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Abstract. Molecular phenotypes link genomic information with organismic
functions, fitness, and evolution. Quantitative traits are complex phenotypes
that depend on multiple genomic loci. In this paper, we study the adaptive
evolution of a quantitative trait under time-dependent selection, which arises
from environmental changes or through fitness interactions with other co-evolving
phenotypes. We analyze a model of trait evolution under mutations and genetic
drift in a single-peak fitness seascape. The fitness peak performs a constrained
random walk in the trait amplitude, which determines the time-dependent
trait optimum in a given population. We derive analytical expressions for the
distribution of the time-dependent trait divergence between populations and
of the trait diversity within populations. Based on this solution, we develop
a method to infer adaptive evolution of quantitative traits. Specifically, we show
that the ratio of the average trait divergence and the diversity is a universal
function of evolutionary time, which predicts the stabilizing strength and the
driving rate of the fitness seascape. From an information-theoretic point of view,
this function measures the macro-evolutionary entropy in a population ensemble,
which determines the predictability of the evolutionary process. Our solution also
quantifies two key characteristics of adapting populations: the cumulative fitness
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flux, which measures the total amount of adaptation, and the adaptive load,
which is the fitness cost due to a population’s lag behind the fitness peak.

Keywords: driven diffusive systems (theory), evolutionary and comparative
genomics (theory), models for evolution (theory), population dynamics (theory)
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1. Introduction

This is the second in a series of papers on the evolution of quantitative traits in
biological systems [1]. We focus on molecular traits such as protein binding affinities
or gene expression levels, which are mesoscopic phenotypes that bridge between genomic
information and higher-level organismic traits. Such phenotypes are complex: they depend
on tens to hundreds of constitutive genomic sites and are generically polymorphic in a
population. Moreover, their evolution is often a strongly correlated process that involves
linkage disequilibrium, i.e. allele associations due to incomplete recombination, and
epistasis, i.e. fitness interactions, between constitutive sites. Hence, the evolutionary
statistics of molecular quantitative traits have to go beyond traditional quantitative
genetics [2–11]. Our aim is to derive universal phenotypic features of these processes, which
decouple from details of a trait’s genomic encoding and of the molecular evolutionary
dynamics.

In this paper, we focus on the adaptive evolution of molecular traits, which involves
mutations, genetic drift, and (partial) recombination of the trait loci. The adaptive
dynamics take place on macro-evolutionary time scales and can generate large trait
changes—in contrast to micro-evolutionary processes based on standing trait variation
in a population. Adaptive trait changes are driven by time-dependent selection on the
trait values. Specifically, we consider the trait evolution in a single-peak fitness seascape
[12–14], which has a moving peak described by a stochastic process in the trait coordinate.
The time-dependence of the optimal trait value can have extrinsic or intrinsic causes; for
example, the optimal expression level of a gene is affected by changes in the environment
of an organism and by expression changes of other genes in the same gene network. These
fitness seascape models have two fundamental parameters: the stabilizing strength and the
driving rate, which measure the width and the mean square displacement of the fitness
peak per unit of evolutionary time. In an ensemble of populations with independent
fitness peak displacements, these dynamics describe lineage-specific adaptive pressure.
We discuss specific seascape models with continuous or punctuated adaptive pressure;
that is, the fitness peak performs a constrained (Ornstein–Uhlenbeck) random walk or a
Poisson jump process in the trait coordinate. These stochastic processes define minimal
non-equilibrium models for the adaptive evolution of a quantitative trait.

Here we focus on macro-evolutionary fitness seascapes, which have low driving rates
compared to the diffusion of the trait by genetic drift and describe persistent selection on a
quantitative trait [12,15]. We show that this kind of selection generates two complementary
evolutionary forces. On short time scales, a single fitness peak acts as stabilizing selection,
which constrains the trait diversity within a population as well as its divergence between
populations. On longer time scales, the population trait mean follows the moving fitness
peak, which generates an adaptive component of the trait divergence. In the limit case of
a static fitness landscape, we recover the evolutionary equilibrium of quantitative traits
under stabilizing selection, which has been the subject of a previous publication [1]. The
evolution in a quadratic fitness landscape is described by an Ornstein-Uhlenbeck dynamics
of the trait mean [16–19], which should not be confused with the Ornstein-Uhlenbeck
process of the fitness peak in a stochastic seascape.
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We also discuss the regime of micro-evolutionary fitness seascapes, which describe
rapidly changing selection on a quantitative trait. Such fitness changes are ubiquitously
generated by ecological fluctuations. They lead to micro-evolutionary adaptation of
the trait from its standing variation in a population but do not generate directional
selection on evolutionary time scales. We show that micro-evolutionary fitness seascapes
can be mapped to effective fitness landscapes that describe relaxed stabilizing
selection.

Our model of adaptive trait evolution contains different sources of stochasticity:
mutations establish trait differences between individuals within one population,
reproductive fluctuations (genetic drift) and fitness seascape fluctuations generate trait
differences between populations with time. In macro-evolutionary fitness seascapes, these
stochastic forces act on different time scales and define different statistical ensembles,
similar to thermal and quenched fluctuations in the statistical thermodynamics of
disordered systems. In section 2, we derive stochastic evolution equations for the trait
mean, the trait diversity, and the position of the fitness peak, which establish a joint
dynamical model for the trait and the underlying fitness seascape over macro-evolutionary
time-scales. In section 3, we discuss the analytical solution of these models for a stationary
ensemble of adapting populations. This ensemble has a time-independent trait diversity
within populations, as well as a trait divergence between populations that depends on
their divergence time. In section 4, we evaluate two important summary statistics of
adaptive processes. The genetic load, which is defined as the difference between the
maximum fitness and the mean population fitness, is shown to include a specific adaptive
component, which results from the lag of the population behind the moving fitness
peak. The cumulative fitness flux measures the amount of adaptation in a population
over a macro-evolutionary period: it is zero at evolutionary equilibrium and increases
monotonically with the driving rate of selection [20]. Furthermore, we determine the
predictability of trait values in one population given its distribution in another population,
which is given by a suitably defined entropy of the population ensemble under divergent
evolution.

The statistical theory of this paper provides a new method to infer selection on a
quantitative trait from diversity and time-resolved divergence data. Given these data in a
family of evolving populations, we use the divergence-diversity ratio Ω(τ) for different
divergence times τ to determine the stabilizing strength and the driving rate of the
underlying fitness seascape. These selection parameters, in turn, quantify the amount of
conservation and adaptation in the evolution of the trait. The divergence-diversity ratio is
universal: it depends on the stabilizing strength and the driving rate of the fitness seascape
as well as on the evolutionary distance between populations, but it is largely independent
of the trait’s constitutive sites, of the amount of recombination between these sites, and
of the details of the fitness dynamics. In contrast to most sequence evolution tests, the
Ω test does not require the gauge of a neutrally evolving ‘null trait’. We discuss this test
along with probabilistic extensions in section 5.

This paper contains some necessarily technical derivations of our main results. For
readers who are not interested in technical issues, it offers a fast track: the section
summaries 2.3, 3.4 and 4.4, the description of the Ω test in section 5, and the concluding
section 6 can be read as a self-contained unit.
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2. Evolutionary dynamics of quantitative traits

In this section, we develop minimal models for the adaptive evolution of quantitative
traits in a fitness seascape. We first review the diffusion dynamics for the trait mean
and the diversity under genetic drift and mutations in a given fitness landscape, which
have been derived in a previous paper [1]. Second, we introduce simple stochastic models
for the dynamics of selection, which promote fitness landscapes to fitness seascapes. We
then combine the dynamics of trait and selection to a joint, non-equilibrium evolutionary
model.

2.1. Diffusion equations for trait mean and diversity

Our model for quantitative traits is based on a simple additive map from genotypes to
phenotypes. The trait value E of an individual depends on its genotype a = (a1, . . . , a!)
at " constitutive genomic sites,

E(a) =
!∑

i=1

Eiσi, with σi ≡
{

1, if ai = a∗
i ,

0, otherwise. (1)

Here, the trait is measured from its minimum value, and Ei > 0 is the contribution of a
given site i to the trait value. We assume a two-allele genomic alphabet and a∗

i denotes
the allele conferring the larger phenotype at site i. The extension to a four-allele alphabet
is straightforward. The genotype-phenotype map (1) defines the allelic trait average Γ0
and the trait span E2

0 ,

Γ0 =
1
2

!∑

i=1

Ei, E2
0 =

1
4

!∑

i=1

E2
i . (2)

The linear genotype-phenotype map (1) has been chosen here for concreteness. Such
linear maps are approximately realized for some molecular traits, such as transcription
factor binding energies [21]. However, many other systems have nonlinearities, which are
commonly referred to as trait epistasis. It can be argued that simple forms of trait epistasis
will leave many of our results intact (this is indicated at a few places in the manuscript),
but a systematic inclusion of trait epistasis is beyond the scope of this paper. At the same
time, the fitness land- and seascapes introduced below depend on the trait in a nonlinear
way; hence, they always contain fitness epistasis.

Quantitative traits have a sufficient number of constitutive loci to be generically
polymorphic in a population, although most individual genomic sites are monomorphic.
The distribution of trait values in a given population, W(E), is often approximately
Gaussian [1, 3, 14]. Hence, it is well characterized by its mean and variance,

Γ ≡ E =
∫

dE E W(E),

∆ ≡ (E − Γ )2 =
∫

dE (E − Γ )2 W(E), (3)
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where overbars denote averages over the trait distribution W(E) within a population.
The variance ∆ will be called the trait diversity; in the language of quantitative genetics,
this quantity equals the total heritable variance including epistatic effects.

We consider the evolution of the trait E under genetic drift, genomic mutations,
and natural selection, which is given by a trait-dependent fitness seascape f(E, t) that
changes on macro-evolutionary time scales. This process is illustrated in figure 1: At a
given evolutionary time, the trait distribution in a population has mean Γ (t), diversity
∆(t), and is positioned at a distance Λ(t) ≡ Γ (t) − E∗(t) from the optimal trait value.
The trait distribution follows the moving fitness peak, building up a trait divergence

D(1)(t, τ) = (Γ (t) − Γ (t − τ))2 (4)

between an ancestral population at time t−τ and its descendent population at time t in a
given lineage. In the same way, we can define the trait divergence between two descendent
populations at time t that have evolved independently from a common ancestor population
at time t − τ/2,

D(2)(t, τ) = (Γ1(t) − Γ2(t))2. (5)

In a suitably defined ensemble of parallel-evolving populations, the expectation values
of these divergences, 〈D(κ)(τ)〉 (κ = 1, 2), depend only on the divergence time τ . The
asymptotic divergence for long times is just twice the trait variance across populations,

lim
τ→∞

〈D(κ)(τ)〉 = 2〈(Γ − 〈Γ 〉)2〉 (κ = 1, 2). (6)

In particular, the quantity E2
0 defined in (2) is the trait variance in an ensemble of

random genotypes, which results from neutral evolution (with averages 〈. . .〉0 marked by
a subscript) at low mutation rates, E2

0 = limµ→0〈(Γ − 〈Γ 〉0)2〉0. For finite times, however,
the statistics of the single-lineage divergence D(1) and the cross-lineage divergence D(2)

differ from each other in an adaptive process. As we will discuss in detail below, this
is a manifestation of the non-equilibrium evolutionary dynamics in a fitness seascape. In
contrast, evolutionary equilibrium in a fitness landscape dictates 〈D(1)(τ)〉eq = 〈D(2)(τ)〉eq
by detailed balance.

