1)
at T IN gy ’ bt o "

(38)

The mathematical subtlety of this equation lies in the x-
dependent diffusion "constant" x(1 - x)/2N, which reflects
the multiplicative nature of the reproduction process. As a
consequence, the two monomorphic population states x =
0 and x = 1 are also fixed points also of the stochastic
dynamics. Any evolutionary trajectory x(t) will eventually
lead to one of these states with probability 1; this is called
the fixation of the corresponding genotype in the popula-
tion. In other words, the Fokker-Planck equation (38)
describes diffusion in the interval (0, 1) with absorbing
boundaries. There is a family of stationary states

P (x) = (1-9)dx) + ¢ (1 -x), (39)
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Evolution of genotype composition x(t). (a) Deterministic evolution with fitness difference AF,, > 0, leading to certain fix-
ation of genotype b (time is shown in units of 7;= |/AF,). (b) Stochastic evolution with selection and genetic drift, leading to
fixation of one of the genotypes. The time to fixation (grey shading) is of order 7z, (NAF,, = 0.5, time is shown in units of N). (c)
Stochastic evolution with selection, genetic drift, and mutations in the regime Ny <<> [, leading to a substitution dynamics
with rates u,_,, and u_,, given by (49). Substitution events are marked by dashed lines. The typical time between initial muta-
tion and fixation (grey shading) for a given substitution, 7, is much shorter than the time between subsequent substitutions, |/
Uy p resp. ug_,, (NAF,, = 0.5, Ny = 0.05, time is shown in units of 1/4).
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parametrized by the fixation probability ¢ of genotype b.
The value of ¢ depends on the initial condition x, and can
be computed by solving the backward diffusion equation

9 Pt | x00tg) = %o(1- %) J;31+AF(QJL (%, | x0.t0)
Bt ’ 0/%0 0 0 IN axé ab axO ’ 0/t0)-
(40)

For time-independent AF,;, the stationary solution ¢ (x,)
=lim, ,, P (x =1, t|x, t,) has the form [28,30]

1—exp(-2NAF;,xp)
1—exp(-2NAE,)

¢(xo,Abyp, N) = (41)

which for near-neutral evolution (NAF,, <<> 1) reduces to

#(xp 0, N) = xg+ NAF, x0(1 - xp) + ... (42)
The characteristic time 7z, of the stochastic dynamics inter-
polates between the diffusive scale N and the determinis-
tic scale: 7, min(N, 7;). It determines the typical time of

the evolution process up to fixation, shown shaded in fig.
6(b).

Hence, the stochastic population dynamics depends no
longer only on the fitness difference of the genotypes as in
the deterministic case, but also on the initial state of the
population and the the population size. Yet, our evolu-
tionary picture is still incomplete. Population states with
coexisting genotypes enter the dynamics as initial condi-
tions, but since mutations are neglected, the model does
not explain how this coexistence is generated and main-
tained.

Mutation processes and evolutionary equilibria

At the level of an individual, mutations are rare stochastic
genotype changes a — b, which take place with rates z,_,;,
often coupled to the reproduction process. (These rates
are all of the same order of magnitude, in estimates we
therefore omit the indices.) We include mutations into
the population dynamics (34) by their systematic effect
on the genotype subpopulations,

SN0 = B ONG 0+ Xty aNp(0) - HapNa O]+ 2 (0,
b

(43)

while their stochastic effect (whose variance is of order
Ny is neglected since it is small against the reproductive
sampling noise x,(t). In the case of two different geno-
types, this dynamics can again be projected onto the vari-
able x,

http://www.biomedcentral.com/1471-2105/8/S6/S7

% x(t) = Al (Ox()[1 = %(0)]+ Hasb[1 = 2(0)] = iy 6(1) + 2 (¢,

(44)

which leads to the Fokker-Planck equation [31]

1 92

%P(x,t) = ﬁaxjx(l - x)P(x,t) - AFab(t)aa—xx(l - x)P(x,1)

0 0
—Hab - (1= x)P(x,1) + ppq — xP(x,1).
ox ox
(45)

For time-independent AF,;, this equation has a single sta-
ble stationary state,

P(x) = %x_HN“H" (1- x)_lJrN'”‘Ha exp(2NAE,;, x)
(46)

with a normalization constant Z that can be expressed in
terms of Bessel and Gamma functions [32].

