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Lecturer: Thomas.Quella@uni-koeln.de

The first set of exercises is supposed to be solved during the lecture. They are relatively easy
and should not take much time. The second set of exercises is for the separate exercise session.
Simply pick out the exercises you are most interested in. Exercises marked by a star ? are more
involved and give a perspective going beyond the immediate scope of the lecture.

In-Lecture Exercises

1. Majorana modes

1. Let c†k and ck be the usual fermionic creation and annihilation operators. Derive the
commutation relations for the Majorana modes ak and bk which are defined as

ck = 1
2
(ak + ibk) and c†k = 1

2
(ak − ibk) . (1)

2. The AKLT model

1. Verify that the projector onto 2 ⊂ 1
2
⊗ 1

2
is given by

P2 = 1
2
~S1 · ~S2 + 1

6
(~S1 · ~S2)

2 + 1
3
. (2)

2. Consider an arbitrary Hamiltonian H =
∑

k Pk which is a sum over hermitean projectors
Pk (not necessarily orthogonal). Show that H is non-negative and that a zero-energy
eigenstate needs to be annihilated by each Pk separately. This argument can be used for
the discussion of the AKLT model.

3. Group cohomology

1. Derive the cocycle condition for the functions ω : G × G → U(1) that follows from the
associativity of a projective representation ρ : G→ U(1).

2. Verify that every function of the form

α(g1, g2) =
f(g1)f(g2)

f(g1g2)
, (3)

where f : G→ U(1), is a solution to the cocycle condition.

3. Let ρ be a projective representation with cocycle ω. Show that ρ′(g) = f(g)ρ(g) defines
a projective representation and derive its cocycle ω′.

4. Verify that the sets of cocycles and coboundaries have the structure of an abelian group.
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Separate Exercises

4. The Majorana chain I (entanglement spectrum)

1. Verify the validity of the rewriting (if you don’t believe it, otherwise do something more
interesting)

H =
∑
k

{
−w(c†kck+1 + c†k+1ck)− µ(c†kck − 1

2
) + (∆ckck+1 + ∆c†k+1c

†
k)
}

(4)

=
i

2

∑
k

{
−µakbk + (∆ + w)bkak+1 + (∆− w)akbk+1

}
. (5)

Note that we assumed ∆ to be real. A potential phase could be absorbed in a redefinition
of the operators c and c†.

2. Let us consider the non-trivial phase associated with µ = 0 and ∆ = w. In this exercise
we are going to derive the entanglement spectrum of the groundstate.

(a) Verify that the state

|ψ〉 =
1√

2L−1
(1 + c†1)(1 + c†2) · · · (1 + c†L)|0〉 (6)

is a groundstate of the open chain. [Hint: Check that the projectors P̃k have the
desired action. Rewrite them in terms of the fermions c, c† for this purpose.]

(b) The state |ψ〉 is an equal weight superposition of all states available. We split it
according to

|ψ〉 = |ψ+〉+ |ψ−〉 , (7)

where |ψ±〉 are the projection onto even and odd fermion numbers. Show that |ψ−〉
is the groundstate of the closed chain. [Hint: See previous hint.]

(c) Calculate the reduced density matrix of the state |ψ−〉 for an arbitrary segment by

expressing it in terms of the states |ψA/B± 〉, the analogue of the states |ψ±〉 but now
for the two subsystems A and B.

(d) Write down the Schmidt decomposition and show that the entanglement spectrum
is two-fold degenerate.

(e) How do groundstate, reduced density matrix and entanglement spectrum look like
for the trivial chain with ∆ = w = 0 and µ < 0? Again we can consider an arbitrary
segment for the entanglement cut.

5. The Majorana chain II (Pfaffian)

1. The Hamiltonian of a general non-interacting superconducting system can be written in
terms of Majorana fermions γk (with k = 1, . . . , 2L) as

H =
i

4

∑
k,l

Aklγkγl (with Ākl = Akl = −Alk) . (8)
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Assuming the uniqueness of the associated groundstate, its parity Π can be expressed as
the sign of the Pfaffian [1],

Π = sign Pf(A) , (9)

where the Pfaffian is defined as

Pf(A) =
1

2LL!

∑
σ∈S2L

sign(σ)Aσ(1)σ(2) · · ·Aσ(2L−1)σ(2L) . (10)

(a) Determine the Pfaffian of a general anti-symmetric 2× 2 and 4× 4 matrix.

(b) Prove the relation

Pf(WAW T ) = det(W ) Pf(A) . (11)

(c) Using a transformation A 7→ WAW T , a general anti-symmetric 2L× 2L matrix can
be brought to the standard form

Λ1 ⊕ Λ2 ⊕ · · · ⊕ ΛL with Λ =

(
0 λ
−λ 0

)
. (12)

Determine the Pfaffian of such a matrix.