As shown in a previous companion paper [1], the evolutionary dynamics of a
quantitative trait in a fitness seascape can be described in good approximation by diffusion
equations for its mean and its diversity,

∂

∂t
Q(Γ , t|F1) =

[
gΓΓ

2N
∂2

∂Γ 2 − ∂

∂Γ

(
mΓ + gΓΓ ∂F1(Γ , t)

∂Γ

)]
Q(Γ , t|F1), (7)

∂

∂t
Q(∆, t|F2) =

[
g∆∆

2N
∂2

∂∆2 − ∂

∂∆

(
m∆ + g∆∆∂F2(∆, t)

∂∆

)]
Q(∆, t|F2), (8)

which are projections of the Kimura diffusion equation [22, 23] from genotypes onto
the phenotype space. The distributions Q(Γ , t | F1) and Q(∆, t | F2) are time-dependent
probability densities of trait mean and variance, which describe an ensemble of populations
evolving in the same fitness seascape f(E, t). These dynamics involve the fitness seascape
components

F1(Γ , t) = f(Γ , t) + f ′′(Γ , t) ×
∫

d∆∆Q(∆, t | F2), (9)
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(a)

(b) (c) (d)

Figure 1. Adaptive evolution of a quantitative trait. (a) Evolution of the
distribution of trait values W(E, t) (gray curves) in a given population subject
to a single-peak fitness seascape f(E, t) (red curves). At a given time t, the
population has a trait distribution W(E, t) with mean Γ (t) and diversity
∆(t), and is positioned at a distance Λ(t) = Γ (t) − E∗(t) from the fitness
peak. The population follows the moving fitness peak and builds up a trait
divergence D(1)(t, τ) = (Γ (t) − Γ (t − τ))2 between the ancestral state at time
t − τ and the descendent state at time t. The divergence D(2)(t, τ) between
two descendent populations with a common ancestor at time t − τ/2 can be
defined in an analogous way; see equations (4) and (5). (b)–(d) Evolutionary
population ensembles, each represented by three sample populations. In a given
population, a realization of a single-peak fitness seascape specifies a lineage-
specific optimal trait value that depends on evolutionary time, E∗(t) (red line).
The population mean trait, Γ (t) (black line), adapts to the moving fitness peak
with additional lineage-specific fluctuations due to mutations and genetic drift.
The adaptive process is shown for three cases of fitness seascapes: (b) Diffusive
fitness seascape: Incremental changes in the optimal trait value reflect adaptive
pressure caused by continuous ecological changes. The function E∗(t) follows
an Ornstein–Uhlenbeck random walk in the trait coordinate. (c) Punctuated
fitness seascape: Sudden changes in the optimal trait value reflect adaptive
pressure caused by major, discrete ecological events. The function E∗(t) is
described by a Poisson jump process in the trait coordinate. We show that
both types of fitness seascapes lead to a solvable, non-equilibrium joint statistics
of Γ and E∗. (d) Fitness landscape: Each population has a time-independent
optimal trait value E∗ and reaches an evolutionary (selection-mutation-drift)
equilibrium [1].
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F2(∆, t) = ∆ ×
∫

dΓ f ′′(Γ , t) Q(Γ , t | F1), (10)

which are projections of the mean population fitness

f(t) ≡
∫

dE f(E, t) W(E, t) = f(Γ , t) +
1
2
∆f ′′(Γ , t) + . . . (11)

onto the marginal variables Γ and ∆. Genetic drift enters through the diffusion coefficients

gΓΓ = 〈∆〉 ≡
∫

d∆∆Q(∆, t | F2), g∆∆ = 2∆2, (12)

mutations through the mutation coefficients

mΓ = −2µ(Γ − Γ0), m∆ = −4µ(∆ − E2
0) − ∆/N ; (13)

these coefficients depend on the effective population size N and the point mutation rate
µ. The diffusion equations (7) and (8) are coupled through the fitness components (9) and
(10) and through the diffusion coefficient gΓΓ . If we neglect direct selection on the trait
mean by setting F1(Γ , t) = 0, equation (7) describes a quasi-neutral diffusion of the trait
mean, which depends the full drift term gΓΓ = 〈∆〉 under selection (see section 3.3). The
quasi-neutral dynamics defines a characteristic time scale

τ̃ ≡ 2NE2
0

〈∆〉 . (14)

In the special case of a time-independent fitness landscape f(E), the diffusive dynamics
of trait mean and diversity leads to evolutionary equilibria of a Boltzmann form [1],

Qeq(Γ | F1) =
1

ZΓ
Q̃0(Γ ) exp[2NF1(Γ )], (15)

Qeq(∆ | F2) =
1

Z∆
Q0(∆) exp[2NF2(∆)], (16)

where ZΓ and Z∆ are normalization constants. The equilibrium distributions under
selection build on the quasi-neutral distribution of the trait mean, Q̃0(Γ ) ∼
exp[−2µN(Γ − Γ0)2/〈∆〉], and on the neutral diversity distribution Q0(∆) (see also
section 3.3). We note that evolutionary equilibrium in a static fitness landscape is limited
to the marginal distributions Qeq(Γ | F1) and Qeq(∆ | F2), while the joint distribution
Q(Γ ,∆|f) reaches a non-equilibrium stationary state [1]. In the limit of low mutation
rates, the Boltzmann distribution (15) describes an asymptotic selection-drift equilibrium
Qeq(E|F1) ∼ Q0(E) exp[2NF (E)]; the trait values E are predominantly monomorphic in
a population and they change by substitutions at individual trait loci [1, 24,25].

The form of the phenotypic evolution equations approximately decouples from details
of the trait’s molecular determinants. The dynamics of equations (7) and (8) does not
depend on the distribution of effects in the genotype-phenotype map (1). Recombination
between the trait loci induces a crossover between selection on entire genotypes and
selection on individual alleles [1, 26, 27]. This affects the form of the diffusive dynamics
of ∆. The form of the dynamics for Γ remains invariant, so that the statistics of Γ
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depends on recombination only through the diffusion coefficient gΓΓ = 〈∆〉. These effects
are small over a wide range of evolutionary parameters, as shown by simulations reported
in appendix B and [1]. Similarly, we expect that simple nonlinearities in the genotype-
phenotype map (trait epistasis) have small effects, because they affect only the mutation
coefficients mΓ and m∆ in equations (7) and (8).

2.2. Stochastic seascape models

For a generic fitness seascape f(E, t), the diffusion equations (7) and (8) do not have a
closed analytical solution. At the same time, we are often not interested in the detailed
history of fitness peak displacements and the resulting trait changes. To describe generic
features of adaptive processes, we now introduce solvable stochastic models of the seascape
dynamics and link broad features of these models to statistical observables of adapting
populations.

In this paper, we restrict our analysis to single-peak fitness seascapes of the form

f(E, t) = f ∗ − c0(E − E∗(t))2. (17)

Despite its simple form, the fitness function (17) covers a broad spectrum of interesting
selection scenarios [28]. For constant trait optimum E∗, it is a time-honored model of
stabilizing selection. [2, 6, 10, 14, 24, 28–32]. Nearly all known examples of empirical
fitness landscapes for molecular quantitative traits are of single-peak [33] or mesa-shaped
[29, 34–37] forms. Mesa landscapes describe directional selection with diminishing return:
they contain a fitness flank on one side of a characteristic ‘rim’ value E∗ and flatten to
a plateau of maximal fitness on the other side. Furthermore, trait values on the fitness
plateau tend to be encoded by far fewer genotypes than low-fitness values. This differential
coverage of the genotype-phenotype map turns out to generate an effective second flank of
the fitness landscape, which makes our subsequent theory applicable to mesa landscapes
as well [28]. We refer to the scaled parameter

c = 2NE2
0c0 (18)

as the stabilizing strength of a fitness landscape. This dimensionless quantity has a
simple interpretation: it equals the ratio of the neutral trait variance E2

0 and the weakly
deleterious trait variance around the fitness peak, which, by definition, produces a fitness
drop ! 1/(2N) below the maximum f ∗. As shown in [1], the mutation-selection-drift
dynamics of a quantitative trait in a single-peak fitness landscape leads to evolutionary
equilibrium with a characteristic equilibration time

τeq(c) =
1

µ + cτ̃−1(c)
'

{
µ−1 for c " 1,
(cτ̃(c))−1 for c # 1, (19)

where τ̃(c) is the quasi-neutral drift time defined in equation (14).
For time-dependent E∗(t), equation (17) becomes a fitness seascape model [12–14].

At any given evolutionary time, this model describes stabilizing selection of strength
c towards an optimal trait value E∗(t). In addition, the changes of E∗(t) over macro-
evolutionary periods introduce directional selection on the trait and generate adaptive
evolution. The form (17) of a fitness seascape assumes the stabilizing strength c to remain
constant over time. As discussed in section 2.3, this assumption leads to an important
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computational simplification: only the trait mean Γ adapts to the moving fitness peak,
while the diversity ∆ remains at evolutionary equilibrium. However, generalizing our
model to a time-dependent stabilizing strength c(t) is straightforward and is briefly
discussed below. We consider two minimal models of seascape dynamics:

Diffusive fitness seascapes. In this model, the fitness optimum E∗(t) performs an
Ornstein-Uhlenbeck random walk with diffusion constant υ0, average value E and
stationary mean square deviation r2

0. The scaled parameters

υ =
υ0

E2
0
, r2 =

r2
0

E2
0
, (20)

will be called the driving rate and the driving span of a fitness seascape. Different
realizations of this random walk with the same set of parameters are shown in figure 1(b).
The distribution of optimum trait values, R(E∗, t), follows a diffusion equation,

∂

∂t
R(E∗, t) = υE2

0
∂

∂E∗

[
∂

∂E∗ +
1

r2E2
0
(E∗ − E)

]
R(E∗, t). (21)

This dynamics leads to a seascape ensemble, which is characterized by an expected peak
divergence

〈(E∗(t) − E∗(t + τ))2〉 = 2r2E2
0

(
1 − e−τ/τsat(υ,r2)

)
(22)

with the saturation time

τsat(υ, r2) =
r2

υ
, (23)

and by an equilibrium distribution

Req(E∗) =
1√

2πr2E2
0

exp
[
−1

2
(E∗ − E)2

r2E2
0

]
(24)

of optimal trait values. Diffusive seascapes models of this form describe continuous
adaptive pressure due to incremental ecological changes that affect the optimal trait value
E∗(t). We assume that typical optimal trait values fall into the neutral trait repertoire
given by equation (2), which implies that the scaled driving span r2 is at most of order 1.

Punctuated fitness seascapes. This model has discrete, large fitness peak shifts.
Individual shifts of the optimal trait value may result from discrete ecological events such
as major migrations and speciations. Lineage-specific shifts in large phylogenies have been
studied in [16, 17, 19]; however, these shifts are assumed to be caused by known external
events. Here we introduce a stochastic model to describe a priori unknown shifts. The
simplest such model is a Poisson jump process with jump rate τ−1

sat (v, r2) = υ/r2, by
which successive values of E∗ are drawn independently from the distribution Req(E∗),
given by (24). Different realizations of this process are shown in figure 1(c). The Poisson
jump process is described by the evolution equation

∂

∂t
R(E∗, t) =

υ

r2 [Req(E∗) − R(E∗, t)]. (25)
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It has the same time-dependent expected peak divergence (22) and the same equilibrium
distribution (24) as the diffusion process (21) with same driving parameters (20). The
difference between the jump process and the diffusion process lies in the anomalous scaling
of higher moments,

〈(E∗(t) − E∗(t + τ))k〉 ∼ Ek
0 rk−2υτ for k = 2, 4, . . . and τ ( τsat(υ, r2). (26)

This scaling is shared by simple models of turbulence; see, e.g. [38].

In both types of fitness seascape, we distinguish two dynamical selection regimes:

• Macro-evolutionary fitness seascapes are defined by the condition τsat(v, r2) # τeq(c).
As discussed in detail below, such seascapes keep the trait mean always close to
equilibrium and induce an adaptive response linear in the driving rate υ. The limit
υ → 0 describes an ensemble of quenched population-specific fitness landscapes with a
distribution of optimal trait values given by equation (24); see figure 1(d).

• Micro-evolutionary fitness seascapes have τsat(v, r2) " τeq(c) and delineate a regime of
reduced adaptive response, where the evolution of the trait mean gradually decouples
from that of the fitness seascape. In the asymptotic fast-driving regime (υ * r2/τeq(c)),
the adaptation of the trait is completely suppressed. In this regime, we can average
over the fitness fluctuations and describe the macro-evolution of the trait in terms of
an effective fitness landscape with an optimal trait value E .