Substitution dynamics

Here we are interested in the stochastic evolution (45) and
its equilibrium state (46) for Nu <<> 1, which is the rele-
vant dynamical regime for nuclear DNA in eukaryotes and
in most prokaryotes (but not in viral systems). In this
regime, the mutation term in (45) is small against the dif-
fusion term except for values of x close to the boundaries
0 or 1. In this region, the continuum approximation of eq.
(45) is no longer valid, and (46) has to be replaced by a
stationary solution % ,(N,) of the underlying discrete
evolution model, which gives the probability that the
population contains N, individuals of genotype a (with
N,=N-Ny=0, 1,.., N). The discrete solution is easily

shown to have the singularity £;(0) = (N, —>b)71 P;(1).
This singularity is correctly captured if we use the approx-
(N,+1)/N

imation P;(N,) = N, IN

dxP(x) for all N, (except at

the other boundary, where there is a similar singularity

Pa(N) = (Npp_a) Pa(N -1)) [33].

From this solution, we read off the following characteris-
tics of the evolutionary dynamics at equilibrium, which
are illustrated by the trajectory of fig. 6(c)[32]:

(a) For sufficiently small values of x4 the population
remains monomorphic for most of the time. Using the
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shorthands Q(a) = # 4(N,=0) and Q(b) = # ,4,(N,=N),

we have

Q(a) + Q(b) = 1 - O(uN log N). (47)
(b) The ratio of probabilities for the two monomorphic
population states is given by the ratio of "forward" and
"backward" mutation rate, the fitness difference, and the
effective population size:

Q) _ Hassb s oNAF, )+ O(N
Qa) iy PN )T O

(c) The monomorphic population states x = 0 and x = 1
are unstable due to mutations even at arbitrarily small val-

(48)

ues of x4, which cause occasional transitions of the entire
population from genotype a to b, and vice versa. These so-
called substitutions are marked by dashed lines in fig. 6(c).
The substitution rate u,_,;, can be evaluated as the product
of creating a single mutant of genotype b in an initially
monomorphic a population, N,_,},, and its probability

of fixation, ¢ (x,= 1/N, AF,, N). The time between initial
mutation and fixation (shown by grey shading in fig. 6(¢))
is still of order 7, and thus much shorter than the time
scale 1/, on which mutation effects become important.
Hence, the fixation probability ¢ is given to leading order

by (41), which has been derived for u# = 0. Together we
have [28,30]

1- eXp(_zAFab)

. (49)
1-exp(—2NAE,)

Uasb = Nz sp

Hence, the substitution rate u,_,; is enhanced over g, ,;
for AF,;, > 0 and suppressed for AF,; < 0, as shown in Fig.
7. For weak selection (N|AF,;| <<> 1), eq. (49) becomes
ua—)b:,ua—)b(l +NAFab+ ) (50)

This reproduces Kimura's famous original result: for neu-
tral evolution, the substitution rate equals the mutation
rate in an individual, independently of the population
size. For this reason, the rates u, ,; are referred to as neu-
tral mutation rates. For strong selection (N|AF,,| > 1 »
|AF,,]), eq. (49) takes the asymptotic forms

2N | AFab |€Xp(2NAFab) (2NAFab < 1),
2NAFy, (2NAE, > 1).

(51)

Uy = Ua—b {

http://www.biomedcentral.com/1471-2105/8/S6/S7

The backward substitution rate uy,_,, is given by a formula
similar to (49) with AF;, = -AF,;,. Forward and backward
substitution rate have the simple ratio

uaib = M—_)bexp(zNAFab)
Upsa Hpoa

(52)

for N > 1. Comparing with (48), we obtain the consist-
ency condition

Uasb _ @
Upsa Q)

Hence, for sufficiently small mutation rates (xN log N <<>
1), a simple picture emerges: The evolution of a popula-
tion can be described as a sequence of transitions between
monomorphic genotype states (substitutions). The substi-
tution rate u is determined by the corresponding mutation
rate in an individual, the fitness difference between the
genotypes, and the effective population size.

