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Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctua-
tions in a population. Here, we study evolution where fitness itself is stochastic, with random switches in
the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes
larger than the diffusion time of mutations within the population, fitness changes from an annealed to a
quenched random variable. We show that the rate of evolution has its maximum in the crossover regime,
where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime
(evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical
theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary

genetics and statistical physics of disordered systems.
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Biological evolution has produced a bewildering diver-
sity of life. New species and functional innovations within
a species arise as adaptive response to an ever-changing
environment. It has become a major challenge for molecu-
lar evolutionary biology to trace the genomic basis of these
changes [1]. How much of the DNA sequence divergence
observed between different species encodes for adaptive
changes, and how much is due to random mutations accu-
mulated over time? In our genome, where are the specific
changes underlying, e.g., the evolution of language and
brain development, which make us human? And where
does selection continue to act today? Obviously, these
questions bear rich scientific implications, which range
from the conceptual foundations of evolutionary biology
to biomedical applications, e.g., the identification of genes
associated with genetic diseases.

Despite a growing amount of genomic data available,
identifying evolutionary adaptations is a difficult signal-to-
noise problem, since the underlying sequence changes
emerge from a complex stochastic process at the level of
populations [2,3]. In the simplest case of a single locus
(e.g., a base pair) with two states (alleles) A and B, this
process can be described by a Langevin equation for the
fraction x of individuals carrying allele B,

x(6) = fOxO[1 = x()] + pe[1 = 2x(0)] + x. (1), (1)
where y, () are Gaussian random variables with zero mean
and variance (x,(f)x,()) = [x(1 — x)/N]6(t+ — ') and
time is measured in units of generations. A typical stochas-
tic trajectory is shown in Fig. 1(a). The process generates a
statistical ensemble described by the allele frequency dis-
tribution p(x, t); averages with respect to this ensemble are
denoted by (...).

Equation (1) is equivalent to Kimura’s diffusion equa-
tion [4]

ple 1) = 55931 = 0p(x, 1) = OV = )l 1)
— o V(1 = 2x)p(x, 1). (2)
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PACS numbers: 87.23.Kg, 61.43.—j, 87.15.Cc

There are three evolutionary forces associated with three
different time scales: (a) Selection acts via differences in
fitness (i.e., subpopulation growth rate) f(r) = f4(z) —
f(2). For time-independent f(r) = oy, it leads to a deter-
ministic change in allele frequencies over a characteristic
time 1/0. (b) Mutations exchange alleles in an individual
at a rate w;, i.€., the average time between mutations is of
order 1/u. (c) Reproductive fluctuations (referred to as
genetic drift) are the stochasticity in an individual’s num-
ber of offspring and change allele frequencies diffusively
over a typical time of 7, generations. This scale separates
micro- and macro-evolution. The diffusion process ends
with a deleterious or advantageous substitution, where the
less fit or the fitter allele is established in the entire popu-
lation (i.e., x = 0 or x = 1). For neutral evolution (o =
0), the diffusion time is twice the so-called effective popu-
lation size, 7o = 2N [3]. Selection shortens 7(, with the
asymptotics 79 = 1/0 (up to log corrections) for strong
selection (ooN > 1).