2.3. Joint dynamics of trait and selection

We now combine the diffusive dynamics of quantitative traits in a given fitness seascape,
which is given by equations (7) and (8), and the seascape dynamics (21) or (25) into a
stochastic model of adaptive evolution. The statistical ensemble generated by this model is
illustrated in figures 1(b)–(d): Each population evolves in a specific realization of the fitness
seascape, which is given by a history of peak values E∗(t). Its trait mean Γ (t) follows the
moving fitness peak with fluctuations due to mutations and genetic drift. The ensemble
of populations contains, in addition, the stochastic differences between realizations of the
fitness seascape. The statistics of this ensemble involves combined averages over both
kinds of fluctuations, which are denoted by angular brackets 〈...〉.

The population ensemble can be described by a joint distribution of mean and optimum
trait values, Q(Γ , E∗, t) = Q(Γ , t | E∗)R(E∗, t). Using equations (7) and (21) together with
the projection of the fitness seascape,

F1(Γ | E∗) = f ∗ − c

NE2
0
〈∆〉 − c

E2
0
(Γ − E∗)2, (27)

given by equations (9) and (17), we obtain the evolution equation for the joint distribution
in a diffusive seascape,
∂

∂t
Q(Γ , E∗, t) =

[
gΓΓ

2N
∂2

∂Γ 2 − ∂

∂Γ

(
mΓ − gΓΓ 2c

E2
0
(Γ − E∗)

)

+
υ

E2
0

∂2

∂E∗2 +
υ

r2

∂

∂E∗ (E∗ − E)
]

Q(Γ , E∗, t), (28)
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with gΓΓ = 〈∆〉 and mΓ = −2µ(Γ − Γ0). Note that the differential operator in
equation (28) is asymmetric: the trait optimum E∗ follows an independent stochastic
dynamics, but the trait mean Γ is coupled to E∗. This asymmetry reflects the causal
relation between selection and adaptive response: the trait mean Γ (t) follows the
moving fitness peak, as shown in figures 1(b) and (c). As a consequence, the joint
evolution equation (28) leads to a non-equilibrium stationary distribution Qstat(Γ , E∗),
although the marginal seascape dynamics (21) reaches an equilibrium state. In the
fitness landscape limit (υ → 0), the evolution of the trait mean reaches evolutionary
equilibrium; in the opposite limit (υ → ∞), this dynamics can be described by
an effective equilibrium. In section 3.1, we will obtain explicit solutions for the
non-equilibrium distribution Qstat(Γ , E∗) and its equilibrium limits. Time-dependent
conditional probabilities (propagators) in the stationary ensemble will be discussed in
section 3.2 and in appendix A. The case of a punctuated fitness seascape is also treated
in appendix A, where we solve the Langevin equations for Γ and E∗ to obtain the first
and second moments of Q(Γ , E∗, t).

The trait diversity evolves under the projected fitness function

F2(∆ | c) = − c

NE2
0

∆, (29)

given by equations (17) and (10). In a fitness seascapes with a constant stabilizing strength
c, this function is time-independent. The dynamics of the trait diversity (8) decouples from
the adaptive evolution of the trait mean and leads an evolutionary equilibrium Qeq(∆ | c) of
the form (16). As detailed in section 3.3, the equilibrium assumption for the trait diversity
holds for most adaptive processes in a fitness seascape of the form (17). However, we can
generalize our seascape models to include a time-dependent stabilizing strength c(t). This
leads to generic adaptive evolution of both, Γ and ∆, which is described by a coupled
non-equilibrium stationary distribution Qstat(Γ ,∆, E∗, c).

2.4. Discussion

We describe the evolution of a quantitative traits by diffusion equations for its population
mean Γ and diversity ∆; see equations (7) and (8). This formalism, which has been
derived in detail in [1], integrates many molecular details into few effective parameters.
It provides an analytically tractable and numerically accurate evolutionary description of
many complex quantitative traits. The dynamics of trait mean and diversity are coupled.
For example, the diffusion of Γ depends on the average of ∆, which gives rise to a quasi-
neutral evolutionary regime discussed in the next section.

Figure 1 illustrates our model of natural selection: fitness seascapes that have a peak
moving in trait space on macro-evolutionary time scales. The peak displacement follows
a stochastic process that models broad classes of evolutionary change. Diffusive seascapes
describe continuous changes in the optimal trait value, which are ubiquitously generated
by ecological fluctuations. Punctuated seascapes capture large-scale changes caused by
discrete events, such as speciations or neo-functionalization of genes [39]. Of course, such
models are highly idealized representations of biological reality. Their strength lies in
their simplicity: minimal seascapes have just two important evolutionary parameters, the
stabilizing strength c and the driving rate υ, which are defined in equations (18) and
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(20). These parameters can be inferred from data, as we show below in section 5. If this
inference results in useful, testable information about real systems, the underlying models
can be justified a posteriori.

In a diffusive fitness seascape, the diffusion equation (28) describes the joint dynamics
of mean and optimal trait. However, the role of its two variables are asymmetric: the
mean trait follows the fitness peak, but the fitness peak moves in an autonomous way.
This asymmetry leads to a non-equilibrium evolutionary dynamics, as discussed in the
next section.

3. Adaptive evolution in a single-peak fitness seascape

In this section, we develop the key analytical results of this paper. We provide an explicit
solution for the non-equilibrium joint distribution of mean and optimal trait in a diffusive
seascape, Qstat(Γ , E∗); the case of punctuated seascapes is treated in appendix A. These
solutions describe a stationary ensembles of adapting populations. We derive an expression
for the expected time-dependent trait divergence in these ensembles, which holds for both
seascape models. Finally, we juxtapose the adaptive behavior of the trait mean with the
equilibrium statistics of the trait diversity, which emerges in good approximation for most
fitness seascape of constant stabilizing strength. Our analytical results are supported by
simulations for diffusive and punctuated fitness seascapes.

3.1. Stationary distribution of mean and optimal trait

In a diffusive fitness seascape, the evolution equation (28) has a stationary solution of
bivariate Gaussian form,

Qstat(Γ , E∗) =
1
Z

exp

[
−1

2

(
Γ̂
Ê∗

)T

Σ−1
(

Γ̂
Ê∗

)]
, (30)

where Γ̂ ≡ Γ − 〈Γ 〉 and Ê∗ ≡ E∗ − E . This distribution is specified by its expectation
values

(
〈Γ 〉
〈E∗〉

)
≡

∫
dΓdE∗

(
Γ
E∗

)
Qstat(Γ , E∗)

=
(

w(c) E + (1 − w(c))Γ0
E

)
, (31)

and the covariance matrix

Σ =
(

〈Γ̂ 2〉 〈Γ̂ Ê∗〉
〈Γ̂ Ê∗〉 〈Ê∗2〉

)

≡
∫

dΓdE∗
(

Γ̂ 2 Γ̂ Ê∗

Γ̂ Ê∗ Ê∗2

)
Qstat(Γ , E∗)

= E2
0

(
(1/2c) w(c) + r2w(c)w(c, υ, r2) r2w(c, υ, r2)

r2w(c, υ, r2) r2

)
. (32)
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The distribution Qstat(Γ , E∗) depends on the parameters that characterize the fitness
seascape: the stabilizing strength c, the driving rate υ, and the relative driving span r2,
which are defined in equations (18) and (20). Together with the effective population size
N and the point mutation rate µ, these parameters determine the characteristic time
scales of evolution in a fitness seascape, the equilibration time τeq(c) and the saturation
time of fitness fluctuations, τsat(υ, r2); see equations (19) and (23). The function

w(c, υ, r2) ≡ c〈δ〉
c〈δ〉 + 2θ + Nυ/r2 =

τ−1
eq (c) − µ

τ−1
eq (c) − µ + τ−1

sat (υ, r2)
, (33)

and its equilibrium limit w(c) ≡ w(c, υ=0, r2) govern the coupling between the mean and
optimal trait. The mutation rate µ is the inverse of the neutral timescale τeq(0) = µ−1.
These functions depend on the scaled diversity 〈δ〉 ≡ 〈∆〉/E2

0 , which is given in [1],
equations (68)–(73), and is restated below in equation (53). For traits under substantial
selection (c # 1), we can distinguish two dynamical regimes: In macro-evolutionary
fitness seascapes, where τsat(υ, r2) # τeq(c) ≈ 2N/(〈δ〉c), this coupling remains close
to the equilibrium value w(c) ≈ 1; micro-evolutionary fitness fluctuations, which have
τsat(υ, r2) " τeq(c), induce a partial decoupling of mean and optimal trait.

We can also express this crossover in terms of the average square distance between
trait mean in the population and optimal trait of the underlying fitness seascape,

〈Λ2〉 ≡
∫

dΓdE∗ (Γ − E∗)2 Qstat(Γ , E∗). (34)

The analytical solution for the scaled quantity 〈λ2〉 ≡ 〈Λ2〉/E2
0 follows from equations (31)

and (32),

〈λ2〉(c, υ, r2) '






〈λ2〉eq(c, r2) + υτeq(c)
w(c)

2

[
1 + O

(
τeq

τsat

)]
, (macroev. seascapes)

〈λ〉eq(c, 0) + r2
[
1 − O

(
τsat

τeq

)]
, (microev. seascapes),

(35)

where

〈λ2〉eq(c, r2) =
w(c)
2c

+ (〈λ2〉0 + r2)(1 − w(c))2

' 1
2c

for c * 1 (36)

is the equilibrium average in a fitness landscape. The non-equilibrium contribution reflects
the lag between the population and the moving fitness peak. In macro-evolutionary
seascapes, this term remains small, which indicates that the trait distribution W(E)
closely follows the displacements of the fitness peak. In micro-evolutionary seascapes,
the mean square distance 〈λ2〉 becomes comparable to the driving span r2; that is, the
population no longer adapts to the moving fitness peak in an efficient way.
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The distribution Qstat(Γ , E∗) describes a stationary state that is manifestly out of
equilibrium, i.e. it does not have detailed balance. Its probability current

Jstat(Γ , E∗) = −





gΓΓ

2N
∂

∂Γ
− mΓ + gΓΓ 2c

NE2
0
(Γ − E∗)

υE2
0

∂

∂E∗ +
υ

r2 (E∗ − E)



 Qstat(Γ , E∗)

'






[
−2υc

(
Γ̂ − Ê∗(1 + 1/(2cr2))

(Γ̂ − Ê∗)

) (
1 + O

(
τeq

τsat

))]
Qstat(Γ , E∗)

(macroev. seascapes),
[
c〈δ〉
N

(
Ê∗

−2cr2Γ̂

) (
1 − O

(
τsat

τeq

))]
Qstat(Γ , E∗)

(microev. seascapes),
(37)

expresses the adaptive motion of the trait mean following the displacements of the fitness
peak. The probability current shows a crossover similar to the adaptive part of 〈Λ2〉
in (35): it increases linearly for low driving rates and saturates to a constant in the regime
of micro-evolutionary fitness fluctuations.

Remarkably, the joint statistics of mean and optimal trait can be associated with
evolutionary equilibrium in the limits of low and high driving rates. In the first case, we
obtain the equilibrium distribution

Qeq(Γ , E∗) = lim
υ→0

Qstat(Γ , E∗)

= Q̃0(Γ ) exp[2NF1(Γ |E∗)] R(E∗)

=
1

ZΓ
√

2πr2E2
0

exp
[
− 2θ

〈∆〉(Γ − Γ0)2 − c

E2
0
(Γ − E∗)2 − 1

2r2E2
0
(E∗ − E)2

]
,

(38)

which is the product of a Boltzmann distribution (15) and a quenched weight of the
trait optimum E∗ given by (24). This distribution satisfies detailed balance; that is, the
probability current Jstat(Γ , E∗) vanishes in the limit υ → 0. In the opposite limit, we
obtain the distribution

Q∞(Γ , E∗) = lim
υ→∞

Qstat(Γ , E∗)

= Q̃0(Γ ) exp[2NF1(Γ |E)] R(E∗)

=
1

ZΓ
√

2πr2E2
0

exp
[
− 2θ

〈∆〉(Γ − Γ0)2 − c

E2
0
(Γ − E)2 − 1

2r2E2
0
(E∗ − E)2

]
.