(53)

Neutral dynamics in sequence space, sequence entropy
This evolutionary picture can be generalized to multiple
genotypes, for example, the 4€ dimensional sequence
space of genomic loci a = (a,,..., a€). Transitions between
different sequence states are point mutations a — b,
which change exactly one nucleotide. (We neglect here
insertion and deletion processes, which change the length
of the sequence). We first discuss neutral evolution, where
the substitution rate u,_,;, equals the mutation rate in an
individual, g, ,;, for all elementary transitions a — b.
Bona fide neutral mutation rates can be inferred from
DNA sequence alignments of sufficiently close species,
recent insights have also come from studying repeat ele-
ments.

We assume the neutral dynamics has an equilibrium dis-
tribution Py(a) which obeys detailed balance, i.e., the rela-
tion

o _ Polb)
Upsa  Do(a)

holds for each pair of sequence states linked by an ele-
mentary transition process a — b. This says that the prob-
ability current at equilibrium, g, ,; Py(a) - m_.0o(b),
vanishes for each elementary transition. Clearly, any dis-
tribution P,(a) satisfying the conditions (54) is stationary
under the dynamics with rates g, ,;,, but not every such
dynamics has a stationary distribution which satisfies
(54) (the simplest counterexample involving three states
and a circular probability current a - b — ¢ at stationar-

ity).

(54)
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However, as will be verified below, detailed balance is a
good approximation for the genomic substitution dynam-
ics at least in prokaryotes. (There are known violations at
CpG islands in eukaryotes [34]). In the simplest type of
models, every nucleotide a mutates independently of all
other positions with uniform rates x,_,;, (i.e., b = Husp
for any two sequencesa = (..., a,...) and b = (..., b, ...) dif-
fering by exactly one nucleotide). This produces a factor-
ized equilibrium distribution P,(a) of the form (15).

We can project the equilibrium distribution onto a meas-
urable quantity as independent variable. For binding site
sequences, a convenient choice is the binding energy E,
and the projected distribution P,(E) has the form (16).
Hence we can define the sequence entropy [35]

So(E) = log Py(E), (55)

which counts the log density of sequence states a at energy
E, weighed by the distribution P,(a).

Dynamics under selection, the score-fitness relation

The dynamics of substitutions can be studied in the same
way for evolution under selection, which is specified at
the level of genotypes by an arbitrary fitness function F(a)
[18,36]. This generalizes the results of [37] for a model
with selection acting independently at different nucle-

. o . ¢
otide positions, i.e., F(a)= 21‘:1 f;(a;) . For each elemen-
tary transition a — b, the substitution rate u, , is

determined by the neutral rate z, ., the fitness difference

AF,;,, and the effective population size N according to
(49). Given the detailed balance (54) of neutral evolution
and the relation (52) between forward and backward
rates, it then follows immediately that the evolutionary
dynamics under selection also obeys detailed balance, as
given by (53) with an equilibrium distribution Q(a) of the
form (48). Thus we have [18,36]:

The equilibrium distribution Q(a) of fixed genotypes generated
by a substitution dynamics (49) with fitness function F(a) is
related to its neutral counterpart P,(a) by

Q(a) = Py(a) exp [2NF (a) + const.], (56)

with the constant given by normalization.

We can project eq. (56) onto the fitness as independent
variable. Defining the distribution Q(F) = 2, Q(a)Jd (F (a)
- F), similarly Py(F), and the sequence entropy S,(F) = log
P,(F), the projected identity takes the form

Q(F) = exp [2NF + Sy(F) + const.] (57)

http://www.biomedcentral.com/1471-2105/8/S6/S7

For binding site sequences, we have a similar projection
on the binding energy, Q(E) = exp [2NF(E) + Sy(E) +
const.], since all genotypes with the same "phenotype" E
have the same fitness, i.e., the same score S. The projected
identities express the equilibrium distribution under
selection in terms of fitness and sequence entropy, reflect-
ing the balance between stochasticity (genetic drift) and
selection [18]. For strong selection, the exponent 2NF - S,
is dominated by the fitness term, and Q(F) takes appreci-
able values only at points of near-maximal fitness, i.e.,
where F,,,, - F < 1/2N. For moderate selection, there is a
nontrivial balance between both terms, and for weak
selection, the Q distribution can be approximated by its
neutral counterpart Py = exp(S,). Clearly, the roles of fit-
ness and sequence entropy are formally analogous to
those of energy and entropy in statistical physics of ther-
modynamic systems, if 2N is identified with the inverse
temperature 1/k;T . Some consequences of this analogy
are discussed in ref. [38].