(d) Determine the Pfaffian of the two special Hamiltonians discussed in the lecture and
verify the validity of the relation (for these two cases)

Γ =
Π(L1 + L2)

Π(L1)Π(L2)
. (13)

6. The Majorana chain III (time reversal invariance)

1. Time reversal is an anti-linear operation which acts as TckT
−1 = ck and Tc†kT

−1. Derive
the transformation properties of the Majorana modes ak and bk.

2. Write down all possible bilinears in ak and bk (i.e. complex multiples of akal, bkbl and akbl)
and classify them according to whether they are hermitean or time-reversal invariant (or
both).

Hermitean T -invariant

3. In the lecture we have argued that a 1D superconductor with symmetry Z2 (fermionic
parity) has two phases which are classified by Z2. A crucial question for the non-triviality
of a phase is whether the edge modes can be gapped out or not (i.e. whether one can
write down a term in the Hamiltonian which gives them a mass). Try to stagger Majorana
chains and investigate whether enforcing time-reversal symmetry changes the topological
classification.

4. [?] [This exercise requires to know the projective representations of ZT2 , see one of the
other exercises.] Consider an arbitrary 1D fermionic model with the following symmetries:
Fermionic parity Z2 and time-reversal invariance ZT2 . Denote the generators by Q and T .
Using the method of symmetry fractionalization, work out all possible topological phases.
[Hint: There are eight distinct phases.]
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7. Projective representations and central extensions

1. Work out the possible classes of projective representations for the following groups

(a) ZN × ZN
(b) ZM × ZN

2. Work out the possible classes of projective representations of the group ZT2 generated by
time-reversal T . Bear in mind that T is represented by an anti-unitary (hence anti-linear)
operator. Show that there are only two classes corresponding to the freedom of choosing
ρ(T )2 = ±1.

3. Consider the subgroup Z2×Z2 ⊂ SO(3) of π-rotations Rx, Ry, Rz around the axes x, y, z.
Show that the quantity

ρ(Rx)ρ(Ry)ρ(Rx)
−1ρ(Ry)

−1 ∈ Z2 (14)

determines the class of the projective representation ρ : Z2 × Z2 → U(1). Write down
an arbitrary 2D and an arbitrary 3D representation (both non-trivial) and calculate the
previous quantity. Briefly discuss the physical implications.

4. Consider a cocycle ω associated with a projective representation of a group G. Use ω to
define a non-trivial multiplication on the set U(1)×G, i.e. a non-trivial central extension
H of G. Verify the group axioms. Argue that two central extensions obtained from
equivalent cocycles (same class) are isomorphic.

5. [?] Work out the cocycle conditions for a general group G involving unitary and anti-
unitary elements. (Be careful about the order of factors!) Use that G comes with a
homomorphism φ : G → Z2. Elements which map to 1 are unitary, the others anti-
unitary. How should the associated coboundaries look like?

8. [?] Majorana chain versus transverse field Ising model

1. Consider the non-local transformations

Sxk = (ck + c†k)
∏
l<k

(1− 2c†kck) (15)

Syk = −i(ck − c†k)
∏
l<k

(1− 2c†kck) (16)

Szk = 1− 2c†kck (17)

and derive what the Hamiltonian of Kitaev’s Majorana chain is mapped to. Start with the
two special choices discussed in the lecture. Discuss the fate of the topologically trivial
and the topologically non-trivial phase under this map.
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Further reading

Unfortunately, there is no single reference which will cover all the topics of this lecture course.
Some of the relevant original articles are

• Majorana chains

– The discussion of Majorana edge modes in the non-interacting chain [1]

– Classification using symmetry fractionalization [2, 3]

• AKLT model

– Original construction and discussion [4]

– Discussion of the entanglement spectrum [5]

• Matrix product states [6]

• For the classification of topological phases using group cohomology [8, 7, 9, 10, 11]

• Tools related to entanglement

– Entanglement entropy scaling in 1D critical systems [12]

– Topological entanglement entropy in 2D gapped systems [13]

– Entanglement spectra in 2D fractional quantum Hall systems [14]
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Solutions

1. The Majorana chain

1. The relations for ck and c†k may easily be inverted to read

ak = ck + c†k and bk = −i(ck − c†k) . (18)

One then easily finds

{ak, al} = {bk, bl} = 2δkl and {ak, bl} = 0 . (19)

These relations are known to define a Clifford algebra.