(39)

In this limit, the fast fluctuations of the fitness peak—and the associated current
Jstat(Γ , E∗) given by (37)—decouple from the macro-evolutionary dynamics of the mean
trait. The latter is governed by the effective fitness landscape

F1(Γ |E) =
∫

F1(Γ |E∗) R(E∗) dE∗, (40)
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(a) (b) (c)

Figure 2. Stationary distribution of mean and optimal trait in a fitness seascape.
The distribution Qstat(Γ , E∗) is shown (a) in the equilibrium limit (c = 1, υ = 0,
r2 = 1), (b) for an intermediate driving rate (υ = 1.5r2/τeq) and (c) in the deep
micro-evolutionary regime (υ = 50r2/τeq); see equations (30), (38) and (39).
The probability current J(Γ , E∗), which is given by equation (37), is marked by
arrows. With increasing driving rate, the correlation between Γ and E∗ is seen
to decrease.

which is obtained by averaging over the ensemble (24) of fitness peak positions and it
describes stabilizing selection towards the average peak position E . Accordingly, the scaled
average square distance 〈λ2〉, as given by equation (35), is the sum of the equilibrium
variance 〈λ2〉eq(c, 0) and the driving span r2. We can extend the notion of an effective
fitness landscape to micro-evolutionary seascapes with a large but finite driving rate
(c * 1, υ * r2/τeq(c)). Such seascape models still generate stabilizing selection on the
trait mean towards the mean peak position E , but with a reduced effective stabilizing
strength

ceff ≈ c

[
1 − 2c2r2τsat(υ, r2)

τeq(c)

]
. (41)

Similar effective landscapes resulting from micro-evolutionary seascapes have been
observed in phenomenological models [40].

As shown in appendix A, the dynamics of the trait in a punctuated seascape leads to
a stationary population ensemble that has the same first and second moments as in the
case of a diffusive seascape. In particular, the average square displacement between mean
and optimal trait, equation (35), as well as the averages of divergence, genetic load, and
fitness flux described in the following sections coincide for both kinds of seascapes.

The properties of the stationary ensemble of mean and optimal trait in a fitness
seascape are summarized in figures 2 and 3. The stationary distribution Qstat(Γ , E∗)
is shown in figure 2 for given parameters c, r2, and for different values of the driving rate:
in the equilibrium limit (υ → 0), for an intermediate value of υ, and in the fast-driving
regime (υ * r2/τeq(c)). The non-equilibrium probability current Jstat(Γ , E∗) is marked by
arrows. The crossover between micro- and macro-evolutionary fitness seascapes is plotted
in figure 3 for the scaled average square distance 〈λ2〉 as a function of the driving rate υ.
Our analytical results are tested by numerical simulations of the underlying Fisher-Wright
process [41] in a fitness seascape (17) with diffusive and punctuated peak displacements.
The details of the numerical methods for the population simulations are discussed in
appendix B.
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(a) (b)

Figure 3. Adaptive lag between mean and optimal trait. The scaled average
square distance 〈λ2〉 is plotted against the scaled driving rate υ/µ for (a) non-
recombining and (b) fully recombining populations for different stabilizing
strengths c. The other parameters are r2 = 1, θ = 0.0125. This function increases
from an equilibrium value for υ = 0 to a micro-evolutionary limit value for
υ → ∞ with a crossover for τsat(υ, r2) ∼ τeq(c), as given by equation (35). The
analytical results (lines) are compared to simulation results (with parameters
N = 100, % = 100) for a diffusive seascape (green and blue dots) and for a
punctuated seascape (orange and red dots).

3.2. Time-dependent trait divergence

In the previous paper [1], we have shown that the variance of the trait mean across
populations, 〈Γ̂ 2〉, and the average trait diversity 〈∆〉 uniquely characterize the stabilizing
strength c in a fitness landscape. The ensemble variance 〈Γ̂ 2〉 is just the half of the
asymptotic trait divergence limτ→∞〈D(τ)〉 ≡ limτ→∞〈(Γ (t+τ)−Γ (t))2〉. As it is clear from
the previous subsection, the stationary distribution Qstat(Γ ) and its statistics is compatible
with different values of the seascape parameters and, hence, cannot uniquely characterize
them. Instead, we use the time-dependent statistics of the stationary ensemble to infer
the parameters of the fitness seascape. A fundamental time-dependent observable is the
joint propagator Gτ (Γ , E∗|Γa, E∗

a), which denotes the conditional probability for mean and
optimal trait values Γ , E∗ at time t, given the values Γa, E∗

a at time ta; this function is
analytically calculated in appendix A. The resulting marginal propagator Gτ (Γ |Γa) serves
as building block for the probabilistic analysis of individual evolutionary trajectories of
cross-species trait data, which will be discussed in a follow-up paper [42]. Here we use
the joint propagator to compute the time-dependent trait divergence between populations
in one and two lineages, 〈D(κ)〉(τ) (κ = 1, 2), as defined in equations (4) and (5). The
average divergence between an ancestral and a descendent population in a single lineage
can be written as an expectation value in the stationary ensemble,

〈D(1)〉(τ) ≡ 〈(Γ (t) − Γ (ta))2〉

≡
∫

dΓ dΓa (Γ − Γa)2 ×

=
∫

dE∗
a dE∗ dΓa dΓ (Γ − Γa)2Gτ (Γ , E∗|Γa, E∗

a)Qstat(Γa, E∗
a), (42)
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where Γa ≡ Γ (ta), Γ ≡ Γ (t), E∗
a ≡ E∗(ta), E∗ ≡ E∗(t), and τ = t − ta. In a similar

way, the average divergence between two descendent populations evolved from a common
ancestor population is given by

〈D(2)〉(τ) ≡ 〈(Γ1(t) − Γ2(t))2〉Γ1(ta)=Γ2(ta)
E∗

1 (ta)=E∗
2 (ta)

≡
∫

dΓa dΓ1 dΓ2 (Γ1 − Γ2)2 ×

=
∫

dE∗
a dE∗

1 dE∗
2 dΓa dΓ1 dΓ2 (Γ1 − Γ2)2 Gτ/2(Γ1, E∗

1 |Γa, E∗
a)

× Gτ/2(Γ2, E∗
2 |Γa, E∗

a) Qstat(Γa, E∗
a), (43)

where Γa ≡ Γ1(ta) = Γ2(ta), E∗
a ≡ E∗

1(ta) = E∗
2(ta), Γi ≡ Γi(t), E∗

i ≡ E∗
i (t) (i = 1, 2), and

τ ≡ 2(t − ta). The resulting scaled divergences 〈d(κ)〉(τ) ≡ 〈D(κ)〉(τ)/E2
0 (κ = 1, 2) can be

calculated using the results of appendix A. We obtain

〈d(κ)〉(τ ; c, υ, r2) =
τeq(c)
τ̃(c)

[
1 − e−τ/τeq(c)] + υ w(c, υ, r2)w(c, −υ, r2)

×
[
τsat(v, r2)(1 − e−τ/τsat(v,r2)) − τeq(c)

(
1 − e−τ/τeq(c))

]

−2(κ − 1)
υ

τ−1
eq (c) + τ−1

sat (v, r2)
w(c, −υ, r2)2

×
[
e−τ/(2τsat(v,r2)) − e−τ/(2τeq(c))

]2
, (44)

where the equilibration time τeq(c), the saturation time τsat(v, r2), and the coupling factor
w(c, υ, r2) are given by equations (19), (23) and (33). The difference between the two
divergence measures is a consequence of the non-equilibrium adaptive dynamics, which
violate detailed balance. Equation (44) is valid for diffusive and for punctuated fitness
seascapes. It contains the three characteristic time scales defined in the previous section:
the drift time τ̃(c) is the scale over which the diffusion of the trait mean, in the absence
of any fitness seascape, generates a trait divergence of the order of the neutral trait
span E2

0 ; the equilibration time τeq(c) governs the relaxation of the population ensemble
to a mutation-selection-drift equilibrium in a fitness landscape of stabilizing strength c;
the saturation time τsat(v, r2) is defined by the mean square displacement of the fitness
peak reaching the driving span r2. Here, we focus on fitness seascapes with substantial
stabilizing strength and with a driving span of order of the neutral trait span (c # 1, r2 ∼
1). This selection scenario is biologically relevant: it describes adaptive processes that build
up large trait differences by continuous diffusion or recurrent jumps of the fitness peak.

In macro-evolutionary seascapes, the equilibration time and the non-equilibrium
saturation time are well-separated, τeq(c) ( τsat(υ, r2). This results in three temporal
regimes of the trait divergence:

• Quasi-neutral regime, τ " τeq(c). The scaled divergence takes the form

〈d(κ)〉(τ) = 2〈γ̂2〉eq
(
1 − e−τ/τeq

)
(45)

' 〈δ〉
N

τ (1 + O(τ/τeq)) (κ = 1, 2) (46)
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with τeq(c) given by equation (19). Its linear initial increase is caused by phenotypic
diffusion with the quasi-neutral diffusion constant ∆/(2N), as given by equations (7)
and (12). This diffusion, in turn, is generated by genetic drift and mutations at the
trait loci, which evolve under linkage disequilibrium imposed by stabilizing selection
on the trait diversity ∆, as discussed in [1] and section 3.3. The quasi-neutral increase
of the divergence is bounded by stabilizing selection acting directly on the trait mean;
this force becomes important for divergence times of order τeq(c). In the absence of
directional selection, it generates a constrained equilibrium divergence

2〈γ̂2〉eq(c) =
w(c)

c
. (47)

The quasi-neutral regime (46) should be compared with genuinely neutral trait
evolution,

〈d(κ)〉0(τ) =
〈δ〉0

µN

(
1 − e−µτ

)
, (48)

which follows from equation (46) in the limit c = 0. The neutral asymptotic behavior
for short divergence times reduces to a well-known result of classical quantitative
genetics [43–45], 〈D(κ)〉0 = 2Vm(τ/2) with Vm = 〈∆〉0/N ≈ 4µE2

0 . The saturation for
divergence times of order 1/µ follows the saturation of the genetic divergence at the "
constitutive loci.

• Adaptive regime, τeq(c) " τ ( τsat(v, r2). The scaled trait divergence follows

〈d(κ)〉(τ) =
[
2〈γ̂2〉eq

(
1−υ τ̃ κw(c)2)+ υ w(c)2 τ

][
1+O

(
e−τ/τeq , τ/τsat

)]

'
[
2〈γ̂2〉eq + υ (τ − κτeq(c))

]

×
[
1 + O

(
(θc)2, e−τ/τeq , τ/τsat

)]
(κ = 1, 2) (49)

In this regime, the trait divergence is the sum of an (asymptotically constant)
equilibrium component and an adaptive component, which increases with slope υ.
In a macro-evolutionary fitness seascape, this slope is, by definition, smaller than
the slope in the initial quasi-neutral (46), which allows for a clear delineation of the
two regimes in empirical data. This feature will be exploited in our selection test for
quantitative traits, which will be discussed in section 5.

• Saturation regime, τ # τsat(v, r2). On the largest time scales, the divergence

〈d(κ)〉(τ) ≈ 2〈γ̂2〉eq + 2r2w(c)w(c, υ, r2)(1 − e−τ/τsat) (κ = 1, 2) (50)

approaches its non-equilibrium saturation value

〈γ̂2〉stat(c, υ, r2) = 2〈γ̂2〉eq + 2r2w(c)w(c, υ, r2), (51)
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which equals the Γ -variance of the stationary distribution Qstat(Γ , E∗), and is
primarily determined by the driving span r2. In empirical data, this regime is often
well beyond the depth of the phylogeny and, hence, not observable.