The dynamics of substitutions establishes a rather general
evolutionary grounding of genome statistics, if we identify
the equilibrium distributions Py(a) and Q(a) with the
genomic distributions discussed in the previous section,
as already anticipated by our notation. Comparing egs.
(56) and (17) gives a relation between fitness and score
[16,18]:

The log-likelihood score S(a) =log [Q(a)/Py(a)] equals the fit-
ness function multiplied by twice the effective population size up
to a constant,

S(a) = 2NF(a) + const.. (58)
This relation allows us to use sequence data of a given
genome to infer quantitative patterns of its evolution. We
now discuss specific consequences for the evolution of

regulatory DNA; an application to protein evolution can
be found in ref. [37].

Measuring selection for binding sites

We first give a precise definition of functionality for regu-
latory (and other) elements: A binding locus is functional
if the genotype at that locus is under selection (for binding
of the corresponding factor). Nonfunctional loci have
evolutionarily neutral genotypes. This definition asks
whether binding at a given locus makes a difference to the
organism or not. It is weaker than that of a functional
binding site, which is a functional locus with a sequence a
that is likely to actually bind the factor. A functional locus
can lose its binding sequence due to deleterious muta-
tions, leading to suboptimal fitness of the organism. Con-
versely, a nonfunctional locus can have by chance a
sequence which does bind the factor: this is a spurious
binding site without consequences for the organism. To
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Figure 7

Substitution rate in a population versus mutation
rate in an individual. The ratio of these rates, u, /1, .,
depends on the product NAF,, of effective population size
and fitness difference between the genotypes (in the relevant
regime N > |, AF,, <<> |, NAF,, finite). The substitution
rate u, ., is equal to g, for neutral mutations (AF,, = 0),
reduced for deleterious mutations (AF,, < 0), and enhanced
for advantageous mutations (AF,, > 0).

measure the selection on functional sites in silico, we apply
the identity (58) to the genomic distributions Py(a) and
Q(a). (Assuming equilibrium for most loci seems to be
justified for our example of CRP binding sites in E. coli
since we find very similar distributions in the distant bac-
terial species Salmonella typhimurium, and the factor pro-
tein itself is highly conserved between these species.) After
projection onto the energy, the fitness landscape 2NF(E)
for CRP binding sites is thus given by fig. 4(b)[16]. The fit-
ness is constant in the no-binding region (E z E; = 13)
since the evolution is always neutral in that region. This
constant is set to 0 in our normalization, i.e., F(E) meas-
ures the fitness gain of functional sites due to factor bind-
ing. Loci with strong binding are also under strong
selection, with effective fitness values 2NF of order 10.
Genetic drift counteracts selection, producing also loci
with weaker binding and reduced effective fitness. This fit-
ness "landscape" is thus qualitatively of the form pre-
dicted from the underlying biophysics [18,25]. Of course,
it should be kept in mind that this landscape results from
averaging over a family of binding sites, which may have
a spectrum of individual selection coefficients and
selected binding strengths.

Nucleotide frequency correlations

A further consequence of (57) is the generic occurence of
nucleotide frequency correlations within functional loci
[18]. If the fitness function F(a) is not additive in the
nucleotide positions, nucleotide frequencies are corre-
lated in selected genotypes even if they are independent
under neutral evolution. This happens quite generically

http://www.biomedcentral.com/1471-2105/8/S6/S7

since selection acts on the entire genotype a as a func-
tional unit and not on its single nucleotides. For binding
sites, fitness effects follow from the expression level of the
regulated gene, which depends on the sequence a via the
binding probability of the corresponding transcription
factor. While the binding energy is often approximately
additive in the nucleotide positions as given by (1), the
binding probability (10) is a strongly nonlinear function
of the energy. This introduces correlations between nucle-
otide frequencies at any two positions within functional
loci, preventing factorization of the distribution Q(a).