Much of the statistical physics literature on evolution, in
particular, on the celebrated quasispecies theory [5], im-
plicitly or explicitly assumes populations of effectively
infinite size, where reproductive fluctuations can be ne-
glected. This regime is given by the ratio of time scales
MmoN >> 1. However, most biological systems are in the
opposite regime of low mutation rates in finite popula-
tions, uoN < 1, which is the subject of population ge-
netics and is discussed in this Letter [6]. Macro-evolution
of a genomic locus is then a sequence of substitutions
interspersed with occasional coexistence periods (called
polymorphisms) where both alleles reach substantial
frequencies; see Fig. 1(d). The average polymorphism
lifetime 7 is much shorter than the average time be-
tween substitutions, leading to a dynamical separation
that will be important below. The process eventually
reaches an equilibrium state with constant fitness and de-
tailed balance: every advantageous change just repairs a
previous deleterious one; their respective numbers are
equal.
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FIG. 1 (color online). Evolution under fluctuating selection,
mutations, and genetic drift. One trajectory x(¢) of the stochastic
process (1) with scaled parameters 2N g = 0.02 and 2No = 2,
the direction of selection is indicated by shading (the fitter allele
appears unshaded). (a) Selection with micro-evolutionary (an-
nealed) fluctuations (1/y, << 7¢): Evolution can be described as
a homogeneous diffusion process. Time is shown in units of 2N.
(b) Selection with intermediate fluctuations (1/y, ~ 79): The
diffusion picture breaks down due to large frequency changes
within one correlation interval of selection. (c) Selection with
macro-evolutionary (quenched) fluctuations (1/y, > 7(): The
process reaches a nonequilibrium, time-irreversible stationary
state with adaptations as surplus of advantageous substitutions
(A) over deleterious ones (A). Time is now shown in coarse-
grained units 1/u. (d) Time-independent selection (y, = 0):
The process reaches an evolutionary equilibrium with an equal
number of advantageous and deleterious substitutions, hence
without adaptations.
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It is clear, however, that evolution under constant selec-
tion does not adequately represent the environment of most
biological systems. Fitness effects vary in time and space,
and these variations are the cause of phenotypic adapta-
tions. To capture this effect quantitatively, selection itself
should be regarded as a random force in the evolution
Egs. (1) and (2), as discussed by Wright, Kimura, Ohta,
Gillespie, and others [7-13]. Here, we use the simplest
model of fluctuating selection, where the time-dependent
selection coefficient in (1) and (2) takes the form f(r) =
oom(t) with a constant magnitude o, and a random direc-
tion n(¢) = =1, which follows a Poisson process with rate
vo- Selection fluctuations must be distinguished from re-
productive fluctuations. They define a second statistical
ensemble, averages with respect to which are denoted by
overbars. It is given by the expectation value and covari-

ance of the variables 7(z),

n(1) =0, n(O)n(t) = e 2rol=71, 3)

and introduces a further scale, the correlation time 1/7,.

The classical work on fluctuating selection was mainly
aimed at describing micro-evolutionary effects such as
seasonality or frequency-dependent selection, where cor-
relation times do not exceed the diffusive time scale,
1/70 =< 7o [12]. In the language of statistical physics, the
selection coefficients are annealed random variables, and
averaging over this ensemble produces an effective diffu-
sion equation for allele frequencies [8,10,12,14,15].
However, there is also recent evidence for selection fluc-
tuations on the much larger mutation time scale, 1/, ~
1/ o > 79, driving macro-evolutionary changes observed
in a cross-species comparison of fly genomes [16]. These
are probably caused mainly by epistasis, i.e., fitness inter-
actions between genomic sites. Such interactions are
probably frequent [17], in particular, in regulatory DNA
[18,19]. Macro-evolutionary selection fluctuations have
also been proposed as an explanation for anomalies of
the molecular clock [13]. Such fluctuations are a quenched
random process, for which diffusion theory breaks down.
Instead, the joint statistics of selection and reproduction
becomes similar to a system with thermal fluctuations and
frozen disorder in physics.

In this Letter, we develop the theory of fluctuating
selection with arbitrary correlation times. Genomic evolu-
tion under this type of selection is measured by time-
dependent allele frequency correlations averaged over
both the reproduction and the selection ensemble,

— 11) = (x()[1 — x(r))]), “)

which can be compared to data averages over a large
number of genomic loci assumed to evolve independently.
The variation within a population is given by A = G(r =
0), the regime G(r) = it (for 7y < t < 1/ ) describes the
divergence between populations increasing with their evo-
lutionary distance. Depending on the ratio between fitness
correlation time 1/vy, and diffusion time 7,, our theory
identifies three evolutionary regimes as shown in Fig. 1(a)—
1(c): (i) micro-evolutionary fluctuations (1/y, < 7¢),
where classical diffusion theory holds, (ii) the crossover
regime (1/y, ~ 7,), where the substitution rate i is shown
to have a maximum (as numerically observed in [13]), and
macro-evolutionary fluctuations (1/y, > 7,) leading to
adaptive substitutions, defined as surplus of advantageous
over deleterious substitutions.