In micro-evolutionary seascapes, the saturation of fitness fluctuations occurs faster
than the equilibration of the trait under stabilizing selection, i.e. τsat(υ, r2) " τeq(c).
Hence, there is a direct crossover from the quasi-neutral to the saturation regime. For
fast micro-evolutionary fitness fluctuations, τsat(υ, r2) ( τeq(c), the constraint on the
trait equals that in an effective fitness landscape with stabilizing strength ceff given by
equation (41). In this regime, time-dependent trait divergence data alone can no longer
resolve adaptive evolution in a fitness seascape from equilibrium in the corresponding
effective fitness landscape; this requires additional information on the trait diversity.

Figures 4 and A1(a) show the scaled divergence 〈d(1)〉(τ) for selection parameters c and
υ covering macro-evolutionary and micro-evolutionary fitness seascapes. The analytical
expression of equation (44) is seen to be in good agreement with numerical simulations
for diffusive and punctuated fitness fluctuations.

3.3. Stationary trait diversity

As discussed in section 2, our diffusion theory predicts that the movements of the
optimum trait in a single-peak fitness seascape of the form (17) only affects the evolution
of the trait mean in the population and not the trait diversity. The statistics of the
trait diversity remains similar to the case of evolution under stabilizing selection, which
is characterized by a time-invariant fitness function, F2(∆) = −c0 ∆. The resulting
equilibrium distribution Qeq(∆) is the product of the neutral mutation-drift equilibrium
Q0(∆), which is given in equations (53) and (55) of [1] and a Boltzmann factor from the
scaled fitness landscape, Qeq(∆) = Q0(∆) exp[−c0 ∆]. These distributions determine the
average diversity

〈∆〉 ≡
∫

d∆∆Qeq(∆) (52)

and its neutral counterpart 〈∆〉0, as well as the scaled expectation values 〈δ〉 ≡ 〈∆〉/E2
0

and 〈δ〉0 ≡ 〈∆〉0/E2
0 . The selective constraint on the trait diversity enters the diffusion

coefficient of the trait mean in equation (7), which sets the drift time scale τ̃(c) =
(1/2µ)(〈δ〉0/〈δ〉(c)), as given by equation (14). The distributions Q0(∆) and Qeq(∆)
can be written in closed analytical form; unlike in the case of the trait mean, these
distributions depend directly on the rate of recombination in the population [1]. We obtain
the scaled neutral expectation value 〈δ〉0 = 4θ(1 − 4θ + O(θ2)), which is independent of
the recombination rate, and the selective constraint

〈δ〉(c)
〈δ〉0

=
{

1 − 4θc + O((θc)2) for θc ( 1,
(4θc)−1/2 + O((θc)−1) for θc * 1 . (53)

in non-recombining populations. We note that this constraint depends only on the
product θc; therefore, it remains weak over a wide range of parameters (c " 1/θ), which
includes strong selection effects on the trait mean [1]. The full crossover function and the
corresponding expressions for fully recombining populations are given in equations (68)–
(73) of [1].
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(a) (b) (c)

Figure 4. Time-dependence of the trait divergence. The scaled average divergence
〈d(1)〉(τ) is shown as a function of the scaled divergence time τ/N for three cases:
neutral evolution (c = 0; grey lines), conservation in a static fitness landscape
(c = 1, υ = 0; red line) and adaptation in a macro-evolutionary fitness seascape
(c = 1, υ > 0; blue lines). Other parameters: θ = 0.0125, N = 100, % =
100, E = 0.7%. The analytical results of equation (44) (lines) are compared
to simulation results for asexual evolution in diffusive and punctuated fitness
seascapes (green and orange dots, respectively). The corresponding results for
fully recombining genomes are shown in figure A1. (a) Logarithmic plot and
(b) linear plot for macro-evolutionary seascapes, τsat(υ, r2) > τeq(c). These plots
show three evolutionary regimes: For τ " τeq, the trait evolution is dominated
by genetic drift and mutations. For τ # τeq, the seascape data show an adaptive
divergence component proportional to υτ ; the landscape data saturate to an
equilibrium divergence set by stabilizing selection. For τ ∼ τsat, the seascape
data saturate to a non-equilibrium asymptotic value of twice the driving span
r2. (c) Micro-evolutionary seascapes τsat(υ, r2) < τeq(c). There is a single cross-
over from the quasi-neutral regime for smaller values of τ to the saturation regime
for larger values of τ . The divergence 〈d(1)〉(τ) equals that in an effective fitness
landscape of stabilizing strength ceff < c. The limit υ → ∞ has ceff = c; i.e. the
function 〈d(1)〉(τ) becomes identical to the case υ = 0 (blue–red dashed line).

The numerical simulations reported in figure 5 show that the average diversity in
diffusive and punctuated fitness seascapes is well represented by the equilibrium value
throughout the crossover from macro- to micro-evolutionary driving rates, and over a wide
range of stabilizing strengths. Theoretically, the results of the diffusion theory are valid
for adaptive processes unless recurrent selective sweeps reduce the trait diversity within
the population. Such sweeps are more prominent in punctuated fitness seascapes due to
sudden changes of the trait optimum. We expect a significant reduction in trait diversity
due to the large and frequent jumps of the trait optimum in punctuated fitness seascapes
with very strong stabilizing selection. This regime is beyond the scope of the paper.

3.4. Discussion

In this section, we have derived an explicit expression for the joint distribution of mean and
optimal trait, Qstat(Γ , E∗), in a diffusive fitness seascape; the first and second moments
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(a) (b)

Figure 5. Equilibrium trait diversity. The figure shows the average trait diversity
〈δ〉 (in units of the neutral average 〈δ〉0) in a fitness seascape as a function of the
scaled driving rate υ/µ for different values of the stabilizing strength (c = 5, 50,
top to bottom); other parameters are as in figure 4. The equilibrium predictions
of diffusion theory (lines), which do not depend on υ, are compared to simulation
results of the adaptive process of (a) non-recombining and (b) fully recombining
populations in diffusive (green/orange dots) and punctuated seascapes (blue/red
dots). The simulation results confirm evolutionary equilibrium of the trait
diversity.

of this distribution remain the same for punctuated fitness fluctuations. Importantly,
the distribution Qstat(Γ , E∗) results from a genuine non-equilibrium dynamics.
Mathematically, it is distinguished from evolutionary equilibrium by a non-vanishing
probability current, which is shown in figure 2. Biologically, the deviation from equilibrium
reflects the lag of a population that follows a moving fitness peak. This lag can be measured
by an increased distance between mean and optimal trait, as shown in figure 3.

The non-equilibrium calculus also produces an analytic expression for the average
time-dependent trait divergence between populations, 〈D〉(τ), which will play a key role
in the inference of selection discussed below. In a macro-evolutionary fitness landscape,
this function displays two important regimes, which are shown in figure 3(b). In the
quasineutral regime, which occurs for short divergence times, 〈D〉 grows linearly with τ
at a rate proportional to the average trait diversity 〈∆〉, as given by equation (46). This
resembles the well-known short-time behavior for neutral evolution [43–45]; however, the
diversity is reduced by stabilizing selection. In the adaptive regime, which occurs for larger
divergence times, the function 〈D〉(τ) depends on both stabilizing and directional selection
acting directly on the trait mean, as shown in equation (49). This separation of regimes is
characteristic of quantitative traits. For genome evolution, negative and positive selection
set nucleotide substitution rates, which affect the divergence to first order in time.

Finally, the trait diversity in a minimal seascape remains at an approximate
equilibrium over a wide range of evolutionary parameters, as shown in figure 4. This
feature reflects the properties of the moving fitness peak, which changes its position but
retains its width. It is another difference to genome evolution, where selective sweeps can
drastically deplete sequence diversity.
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4. Fitness and entropy of adaptive processes

The distributions of the trait mean and diversity determine the fitness statistics of an
ensemble of populations in the stationary state. These statistics can quantify the cost
and the amount of adaption for the evolution of molecular traits. We also evaluate the
predictability of the trait evolution in an ensemble of populations after diverging from a
common ancestral population.

4.1. Genetic load

The genetic load of an individual population is defined as the difference between the
maximum fitness and the mean fitness [46–49],

L(t) ≡ f ∗ − f(t). (54)

For a quantitative trait in a quadratic fitness seascape of the form (17), we can decompose
the load into contributions of the trait mean and diversity,

L(t) = f∗ − c0(Γ (t) − E∗(t))2 − 2c0∆(t). (55)

In the stationary population ensemble (30), the average scaled genetic load can be written
as the sum of an equilibrium and an adaptive component,

〈2NL〉(c, υ, r2) = c[〈λ2〉(c, υ, r2) + 〈δ〉(c)]
= c[〈λ2〉eq(c, r2) + 〈δ〉(c)] + c[〈λ2〉(c, υ, r2) − 〈λ2〉eq(c, r2)]
≡ 2NLeq(c, r2) + 2NLad(c, υ, r2); (56)

these components can be computed analytically from equations (35) and (36). A simple
form is obtained for fitness seascapes of substantial stabilizing strength (c # 1),

2NLeq ' 1
2

+ O(1/c, θc), (57)

2NLad(c, υ, r2) '






υ τ̃(c)
[
1 + O

(
τeq

τsat

)]
, (macroev. seascapes)

cr2
[
1 − O

(
τsat

τeq

)]
, (microev. seascapes),

(58)

where the drift scale τ̃(c) is given by equations (14) and (53). From these expressions, we
read off three relevant properties of the genetic load.

First, the equilibrium load depends on c only via its diversity component; this
dependence remains weak even for substantial stabilizing selection (1 " c " 1/θ). The
equilibrium load component related to the trait mean, c〈λ2〉eq(c), becomes universal in
this regime: the fluctuations of Γ are constrained to a fitness range of order 2NLeq ' 1/2
around E∗, irrespectively of the stabilizing strength and the molecular details of the trait
[28]. This universality extends to simple nonlinearities in the genotype-phenotype map (1).
For a d-component trait as in Fisher’s geometrical model [2], the load formula generalizes
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(a) (b)

Figure 6. Genetic load and fitness flux. (a) Scaled genetic load 2NL (full
lines) and its constituents, the adaptive genetic load, 2NLad (dashed lines), and
equilibrium genetic load, 2NLeq (dotted lines), for stationary evolution of non-
recombining populations in a fitness seascape. The load components are plotted
against the scaled driving rate υ/µ for stabilizing strengths c = 5, 50; other
parameters like in figure 4. The analytical results of equation (56) are compared
to simulations for diffusive and punctuated fitness seascapes (green and orange
dots). The corresponding data for fully recombining populations are shown in
figure A1. The genetic load is dominated for υ " 1/τ̃(c) by the equilibrium
component and for υ # 1/τ̃(c) by the adaptive component; it saturates in
the micro-evolutionary seascape regime (υ # r2/τeq(c)). (b) The scaled fitness
flux 〈2Nφ〉 (solid line) and its components 〈2Nφmacro〉 and 〈2Nφmicro〉, as
defined in equations (67) and (68), are shown for the same parameters (all flux
values are measured in units of 1/µ). In macro-evolutionary fitness seascapes,
〈2Nφ〉 is an approximately linear function of the driving rate υ and the
component 〈2Nφmacro〉 is the dominant part. In micro-evolutionary seascapes,
〈2Nφ〉 saturates and the component 〈2Nφmicro〉 is the dominant part.

to 2NLeq ' d/2 (similar results have previously been reported in [50–52]). This is a
direct evolutionary analogue of the equipartition theorem in statistical thermodynamics,
which states that every degree of freedom that enters the energy function quadratically
contributes an average of kBT/2 to the total energy of a system at temperature T (the
proportionality factor kB is Boltzmann’s constant) [28].

Second, the adaptive load component depends only weakly on c, via the drift scale
τ̃(c). At a fixed value of Γ , the stochastic displacement of the fitness peak induces a fitness
cost proportional to c; however, this effect is largely offset by an adaptive response that
becomes faster with increasing c.