Stationary evolution of binding sites

Functional loci with a substantial level of selection (as
found for the CRP binding sites in E. coli) evolve in a way
quite different from background sequence. This is quanti-
fied in fig. 8(a), which shows pairs of binding energies
(E;, E,) for experimentally verified CRP binding sites in E.
coli and the corresponding sites regulating orthologous
genes in S. typhimurium [16,27]. The evolutionary distance
t between the two species and characteristics of the neutral
mutation process can be inferred from alignments of
background sequence. The "phenotypic" evolution of
CRP binding is quantified by the energy transition probabil-
ities Go(E,|E;) under neutral evolution and Gy (E,|E;)
under stationary selection [16]. These are readily obtained
by simulating the substitution dynamics over a time inter-
val t for given initial value E;, both with neutral rates z,_,;,
and with rates u,_,;, given by (49) and the fitness function
2NF(E) measured in E. coli. The resulting conditional
expectation values (Gy(E,|E,)) and <Gf (E,|E,)) for the bind-
ing energy in S. typhimurium are also shown in fig. 8(a).
The data conform to the selection model, showing a sub-
stantially stronger conservation of binding energy than
expected for neutral evolution [16,27,39].

We can now build a probabilistic model for cross-species
comparisons [16]. It is based on the joint distributions of
energy pairs

PO(El' Ez) = GO(E2|E1) PO(EI) (59)
under neutral evolution and
Q(Ell Ez) = G,(E2|E1) Q(E1) (60)

under stationary selection, which are determined by the
corresponding distributions in one species and the energy
transition probabilities. Detailed balance of the substitu-
tion dynamics implies

Ro(E) _ GoEa [ Br) 4 QUE2) _ Gr(Ey |E1),
Po(Ey)  Go(E: | Ez) Q(E1)  Gy(E | E)
(61)
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i.e., the joint distributions Py(E,, E,) and Q(E;, E,) must
be symmetric functions of their arguments. These distri-
butions combine into a model for pairs of aligned loci,
which generalizes the single-species model (25) and takes
the form

W(Ey, E) = (1 - )Py(Ey, E;) + AQ(Ey, E;).  (62)
(This model can be extended further to include non-sta-
tionary selection.) The distribution W(E,, E,) with a frac-
tion of functionality 4 = 0.0018 is in excellent agreement
with the count distribution Wy, (E,, E,) obtained from E.
coli and S. typhimurium, as shown in fig. 8(b). The symme-
try of Wy, is thus consistent with the underlying assump-
tion of detailed balance. Analogous Bayesian models can
be defined for more than two species related by a phylog-
eny. This approach has been applied to binding site pre-
diction in bacteria [16]; a related study of several species
of funghi has been reported in ref. [40].

Adaptive evolution of binding sites

What does this picture say about the adaptive evolution of
transcriptional regulation in response to a newly arising
selection pressure? The evolution from a genotype with
marginal binding (E(a) = E,) to strong binding requires
only about three uphill point mutations in the fitness
landscape of fig. 4(b), i.e., there is an effective fitness gain
2NAF = 3 per mutation. Hence, according to (51), the rate
of uphill substitutions per locus is enhanced by a factor
2NAF-d(a, a*) at least of order 10 over the neutral point
mutation rate per nucleotide. At the same time, the down-
hill rate is strongly suppressed. This shows that the adap-
tive formation of a binding site from background
sequence can indeed be a rapid mode of regulatory evolu-
tion, due to the substantial level of selection [18].

However, this mode is only efficient if adaptation can set
in immediately after the selection pressure is established.
In larger regulatory regions, the exact position of a bind-
ing site is often not important. We assume the initial

genome contains a set of L shadow sites, i.e., positions
Ty Tf where a given sequence a would have the same
regulatory effect. If one of these shadow sites has already
a genotype with marginal binding, it acts as a "seed" for

the onset of adaptation [41]. On the other hand, if all
shadow sites of the initial genome have energy E > E,

there is typically a substantial waiting time of neutral evo-
lution before one of them reaches the threshold energy E..
Assuming the initial genome to be entirely background
sequence, it will contain at least one such seed if

LkE Py(E)dEx1/L, which is a joint condition on L and

http://www.biomedcentral.com/1471-2105/8/S6/S7

the site length €: the shadow regulatory region must be
long enough and binding sites must be short enough. The
example shows that the evolvability of regulation imposes
constraints on genome architecture [18]. Adaptive point
substitution may thus be a feasible mode for the forma-
tion of a single binding site, but will hardly explain the
groups of adjacent sites characteristic of eukaryotic pro-
moters. These may originate from repeat duplication by
slippage, which has recently been shown to be an efficient
source of sequence innovation in intergenic regions of
Drosophila.