To establish our results, we first recall the classical
theory of Kimura’s diffusion equation [4]. For time-
independent selection, Eq. (2) can be written in the form
of a continuity equation [20], p = —V.Jp with the current
operator J==Vx(1—x)+ ox(1 —x) + u(l — 2x).
Here, we measure time in units of the neutral diffusion
time 2N and introduce the accordingly scaled parameters
m=2Npug and 0 = 2No,. From now on, we assume

G(t,
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pm < 1. Two normalized and linearly independent distri-
butions p, (@« = *1) with constant current Jp, = u, can
be defined by the boundary conditions that p. (x) remain
finite at x = 1 and p_(x) remain finite at x = 0. These
population states describe the restricted ensembles of paths
x(¢) starting from x = 0 by an initial mutation A — B and
from x = 1 by an initial mutation B — A, respectively, and
ending by fixation of either allele. The population variance
in these states is given by the moments A, = [x(I —
x)p,(x)dx (which can be expressed in terms of hypergeo-
metric functions) [21]. Furthermore, the current values
u, = apo/(1 — e %) define the well-known Kimura-
Ohta rates for substitutions A — B and B — A [22,23]. A
generic normalized stationary solution p(x) of (2) takes the
form p(x)=Ap;(x)+(1—A)p_(x) with 0=A=1.
The equilibrium distribution p.q(x) is the unique stationary
solution with J peq(x) = (), i.e., with detailed balance be-
tween forward and backward substitutions, which deter-
mines Aeq = 1/(1 +e) =u_/(uy +u_).

Diffusion theory can be extended to micro-evolutionary
selection fluctuations (1/y << 7 in terms of the rescaled
parameters y = 2Ny, and 7 = 73/2N). In this annealed
approximation, fluctuating selection generates additional
frequency-dependent diffusion and transport terms in the
Fokker-Planck current, J,(g) = gVx*(1 — x)* + gx(1 —
x)(1 — 2x), which depend on the effective strength g =
0?/2vy [14,15]. For sufficiently large frequencies (g < 1),
evolution is asymptotically neutral with stationary variance
A = u and substitution rate @ = u. Selection effects set
on for g ~ 1, decreasing A and increasing substitutions,
with

u g

~

M 2logg

for g > 1. 5

We have recently developed a complementary analytical
approach, which is valid for macro-evolutionary selection
fluctuations (1/y > 7) [16]. From an arbitrary initial dis-
tribution p(x, t = 0), the frequency distributions describ-
ing forward and backward paths reach their stationary
shapes p. (x) and p_(x) within an initial time regime of
order 7, generations, provided the selection is quenched on
these time scales. For larger values of time, the distribution
takes the quasistationary form p(x, t) = A())p.(x) + [1 —
A()]p_(x) up to correction terms of order exp(—7/7) in
rescaled time units, the time-dependent coefficient A(r)
describing the long-term dynamics of substitutions.
Defining A(f) =1 —2A(t), v=u, tu_,and w =u, —
u_, we obtain a Langevin equation with additive noise,
h(t) = —vh + wx(#), which can be solved exactly. A key
observable of the system is the stationary allele frequency
bias

- — w
H = lim h(t)n(r) = , 6

lim A () (2) 3y o (6)
which measures the degree of adaptation to the momentary
direction of selection (0 < H < 1). This also determines

the stationary variation within the population

Aoy, m) =50~ A, + 30+ DA ()
and the stationary substitution rate

i(o, vy, u) = %(1 — Hu, + %(1 +Hu_. (8

H is decreased, A and @ are increased with respect to
equilibrium, which emerges in the limit y — 0.