Third, the different regimes of adaptive trait evolution can be characterized in terms
of the genetic load. The adaptive load is asymptotically linear in the driving rate and
is subleading to the equilibrium load in the slow-driving regime (υ " υ̃(c) ≡ 1/τ̃(c)). It
becomes dominant for faster driving (υ # υ̃(c)) and saturates in the micro-evolutionary
regime (υ # r2/τeq(c)). Figure 6(a) shows this dependence of the adaptive load on the
driving rate.
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4.2. Fitness flux

The fitness flux, φ(t), characterizes the adaptive response of a population evolving in a
fitness land- or seascape,

φ(t) =
∫

dE f(E, t)
∂

∂t
W(E, t). (59)

The cumulative fitness flux, Φ(τ) =
∫ t+τ

t φ(t′)dt′, measures the total amount of adaptation
over an evolutionary period τ [53]. The evolutionary statistics of this quantity is specified
by the fitness flux theorem [20]. According to the theorem, the average cumulative
fitness flux in a population ensemble measures the deviation of the evolutionary process
from equilibrium: this deviation equals the relative entropy of the actual process
from a hypothetical time-reversed process [20, 54]. It is substantial—i.e. the process
is predominantly adaptive—if 〈2NΦ〉 # 1. Specifically, the cumulative fitness flux of
a stationary adaptive process increases linearly with time, 〈2NΦ(τ)〉 = 〈2Nφ〉τ with
〈φ〉 > 0.

For a quantitative trait in a quadratic fitness seascape of the form (17), we can
decompose the fitness flux into contributions of the trait mean and the trait diversity,

φ(t) = −2c0(Γ (t) − E∗(t))
dΓ (t)

dt
− 2c0

d∆(t)
dt

. (60)

In the stationary population ensemble (30), the average scaled fitness flux can be expressed
in terms of the stationary probability current Jstat(Γ , E∗),

〈2Nφ〉 = − 2c
E2

0

∫
dΓdE∗ (Γ − E∗)JΓ

stat(Γ , E∗), (61)

where JΓ
stat(Γ , E∗) is the Γ–component of Jstat(Γ , E∗). The fitness flux can be computed

analytically from equation (37),

〈2Nφ〉(c, υ, r2) = 2cυ w(c, υ, r2). (62)

In the regime of substantial stabilizing strength (c # 1), we get

〈2Nφ〉(c, υ, r2) '






2cυ
[
1 − O

(
τeq

τsat

)]
(macroev. seascapes),

4c2r2

τ̃(c)

[
1 − O

(
τsat

τeq

)]
(microev. seascapes),

(63)

where the drift time τ̃(c) is given by equations (14) and (53). The fitness flux depends
linearly on the driving rate in a macro-evolutionary fitness seascape, and it saturates in
the regime of micro-evolutionary fitness fluctuations. Figure 6(b) shows this dependence
of the fitness flux on the driving rate.

We can express the fitness flux in terms of correlation functions of the trait mean
Γ (t) and the lag Λ(t), which results in a simple relation between fitness flux and adaptive
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load. Inserting the probability current of equation (37) into the integral of equation (61),
we find

〈2Nφ〉 =
2c2〈δ〉

E2
0

(
〈Λ2〉 − 〈Λ2〉eq

)
(64)

+
4cθ
E2

0
lim
τ↘0

(〈Λ(t + τ)(Γ (t) − Γ0)〉 − 〈Λ(t + τ)(Γ (t) − Γ0)〉eq)

= c〈δ〉〈2NL〉ad(c, υ, r2)[1 + O(θ)].

From this representation, we obtain the spectral decomposition of the fitness flux,

〈2Nφ〉(c, υ, r2) =
∫ ∞

0
〈2Nφ(ω)〉 dω (65)

with

〈2Nφ(ω)〉 = 2cυ
c〈δ〉
π/2

ω2

(τ−2
eq (c) + ω2)(τ−2

sat (υ, r2) + ω2)
[1 + O(θ/(c〈δ〉)]. (66)

Using a cutoff frequency ωc = k/τeq(c) with a constant k of order 1, we can now define a
macro-evolutionary flux component,

〈2Nφmacro〉 =
∫ ωc

0
〈2Nφ(ω)〉 dω = 2cυ w(c, υ, r2)

×
(τ−1

eq (c) + 2µ) arctan[k] − (τ−1
sat (υ, r2) + 2µ) arctan [k τsat(v, r2)/τeq(c)]

(π/2)(τ−1
eq (c) − τ−1

sat (υ, r2))
,

(67)

and the complementary micro-evolutionary component

〈2Nφmicro〉 =
∫ ∞

ωc

〈2Nφ(ω)〉 dω = 〈2Nφ〉 − 〈2Nφmacro〉. (68)

In the regime of substantial stabilizing selection (c # 1), the macro-evolutionary fitness
flux in (67) reads

〈2Nφmacro〉(c, υ, r2) '






2cυ
2
π

arctan[k], (macroev. seascapes)

2cυ
τ 2
sat(υ, r2)
τ 2
eq(c)

2
π

(k − arctan[k]) ∼ 1
v
, (microev. seascapes)

(69)

This fitness flux component quantifies the macro-evolutionary part of adaptation. In
macro-evolutionary fitness seascapes (τsat(υ, r2) # τeq(c)), it increases proportionally to
the driving rate υ and, for k > 1, it represents the main fraction of the total fitness
flux 〈2Nφ〉. In micro-evolutionary fitness seascapes (τsat(υ, r2) " τeq(c)), this component
is suppressed: the macro-evolutionary fitness flux does not carry information on rapid
fitness fluctuations. This cross-over of 〈2Nφmacro〉 and of the complementary component
〈2Nφmicro〉 is shown in figure 6(b).

The spectral decomposition of the fitness flux has important consequences for the
analysis of macro-evolutionary adaptation. The detection of a substantial cumulative

doi:10.1088/1742-5468/2014/09/P09029 26

http://dx.doi.org/10.1088/1742-5468/2014/09/P09029


J. S
tat. M

ech. (2014) P
09029

Adaptive evolution of molecular phenotypes

fitness flux 〈2NΦmacro(τ)〉 > 1 over a macro-evolutionary period τ is not confounded by the
simultaneous presence of micro-evolutionary (for example seasonal) fitness fluctuations.
Since the cumulative fitness flux is a measure of entropy production during adaptation, the
spectral decomposition (65) also has an important information-theoretic interpretation:
The difference 〈2Nφmicro〉 = 〈2Nφ〉 − 〈2Nφmacro〉 is the average loss of information per
unit time through temporal coarse-graining. This loss is a non-equilibrium analogue of
the entropy production by spatial coarse-graining.

4.3. Predictability and entropy production

In [1], we quantified the evolutionary predictability of the molecular traits across an
ensemble of populations by

P ≡ exp [〈S(W)〉 − S(〈W 〉)], (70)

with S(W) ≡ −
∫

W(E) log W(E)dE. This definition compares the ensemble-averaged
‘micro-evolutionary’ Shannon entropy of the phenotype distribution within a population,
〈S(W)〉 ≡

∫
W S(W) Q(W), and the ‘macro-evolutionary’ Shannon entropy of the mixed

distribution, S(〈W〉) ≡ S(
∫

W W Q(W)), which is obtained by compounding the trait
values of all populations into a single distribution. We have shown that the predictability is
generically low in a neutral ensemble, but stabilizing selection in a single fitness landscape
can generate an evolutionary equilibrium with predictability values P of order 1 [1].

Here we compute the predictability in a time-dependent ensemble of populations that
descend from a common ancestor population. Similarly to [1], we evaluate equation (70) for
a distribution Qt(W) with the initial condition Qta(W) = δ(W −Wa) at time ta = t−τ/2.
We obtain the time-dependent predictability

P(τ ; c, υ, r2) '
(

〈δ〉(c)
〈d(2)〉(τ ; c, υ, r2)/2 + 〈δ〉(c)

)1/2

=
(

1
1 + Ω (2)(τ ; c, υ, r2)/4θ

)1/2

. (71)

Here, Ω (2)(τ ; c, v, r2) ≡ 2θ 〈d(2)〉(τ ; c, υ, r2)/〈δ〉 denotes the ratio between trait divergence
and diversity for the descendent populations. The trait statistics in a macro-evolutionary
fitness seascape, given by equations (44) and (53), entail the evolutionary predictability

P(τ ; c, υ, r2) = Peq(c)
[
1 − 1

2
υ τ̃

τ − 2τeq(c)
2N

[
1 + O (τ τeq(c)cv/N , τ/τsat, θ/(c〈δ〉))

]]

(72)

for τ # τeq(c), with Peq(c) = (1 + w(c)/(2c))−1/2 = (1 + 1/(2c))−1/2[1 + O(θ/(c〈δ〉))].
There are two stochastic components that generate macro-evolutionary entropy and,
hence, reduce the evolutionary predictability: fluctuations induced by genetic drift on
short time-scales τ " τeq(c) and fluctuations of the fitness peak over time-scales τ # τeq(c).
Nevertheless, as shown by (72), the predictability of an adaptive process with substantial
stabilizing selection can remain of order 1 over macro-evolutionary periods.

4.4. Discussion

In this section, we have introduced three simple summary observables of evolutionary
processes: genetic load, fitness flux, and predictability. For quantitative traits, the
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statistics of these observables is universal; that is, it decouples from details of molecular
evolution.

Genetic load is defined as the difference between the maximum of a fitness land- or
seascape and the mean fitness in a population. Here we have evaluated the load associated
with a quantitative trait. In evolutionary equilibrium under substantial stabilizing
selection, the load takes the simple universal form L = 1/(4N), which generalizes to
L = d/(4N) for a d-dimensional quantitative trait in a quadratic fitness landscape (see
[50–52] for similar results). This universal strong-selection behavior of the equilibrium
load distinguishes quantitative traits from individual genetic loci, for which L ∼ 1/N
signals weak selection3 (i.e. selection coefficients of order 1/N). In fitness seascapes, there
is an additional nonequilibrium load component, which is proportional to the driving rate
υ and measures the fitness cost of adaptation. We still know little on how this type of
load affects real populations. However, studies at the genetic level suggest it may play an
important role in rapid asexual adaptation processes, which occur in microbial or viral
populations [55,56].

Fitness flux measures the fitness gain through adaptive changes per unit of
evolutionary time; the cumulative fitness flux is the total adaptive fitness gain over an
evolutionary period [20]. These universal measures serve to compare adaptive processes in
different populations. In empirical studies, the fitness flux has been evaluated in systems
as diverse as flies and influenza viruses [53, 55, 57]. Here we have shown that the fitness
flux of a quantitative trait in a fitness seascape is proportional to stabilizing strength and
driving rate, φ ≈ 2cυ.

Predictability has been an important issue in laboratory evolution experiments,
which can be repeated multiple times under similar conditions. For a quantitative
trait, predictability can be defined in a straightforward way [1]: How much of the trait
repertoire in an ensemble of parallel-evolving populations is already contained in the trait
diversity of a single population? We have shown that fitness seascapes have antagonistic
effects: stabilizing selection enhances, lineage-specific directional selection decreases
predictability. Adaptive process in macro-evolutionary fitness seascapes can maintain
substantial predictability values over macro-evolutionary periods. Parallel and convergent
evolution at the functional level, paired with strongly divergent genome evolution has been
observed in a number of recent experiments [58–60]. These experimental observations can
be explained in a natural way, if we assume that many of these functions involve a complex
quantitative trait.

5. Inference of adaptive trait evolution

The statistical theory developed in this paper suggests a new method to infer selection
on quantitative traits. Our method is based on trait evolution in a single-peak fitness
seascape, as defined in equation (17), which is parametrized by its stabilizing strength c
and its driving rate υ.