Towards a dynamical picture of the genome

The relationship S = 2NF + const. between score and fit-
ness is a cornerstone of the theoretical picture developed
so far, which links its population genetic, bioinformatic
and biophysical arches. It relates a key evolutionary varia-
ble with the statistics of genomic frequency counts. The
physical binding energy is an appropriate phenotypic var-
iable on which fitness and score depend, because molecu-
lar function is determined by binding interactions.

We have discussed this picture for transcription factor
binding sites, but it can be applied more generally to func-
tional elements in genomes. It relates the statistics of these
elements in one genome with their evolutionary dynam-
ics, which is observed in cross-species comparisons. This
dynamics is shaped by selection: The components of func-
tional elements are coupled by a common fitness func-
tion; such fitness interactions are called epistasis. Hence,
functional correlations lead to evolutionary correlations. These
can be traced in the Q distribution over fixed genomes of
a functional element. A more detailed statistical analysis
using the statistics of polymorphisms within a population
is briefly sketched below.

Thus, the picture of the genome as a system with multiple
interactions has a fundamental dynamical significance.
This is important since it allows us to trace functional
modules from evolutionary patterns. We conclude the
article with a brief outlook on functional integration of
regulatory sequences at various and its dynamical implica-
tions.

Evolutionary interactions between sites

Regulatory function is often determined not by single
binding sites, but jointly by a group of sites in the same
regulatory region [42]. An important mechanism is bind-
ing cooperativity, i.e., the formation of a protein complex
between two (or more) factors bound to their correspond-
ing DNA sites. The binding energy of this complex has the
form E = E, + E, + AE,,, where E, and E, are the energies of
the factors bound individually and AE,, < 0 is the energy
gain due to the protein-protein interaction, which is of the

Page 17 of 21

(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 6):S7

http://www.biomedcentral.com/1471-2105/8/S6/S7

30}

25}

4 20 L
S

15¢

10

5 L

0 L L L L O L L L L L L
0 5 10 15 20 25 0 5 10 15 20 25 30
E1 El
Figure 8

Evolution of binding sites. (a) Binding energy pairs (E,, E,) for 32 experimentally verified CRP binding sites in E. coli from the
DPInteract database [57] and their aligned orthologs in S. typhimurium (dots). Conditional expectation value for the binding
energy in S. typhimurium under neutral evolution, <GO(E2|E|){(dashed line), and under selection, <Gf(E2|E|)> (solid line). (b) Distri-
bution of energy pair counts W, (E,, E;) (filled contours), compared to the distribution W(E,, E,) given by the Bayesian model
(62). The symmetry of these distributions under exchange of E, and E, reflects detailed balance of the substitution dynamics.

From [16,39].

order of a few k;T . Cooperative binding has a number of
functional effects [1]:

(a) It increases the signal-to-noise ratio for the targeting of
regulatory input to a specific gene, which is important in
larger eukaryotic genomes, where single spurious binding
sites are abundant in background sequence.

(b) It sharpens the response of the binding probability to
variations in the factor concentrations around their
threshold value. This follows from the thermodynamics
of two factors, which is a straightforward generalization of
the case of a single factor discussed above.

(c) It implements logical connections between regulatory
input signals to a given gene. The simplest example is an
AND connection between two factors, where the regulated
gene is affected only if both factors are simultaneously
present. This happens if the binding energies and factor
concentrations are such that individual binding is weak
but joint binding is strong. Larger groups of binding sites
can encode a whole repertoire of more complicated logi-
cal functions [43].