The crossover from micro- to macro-evolutionary selec-
tion fluctuations as a function of v is shown in Fig. 2 by
numerical simulations for H, A, and i together with the
results of diffusion theory and quenched selection theory.
The annealed approximation is seen to break down for y <
1/7, where memory effects of selection can no longer be
neglected and frequency changes of order one occur within
one correlation interval of selection cf. Figure 1(b).
Conversely, the quenched approximation breaks down for
vy = 1/, where fitness changes occur during one substi-
tution process. There is currently no closed solution for
generic values of vy, but we can interpolate between both
asymptotic solutions to obtain the behavior in the crossover
region y ~ 1/7. The substitution rate i, in particular,
changes differently with 7y in the micro- and macro-
evolutionary regime and, hence, must have a maximum
iimax at the crossover frequency y,..- Equating (5) and (8),
we have

o uy
7] ~
2loge ™ 2

Ymax = (©))
for strong selection and low mutation rate (o > 1 and
M << 1, which implies u, ~ ow and u_ =~ e~ 7 u), where
the selective enhancement of the substitution rate is most
pronounced. The time scale 7= 1/« =2logo/o is
indeed proportional to the average lifetime of polymor-
phisms in this regime [24]. The enhancement of i can be
observed in a population bottleneck: ecological selection
fluctuations, which are micro-evolutionary and, hence,
well balanced by a large population, can cause a dramatic
increase of the substitution rate to values above the neutral
rate during a population bottleneck while N is temporarily
reduced. (This increase goes beyond the known effect of a
bottleneck with stationary selection, where u reaches near-
neutral values by temporary removal of selective con-
straint.) The degree of adaptation H is seen to be exponen-
tially small in the micro-evolutionary regime (and strictly O
in the diffusion approximation). Adaptation emerges at the
crossover point y ~ 1/7, increases with decreasing vy in
the macro-evolutionary regime, and reaches saturation
(H = 1) for fluctuations on the mutational time scale (y =
v = gu for o >> 1). Thus, it is the long-term fluctuations
of selection that are most relevant for the adaptive diversi-
fication between species, and these can be detected by
genomic cross-species analysis [16]. This regime clearly
shows the time-irreversibility of the driven evolution pro-
cess: adaptations always take place after the selection
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FIG. 2 (color online). (a) Population variance A, (b) sub-
stitution rate i, and (c) degree of adaptation H at stationarity
under fluctuating selection, shown as a function of the fluctuation
rate y for o = 40. Numerical results (data points) together with
analytical results of diffusion theory [14] (dashed lines) and of
quenched fluctuation theory [16] (full lines) valid in the micro-
evolutionary regime (y > 1/7) and the macro-evolutionary
regime (y < 1/7), respectively. (d) Crossover scaling: 2ii/o u
is plotted against y7 for u = 0.0028, 0.0084, 0.025 (data points,
from top to bottom) and o = 20, 40 (squares, points), showing a
data collapse in the crossover region y ~ 1/7. Diffusion theory
(dashed lines) and quenched theory (solid lines) are seen to be
valid for y = 1/7 and y < 1/7, respectively.

switch causing them, a clear difference to the time-
reversible macro-evolution under constant selection
cf. Figure 1(c). Evidence that genome evolution is off
equilibrium (i.e., detailed balance is broken) has been
found previously for neutral four-allele mutation processes
with unequal rates p,p [25]. With the selection character-
istics inferred for Drosophila [16], our analysis shows that
detailed balance is strongly broken on a genome-wide
scale, independently of the form of the neutral rate matrix.

In conclusion, we establish the statistics of genomic
evolution driven by two stochastic forces: ‘“‘diffusive”
reproduction together with fitness fluctuations, which
change from annealed to quenched randomness depending
on their correlation time. For sufficient levels of selection
(0 =2Noy > 1), there are three different characteristic
selection frequencies governing the onset of selection ef-
fects (y ~ o), the crossover from annealed to quenched
fluctuations (y ~ o/2logo), and the onset of adaptive
evolution (y ~ ow), respectively. Our results lay the
ground for a more powerful analysis of sequence data to
infer adaptation based on a dynamic model of selection.
Although the specific process we discuss here is solvable
by elementary means, even close variants are more difficult

and provide a rich playground for advanced methods of
disordered systems physics. There is indeed evidence for
genome-wide fitness fluctuations at individual sites, which
probably signal both external forces and interactions with
other sites [16]. Could evolutionary innovations, then, be
avalanches of strongly correlated genomic changes, where
each substitution is not only a response to its local fitness
function but also a force shaping the fitness functions of
other genomic positions? These ideas have been a long-
standing theme of phenotypic evolution models [26] and
may now become testable against genomic data. The cor-
responding sequence evolution models, however, have yet
to be developed.
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