3 For a quantitative trait, L ∼ 1/N holds over a broad range of stabilizing strengths [1]. Hence, this estimate
cannot be used to infer weak selection, as claimed in [18].
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Two main results are relevant for the inference of selection. First, evolution in a
macro-evolutionary fitness seascape affects the population mean trait in complementary
ways: it generates conservation on shorter scales and adaptation on longer scales of
evolutionary time. These characteristics are measured by the expected trait divergence
between populations, 〈D(κ)〉(τ), which depends on the divergence time τ and on the
selection parameters c and υ in a characteristic way. The divergence can be measured
either between an ancestral population and a descendent population (κ = 1) or between
two descendent populations evolving from a common ancestor population (κ = 2). As
discussed in section 3.2, these measures are generically distinct for adaptive processes4.
Second, the expected trait diversity within populations, 〈∆〉, shows a weaker signal of
conservation. Moreover, it decouples from the adaptive process in a single-peak fitness
seascape over a wide range of evolutionary parameters, as discussed in section 3.3.

5.1. Statistics of the divergence-diversity ratio Ω

Our test statistics is the time-dependent divergence-diversity ratio

Ω (κ)(τ) = 2θ
〈D(κ)〉(τ)

〈∆〉 (κ = 1, 2), (73)

where θ = µN denotes the nucleotide diversity. This function depends on the divergence
time τ and on the selection parameters c and υ. The typical behavior of Ω (κ)(τ) for
different evolutionary modes is shown in figure 7 and can be summarized as follows:

• Neutral evolution (c = 0). The divergence-diversity ratio has an initially linear increase
due to mutations and genetic drift, and it approaches a maximum value 1 with a
relaxation time τ0 = 1/µ,

Ω (κ)(τ) = Ω0(τ) '
{

µτ for τ ( τ0
1 for τ * τ0

(κ = 1, 2). (74)

The function Ω0(τ), which does not depend on κ because of detailed balance, is shown
as a grey line in figure 7. Its linear short-term behavior reflects the classical quantitative
genetics result 〈D(κ)〉(τ) ' Vmτ , where Vm = 〈∆〉0/(2N) is often called the mutational
variance of the trait [43–45].

• Conservation in a fitness landscape (c # 1, υ = 0). The divergence-diversity ratio
approaches a smaller maximum value, Ωstab(c) < 1, with a proportionally shorter
relaxation time τeq(c) = Ωstab(c)/µ,

Ω (κ)(τ) = Ωeq(τ ; c) '
{

µτ for τ ( τeq(c)
Ωstab(c) for τ * τeq(c)

(κ = 1, 2). (75)

The function Ωeq(τ ; c), which does not depend on κ by detailed balance, is shown as a
red line in figure 7. Over a wide range of evolutionary parameters, the maximum value

4 The relative difference between 〈D(1)〉(τ) and 〈D(2)〉(τ) is small (figure 5). This difference is conceptually
important, however, because it manifests the violation of detailed balance in adaptive processes. Similar effects
are ubiquitous in divergence data of trait adaptation across multi-branch phylogenies.
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Figure 7. The universal divergence-diversity ratio Ω (κ) (κ = 1, 2), as defined
in equation (73), for a quantitative trait evolving in a single-peak fitness land-
or seascape. This ratio is plotted as a function of the scaled divergence time,
τ . Neutral evolution: the function Ω0(τ) (grey line) is independent of κ and it
reaches the saturation value 1 on times scales τ * τ0 = 1/µ (grey curve; the
short-time behavior Ω0(τ) ' µτ given by classical quantitative genetics [43–45]
is shown as dashed line). Conservation in a fitness landscape: the function Ωeq(τ)
is independent of κ and has a smaller saturation value Ωstab(c) reached faster
than for neutral evolution, on time scales τ * τeq(c) (red curve). Adaptation
in a fitness seascape: there is a linear surplus Ω (κ)

ad (τ) ' υ[τ − κτeq(c)], which
measures the amount of adaptation (blue curves).

depends on the stabilizing strength in a simple way, Ωstab(c) ∼ 1/(2c), with corrections
for weaker selection and for larger nucleotide diversity.

• Adaptation in a macro-evolutionary fitness seascape (c # 1, 0 < υ " 1/τ̃). The
divergence-diversity ratio acquires an adaptive component,

Ω (κ)(τ) = Ωeq(τ ; c) + Ω (κ)
ad (τ ; υ)

= Ωeq(τ ; c) +
υ

2
[τ − κτeq(c)] (κ = 1, 2), (76)

with corrections for weaker selection and for τ approaching the non-equilibrium
saturation time τsat = r2/υ. The functions Ω (κ)(τ) are shown as blue lines in figure 7.

5.2. The Ω test for stabilizing and directional selection

Using the divergence-diversity ratio (73), we can infer selection on quantitative traits from
diversity and time-resolved divergence data. In principle, comparative trait data from a
single pair of species with divergence time τ # τeq(c) determine stabilizing selection in a
fitness landscape; data from three or more species determine stabilizing and directional
selection in a fitness seascape. Following equations (75) and (76), we then construct an
approximate linear fit to the Ω ratio of these data,

Ω(τ) ≈ Ωstab + Ωad(τ) = Ωstab +
υ

2
τ . (77)
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We obtain simple estimates of stabilizing strength and driving rate,

c ≈ 1
Ωstab

, υ ≈ 2Ωad(τ)
τ

, (78)

and we infer that a fraction

ωad(τ) ≡ Ωad(τ)
Ω(τ)

=
Ω(τ) − Ωstab

Ω(τ)
(79)

of the observed trait divergence is adaptive, i.e. driven by directional selection.
The Ω test reflects generic characteristics of quantitative trait evolution, which are

described by equations (74)–(76): The expected trait divergence 〈D〉(τ) always grows in
a quasi-neutral linear way for divergence times τ " τeq(c); beyond this regime, it depends
on both stabilizing and directional selection. This behavior has important consequences
for applications. First, the Ω test is insensitive to selection if the species compared
are too close. Second, cross-species comparisons that provide evidence for enhanced Ω
values in a single lineage cannot distinguish directional from relaxed stabilizing selection.
These limitations may partially explain the difficulties to infer system-wide evidence for
directional selection on gene expression [61–63].

An important prerequisite for the wide applicability of the Ω test is its universality: the
divergence-diversity ratio depends on the selection parameters c and υ, but it decouples
from the trait’s genetic basis. In particular, it depends only weakly on the number and
trait amplitudes of the constitutive sequence sites, and on the amount of recombination
between these sites. All of these genetic factors are, in general, unknown. They act as
confounding factors for an inference of selection based on non-universal observables [18].
The Ω statistics also decouples from details of the selection dynamics; it can be applied
to continual as well as to punctuated adaptive processes. We have tested this universality
by extensive numerical simulations, which are reported in appendix B.

The Ω test is based on ensemble averages of trait divergence and diversity. Our
statistical theory also specifies the deviations of individual evolutionary trajectories from
the ensemble averages; these fluctuations are described by the propagator functions in
appendix A. We can use the propagator statistics to build a hidden Markov model for the
inference of selection from noisy trajectories of individual traits. This method is essential
in the analysis of trait divergence over phylogenies of species, which is described in detail
in a follow-up paper [42].

5.3. Comparison with sequence-based inference of selection

The Ω test for selection on quantitative traits is related to a test for adaptive sequence
evolution of the McDonald-Kreitman type [64]. This test evaluates the divergence-diversity
ratio Ω for a sequence class under putative selection (e.g. nonsynonymous mutations in
protein-coding sequence) and compares it to the analogous ratio Ω0 for bona fide neutral
changes (e.g. synonymous mutations). Positive selection in the query sequence is inferred
if Ω > Ω0. In this case, the amplitude ratio

α =
Ω − Ω0

Ω
(80)

estimates the fraction of nonsynonymous substitutions that are adaptive, i.e. driven by
positive selection [65].
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Comparing the two inference schemes reveals a number of important differences. Unlike
the McDonald-Kreitman test, the Ω test for quantitative traits does not require a ‘null
trait’ that evolves near neutrality and takes the role of synonymous sequences. Indeed, no
such neutral trait gauge is available in most cases. Instead, the Ω test compares data from
three or more species, while the McDonald-Kreitman test requires only a single pair of
species. Moreover, the Ω test includes the inference of the stabilizing strength, while the
McDonald-Kreitman test leaves the strength of selection undetermined (large selection
coefficients of beneficial alleles are an input assumption for the estimate (80)).

6. Conclusion

In this paper, we have developed a statistical theory for the evolution of a quantitative
trait in a stochastic fitness seascape. The fitness model used for our analysis, a single-
peak seascape with diffusive or punctuated peak displacements, covers a broad spectrum
of biologically relevant evolutionary scenarios [28]. The two seascape parameters c and υ
quantify stabilizing and directional selection on the trait, which, in turn, govern the trait’s
fundamental evolutionary modes of conservation and adaptation. Our analysis shows that
these modes are not mutually exclusive, but are joint features of dynamic selection models.

In a macro-evolutionary fitness seascape, conservation and adaptation are associated
with different time scales: conservation is observed on shorter scales, while adaptive
changes build up on longer scales of evolutionary time. Micro-evolutionary fitness
fluctuations, on the other hand, lead to reduced genetic adaptation, which decouples
from the macro-evolutionary dynamics of the trait. Rapid adaptive response to seasonal or
other fluctuations of the environment often involves epigenetic modifications or phenotypic
switching [40]. The evolutionary roles of these mechanisms are beyond the scope of this
paper. The spectral decomposition of the fitness flux, which has been introduced above,
quantifies how the adaptive process is distributed on different scales of evolutionary time.

Our theory suggests new inference methods for selection on quantitative traits, which
have important potential applications. At the sequence level, an increasingly complex
picture of selection has emerged in recent years. Notably, we have acquired a growing
repertoire of empirical genotype-fitness landscapes [66], which has generated important
experimental and theoretical insights into the evolutionary dynamics on these landscapes.
However, we still know little about the statistical properties of empirical phenotype-fitness
maps, and next to nothing about phenotype-dependent seascapes. Systematic inference of
selection on molecular quantitative traits, such as levels of gene expression and enzymatic
activity, can contribute to close this gap. Eventually, fitness land- and seascapes for
individual traits will need to be integrated into larger phenotype-fitness maps, which
include fitness interactions between traits.

Appendix A. Analytical theory of the adaptive ensemble

In section 3.1, we obtained the Gaussian stationary distribution Qstat(Γ , E∗) in a diffusive
seascape from the underlying Fokker-Planck equation (7). Here we use a Langevin
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representation to compute the time-resolved trait divergence 〈d(κ)〉(τ) (κ = 1, 2). This
derivation, which reproduces mean and variance of the distribution Qstat(Γ , E∗), applies
to diffusive and punctuated fitness seascapes. We also compute the full propagator
function Gτ (Γ , E∗|Γa, E∗

a) for macro-evolutionary diffusive seascapes. The propagator in
a punctuated fitness seascape has the same mean and variance, but differs in higher trait
moments.

A.1. Moments of the optimal trait

In a diffusive seascape, the fitness peak E∗(t) follows an Ornstein–Uhlenbeck process with
Langevin representation

∂tE
∗(t) = − υ

r2 (E∗(t) − E) + η(t), (A.1)

where η(t) is a Gaussian random variable with the statistics

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = 2υE2
0 δ(t − t′). (A.2)

Formally solving equation (A.1),

E∗(t + τ) = E∗(t)e−τ/τsat + E(1 − e−τ/τsat) +
∫ t2

t1

dt′ e−(τ−t′)/τsatη(t′), (A.3)

and evaluating the noise correlations (A.2), we obtain the average peak value with an
initial condition E∗(t) = Ea and the autocorrelation function of the fitness peak in the
stationary ensemble,

〈E∗(t + τ)〉(Ea) = Eae−τ/τsat + E(1 − e−τ/τsat), (A.4)

〈E∗(t)E∗(t + τ)〉 = E2 + E2
0r

2e−τ/τsat . (A.5)

It is straightforward to check that equations (A.4) and (A.5) are valid also for punctuated
seascapes.