Regulatory modules with several jointly acting binding
sites are frequently found in eukaryotes. The functional
coupling of sites in a module translates into interactions
between these sites in their sequence evolution. The
genomic functional element, i.e., the subset of the regula-
tory region on which selection acts, is the module as a
whole. Its fitness F(E;, E,, AE;,,...) is a joint function of
the binding energies as the relevant phenotypic variables
[18,25]. The evolutionary dynamics under this selection
allows for a large number of compensatory changes, i.e.,
pairs of correlated substitutions changing two binding
energies such that the fitness remains constant. These lead
to nucleotide frequency correlations between different
sites. Such compensatory changes have indeed been
observed in experiments on Drosophila promoters [44].

Site-shadow interactions

In larger regulatory regions, there is a number of shadow
sites where a binding sequence a would have a similar reg-
ulatory effect as at the functional sites present. In that case,
the genomic functional element contains not only the
functional binding sites but also the shadow sites. Once a
functional site has disappeared due to deleterious muta-
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tions, a shadow site can turn functional by adaptive evo-
lution as described in the last section. The resulting
evolutionary dynamics leads to sequence turnover with
the actual binding sites present at different but function-
ally equivalent positions [36]. Substantial sequence turn-
over has been observed in a number of case studies [44-
49]. Also the number of actual sites is subject to evolu-
tionary variation since the same regulatory effect, i.e., the
same fitness, can be distributed over fewer stronger or

more weaker sites. With increasing number L of shadow
positions, one expects that the number of actual sites
grows while individual sites get weaker [36].

Gene interactions

Evolutionary interactions are not limited to regulatory ele-
ments for the same gene. An example are gene duplica-
tions and the subsequent evolution of the daughter genes.
Selection acts jointly on this pair of genes [50], which
have initially identical functions, eventually leading to
either loss of one of them or to subfunctionalization, which
has been argued to be an important mode of genome evo-
lution in eukaryotes [51,52]. This process can take place
by regulation, i.e., via a correlated distribution of the reg-
ulatory elements on the daughter genes. More generally,
the evolution of genes in a regulatory network is corre-
lated if their functions are coupled either in series (i.e.,
one gene acts on the other) or in parallel (i.e., they are part
of alternative pathways for the same function). Although
some regulatory networks in model organisms - e.g. the
embryonic development in the sea urchin [53] - have
been studied in detail, we lack a coherent view of their
functional evolution to date.

Interactions and time-dependent selection

The functional integration of regulation at multiple levels
and the resulting fitness interactions (epistasis) imply that
the selection at one genomic site is influenced by changes
at other sites. A recent analysis of single-nucleotide poly-
morphisms and substitutions in Drosophila provides
indeed evidence on a genome-wide scale that selection is
time-dependent: at individual loci, changes in the direc-
tion of selection occur at nearly the rate of neutral evolu-
tion [54,55]. At the same time, selection is sufficiently
strong so that the adaptive response can keep up with the
rate of selection changes. This rate is faster in non-coding
DNA, which points towards the role of regulation in the
adaptive differentiation between species. Genomic evolu-
tion emerges as a complex stochastic process, shaped
jointly be the driving force of time-dependent selection,
fitness interactions between sites, and the ongoing back-
ground of near-neutral changes. Much more remains to be
learned about the interplay of these evolutionary forces:
in a large and strongly coupled system, one external signal
can trigger an avalanche of subsequent compensatory
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responses. This dynamics seems now within reach of
genomic sequence analysis.

Evolutionary innovations

Under stationary selection, functional elements are more
conserved than background sequence, and the score-fit-
ness relation quantifies the amount of conservation. But
evolution is, of course, not limited to conservation. On
one hand, there is typically a multitude of different geno-
types yielding the same molecular function, and the evo-
lutionary dynamics continuously plays with these
alternatives. On the other hand, organisms face long-term
changes of their environment, which lead to new selection
pressures and a response by adaptive evolution of new
functions. If regulation is to account for a large part of the
diversification in higher eukaryotes, loss or gain of regula-
tory function should be an important mode of molecular
evolution. Changes in regulatory DNA leading to new
functions of gene networks have been observed [56], and
it is possible to extend the statistical models described in
the previous section to include evolutionary gain or loss
of function of individual binding sites [16]. On a broader
scale, time-dependent selection and fitness couplings
appear act as a major driving forces of genomic change,
triggering avalanches of evolutionary innovation. Under-
standing this molecular basis of innovations is a major
challenge for theory and experiment in the coming years.
It will profoundly change our dynamical view of the
genome.
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