A.2. Moments of the trait mean

The Langevin equation for Γ (t) reads

∂tΓ (t) = −2µ(Γ (t) − Γ0) − 〈∆〉 2c
E2

0
(Γ (t) − E∗(t)) + ξ(t), (A.6)

where ξ(t) is a Gaussian noise with the statistics

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 =
〈∆〉
N

δ(t − t′), 〈ξ(t)E∗(t′)〉 = 0. (A.7)

For diffusive seascapes, the last term in (A.7) is equivalent to 〈ξ(t)η(t′)〉 = 0, which implies
that genetic drift and fitness seascape fluctuations are independent. The formal solution
of equation (A.6) reads

Γ (t + τ) = e−τ/τeqΓ (t) + (1−w(c))(1 − e−τ/τeq)Γ0

+
∫ t+τ

t

dt′ (E∗(t′)c〈δ〉 + ξ(t′)) e−(t+τ−t′)/τeq , (A.8)
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where w(c) = [1 + 2θ/(c〈δ〉)]−1. In the case of a diffusive fitness seascape, we can insert
the trajectory of the fitness peak E∗(t) given by equation (A.3),

Γ (t + τ) = Γ (t)e−τ/τeq + E∗(t)w(c, −υ, r2)(e−τ/τsat − e−τ/τeq)
+Γ0(1−w(c))(1 − e−τ/τeq)

+ Ew(c, −υ, r2)
[
(1 − e−τ/τsat) +

τeq

τsat
(1 − e−τ/τeq)

]

+
∫ t+τ

t

dt′
[
ξ(t′)e−(t+τ−t′)/τeq + η(t′)w(c, −υ, r2)

×(e−(t+τ−t′)/τsat − e−(t+τ−t′)/τeq)
]
; (A.9)

see, e.g. section 4 of [67]. Evaluating the noise correlations (A.7), we obtain

〈Γ 〉 = w(c)E + (1 − w(c))Γ0, (A.10)
〈Γ (t)Γ (t + τ)〉 = 〈Γ 〉2+〈Γ̂ 2〉e−τ/τeq + r2E2

0w(c, υ, r2)w(c, −υ, r2)(e−τ/τsat − e−τ/τeq), (A.11)
〈Γ (t + τ)E∗(t)〉 = 〈Γ 〉E + E2

0r
2w(c, −υ, r2)e−τ/τsat

− H(τ)E2
0 υτeq(c)w(c, υ, r2)w(c, −υ, r2)(e−τ/τeq − e−τ/τsat), (A.12)

where w(c, υ, r2) = [1 + (2θ + 2Nτ−1
sat (υ, r2))/(c〈δ〉)]−1 and H(τ) is the Heaviside step

function; i.e. H(τ) = 1 for τ > 0 and H(τ) = 0 otherwise. The relations (A.10)–(A.12)
are also valid for punctuated seascapes, as can be shown by evaluating equation (A.8)
with the noise terms (A.4), (A.5) and (A.7). The time-reflection asymmetry of the
cross-correlation (A.12) reflects the causal relation between Γ and E∗. The equal-time
correlations reproduce the moments (32) obtained from the solution of the Fokker-Planck
equation.

From the autocorrelation function (A.11), we immediately obtain the scaled divergence
〈d(1)〉 reported in equation (44). For the divergence between descendent populations, 〈d(2)〉,
we additionally use the fact that the fitness fluctuations in the different lineages are
independent of each other. In a diffusive fitness seascape, we have

〈ηi(t)ηj(t′)〉 = δi,j δ(t − t′) 2υE2
0 , i, j = 1, 2, (A.13)

which implies

〈(E∗
1(t + τ1) − 〈E∗

1(t + τ1)〉)(E∗
2(t + τ2) − 〈E∗

2(t + τ2)〉)〉 = 0; (A.14)

the latter relation is valid also for punctuated seascapes.

A.3. Propagators

We recall the decomposition of the bivariate propagator,

Gτ (Γ , E∗|Γa, E∗
a) = Gτ (Γ |Γa, E∗

a, E
∗) Gτ (E∗|E∗

a), (A.15)

which reflects the independence of the fitness peak dynamics from the trait mean.
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The fitness peak propagator takes the standard form for an Ornstein-Uhlenbeck
process and a Poisson jump process, respectively,

Gτ (E∗|E∗
a) =






1√
2π〈Ê∗2〉(τ , E∗

a)
exp

[
−(E∗ − 〈E∗〉(τ , E∗

a))2

2〈Ê∗2〉(τ)

]
(diffusive seascape)

e−τ/τsatδ(E∗−E∗
a) + (1−e−τ/τsat)Req(E∗) (punctuated seascape);

(A.16)

see, e.g. [67]. In both cases, the propagator has the same mean and variance,

〈E∗〉(τ , E∗
a) = Eae−τ/τsat + E(1 − e−τ/τsat), 〈Ê∗2〉(τ) = r2E2

0(1 − e−τ/τsat), (A.17)

in accordance with equations (A.4) and (A.5).
For diffusive seascapes, we can also compute the Gaussian propagator of the trait

mean for given fitness peak positions,

Gτ (Γ |Γa, E∗
a, E

∗) =
1√

2π〈Γ̂ 2〉(τ)
exp

[
−1

2
(Γ − 〈Γ 〉(Γa, E∗

a, E∗, τ))2

〈Γ̂ 2〉(τ)

]
. (A.18)

If τeq " τsat(υ, r2) and τ " τsat(υ, r2), we can approximate the stochastic trajectory of
the trait optimum E∗(t′) in the time interval ta = t − τ ! t′ ! t by the most likely
trajectory for given initial and the final values: E∗(t′) = E∗

a + ((t′ − ta)/τ)(E∗ − E∗
a). In

this saddle-point approximation, we obtain the conditional trait moments
〈Γ 〉(Γa, E∗

a, E
∗, τ) = Γae−τ/τeq + (E∗

aw(c) + Γ0(1 − w(c)))(1 − e−τ/τeq)

+
E∗ − E∗

a

τ
w(c) [τ − τeq(1 − e−τ/τeq)], (A.19)

〈Γ̂ 2〉(τ) = E2
0
w(c)
2c

(1 − e−τ/τeq). (A.20)

Equations (A.15)–(A.20) determine the joint propagator Gτ (Γ , E∗|Γa, E∗
a) for divergence

times τeq " τsat(υ, r2). In the large-time limit, τ * τsat(υ, r2), the propagator
becomes independent of the initial condition and approaches the stationary distribution,
Gτ (Γ , E∗|Γa, E∗

a) ' Qstat(Γ , E∗), given by equations (30)–(32). In most biological
experiments, the trait optimum values are hidden variables of the evolutionary process. In
that case, the only observable propagator is the marginal propagator for the trait mean,

Gτ (Γ |Γa) ≡
∫

dE∗
adE∗ Gτ (Γ , E∗|Γa, E∗

a)
Qstat(Γ , E∗

a)
Qstat(Γ )

=
1√

2π〈D(1)〉(τ)
exp

[
−1

2
(Γ − 〈Γ 〉(Γa, E , τ))2

〈D(1)(τ)〉

]
. (A.21)

Appendix B. Numerical simulations

We test our analytical results by simulations of a Fisher-Wright process for the evolution
under neutral mutation-drift dynamics, in fitness landscapes with stabilizing selection,
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(a) (b) (c)

Figure A1. Trait evolution under free recombination. (a) The scaled average
divergence 〈d(1)〉(τ) is shown as a function of the scaled divergence time τ/N
for three cases: neutral evolution (c = 0; grey line), conservation in a static
fitness landscape (c = 1, υ = 0; red line) and adaptation in a macro-evolutionary
fitness seascape (c = 1, υ > 0; blue lines). The analytical results of equation (44)
(lines) are compared to simulation results for evolution with free recombination
in diffusive and punctuated fitness seascapes (blue and red dots, respectively).
The analytical value of 〈δ〉 is taken from equation (69) of [1]; the other
parameters are as in figure 4. (c) Scaled genetic load 2NL (full lines), adaptive
load 2NLad (dashed lines), and equilibrium load 2NLeq (dotted lines), plotted
against the scaled driving rate υ/µ. The other parameters are as in figure 6(a).
(d) Scaled fitness flux 〈2Nφ〉 and its components 〈2Nφmicro〉 and 〈2Nφmacro〉
(with decomposition constant k = 2), plotted against the scaled driving rate
υ/µ. The other parameters are as in figure 6(b).

and in diffusive or in punctuated fitness seascapes for sexual and asexual populations.
We evolve a population of N individuals with genomes a(1), . . . , a(N), which are bi-
allelic sequences of length ". A genotype a defines a phenotype E(a) =

∑!
i=1 Eiai; the

phenotypic effects Ei are drawn from various distributions (see below). In each generation,
the sequences undergo point mutations with a probability εµ per generation, where ε is
the generation time. The sequences of next generation are then obtained by multinomial
sampling; the general form of the sampling probability is proportional to [1+εf(E(a), t)],
with the fitness seascape f(E, t) given by (17). For a diffusive seascape, a new optimal
trait value E∗(t) is drawn before each reproduction step from a Gaussian distribution
with mean (1 − ευ/r2)E∗(t) + ε(υ/r2)E and variance ευE2

0 . For a punctuated seascape,
a new, uncorrelated fitness peak is drawn from the distribution Req(E∗) with probability
ευ/r2.

The evolutionary statistics of the trait mean depends weakly but systematically on
the recombination rate; this dependence arises because the mean diversity 〈∆〉 enters the
quasi-neutral dynamics of Γ [1]. To simulate evolution with a finite recombination rate ρ,
we recombine the genomes of pairs of individuals with probability ερ at a single random
crossover position of the genome. For the simulation of free recombination, we randomly
shuffle the alleles a1

i , ..., aN
i between the individuals at each genomic site i and in each

generation. Analytical and numerical results for the scaled divergence 〈d(1)〉(τ), the scaled
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(a) (b) (c)

Figure A2. Universality of the divergence/diversity ratio Ω(τ). Numerical results
for the evolution in fitness seascapes (c = 1, υ = 4 · 10−5, upper lines and
dots) and fitness landscapes (c = 1, υ = 0, lower lines and dots) under
different molecular conditions are compared to the analytical solutions for
nonrecombining (ρ = 0) and free-recombining (ρ → ∞) genomes. (a) Evolution
with different recombination rates (color-coded dots for diffusive seascapes and
triangles for punctuated seascapes). (b) Evolution with different numbers % of
constitutive sites in nonrecombining populations. (c) Evolution wih different
effect distributions. The trait amplitudes Ei (i = 1, . . . , %) are drawn from
an exponential distribution with expectation value 1/

√
2 and from a delta

distribution (all sites have amplitude Ei = 1).

genetic load 2NL, and the scaled fitness flux 〈2Nφ〉/µ under free recombination are shown
in figure A1; these should be compared with the corresponding results for non-recombining
populations in figures 3–5.

Universality is the (approximate) independence of a summary trait observable from
details of the trait’s genomic encoding and of its molecular evolution [28]. In figure A2, we
report three universality tests for the divergence-diversity ratio Ω (1)(τ). First, simulations
show that the Ω statistics depends only weakly on the recombination rate throughout the
crossover between asexual evolution (ρ = 0) and free recombination (ρ → ∞). Second,
the Ω ratio is invariant under variations in the number of constitutive genomic sites, ", at
constant selection parameters c and υ. Third, this ratio is also invariant under variations
of the phenotypic effect sizes Ei at these sites; this is tested by comparing simulations for
two distributions of effect sizes.
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[58] Tenaillon O, Rodŕıguez-Verdugo A, Gaut R L, McDonald P, Bennett A F, Long A D and Gaut B S 2012

The molecular diversity of adaptive convergence Science 335 457–61
[59] Toprak E, Veres A, Michel J B, Chait R, Hartl D L and Kishony R 2012 Evolutionary paths to antibiotic

resistance under dynamically sustained drug selection Nature Genet. 44 101–5
[60] Barroso-Batista J, Sousa A, Lourenço M, Bergman M L, Sobral D, Demengeot J, Xavier K B and Gordo I

2014 The first steps of adaptation of escherichia coli to the gut are dominated by soft sweeps PLoS Genet.
10 e1004182

[61] Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M and Pääbo S
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