2. The AKLT model

1. We have the decomposition 1
2
⊗ 1

2
= 0 ⊕ 1 ⊕ 2. The individual components can be

distinguished by the eigenvalues Cj = j(j + 1) of the quadratic Casimir operator

C = ~S2 = (~S1 + ~S2)
2 = ~S2

1 + ~S2
2 + 2 ~S1 · ~S2 = 4 + 2 ~S1 · ~S2 . (20)

Here we used ~S2
1 = ~S2

2 = 2 (the physical sites have j = 1). By evaluation on the individual
components of the tensor product one can verify that the projector is given by

P2 =
(C − C0)(C − C1)

(C2 − C0)(C2 − C1)
. (21)

The result follows immediately by simplification of this expression.

2. An operator H is non-negative if all its expectation values 〈ψ|H|ψ〉 are non-negative. The
projectors satify P 2

k = Pk = P †k . In the present case one therefor has

〈ψ|H|ψ〉 =
∑
k

〈ψ|Pk|ψ〉 =
∑
k

〈ψ|P 2
k |ψ〉 =

∑
k

〈ψ|P †kPk|ψ〉 =
∑
k

||Pk|ψ〉 ||2 . (22)

This proves both assertions.

3. Group cohomology

1. Using the properties of a projective representation one has[
ρ(g1)ρ(g2)

]
ρ(g3) = ρ(g1)

[
ρ(g2)ρ(g3)

]
(23)

ω(g1, g2) ρ(g1g2)ρ(g3) = ω(g2, g3) ρ(g1) ρ(g2g3) (24)

ω(g1, g2)ω(g1g2, g3) ρ(g1g2g3) = ω(g2, g3)ω(g1, g2g3) ρ(g1g2g3) . (25)

The comparison of both sides yields

ω(g1, g2)ω(g1g2, g3) = ω(g2, g3)ω(g1, g2g3) . (26)
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2. Plugging the given expression into the cocycle condition one finds

lhs =
f(g1)f(g2)

f(g1g2)

f(g1g2)f(g3)

f(g1g2g3)
(27)

rhs =
f(g2)f(g3)

f(g2g3)

f(g1)f(g2g3)

f(g1g2g3)
. (28)

Obviously both sides agree.

3. We calculate

ρ′(g1)ρ
′(g2) = f(g1)f(g2) ρ(g1)ρ(g2) = f(g1)f(g2)ω(g1, g2) ρ(g1g2) (29)

=
f(g1)f(g2)

f(g1g2)
ω(g1, g2) ρ

′(g1g2) . (30)

The cocycle ω′ is therefor given by

ω′(g1, g2) =
f(g1)f(g2)

f(g1g2)
ω(g1, g2) . (31)

In other words: The two cocycles are related by a coboundary.

4. As functions with values in U(1) the respective group structure is inherited from that of
U(1). All one needs to check is whether the corresponding sets close under multiplication.
But this is rather obvious. Remark: Both cases can be related to tensor products ρ1⊗ ρ2
of projective representations.

4. The Majorana chain I (entanglement spectrum)

1. This is straightforward and will not be stated explicitly.

2. Entanglement spectrum of the groundstate.

(a) We have to verify that all operators

P̃k = −ibkak+1 = −(ck − c†k)(ck+1 + c†k+1) (32)

act as the identity element. For this we only need to check

P̃k(1 + c†k)(1 + c†k+1)|0〉 = −(ck − c†k)(ck+1 + c†k+1)(1 + c†k)(1 + c†k+1)|0〉 (33)

= −(ck − c†k)(1− c
†
k)(ck+1 + c†k+1)(1 + c†k+1)|0〉 (34)

= −(ck − ckc†k − c
†
k)(ck+1 + ck+1c

†
k+1 + c†k+1)|0〉 (35)

= (1 + c†k)(1 + c†k+1)|0〉 . (36)

Note indeed that P̃k is bosonic and can be moved through all operators cl and c†l
with l < k without problems. Also, additional operators with l > k + 1 in front of
|0〉 do not alter the conclusion.
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(b) In addition to the previous relations we now also have to demand that P̃L = −ibLa1
acts trivially. But since the total fermionic parity is given by

Q = (−i)La1b1 · · · aLbL = −P̃1 · · · P̃L (37)

this implies that Q acts as minus the identity.

(c) First we note that |ψ−〉 has unit norm due to the special convention used in Eq. (6).
Since the state |ψ−〉 has odd fermion parity one has

|ψ−〉 = 1√
2

[
|ψA−〉 ⊗ |ψB+〉+ |ψA+〉 ⊗ |ψB−〉

]
. (38)

By writing out the density matrix one has

ρ = 1
2

[
|ψA−〉|ψB+〉〈ψA−|〈ψB+ |+ |ψA+〉|ψB−〉〈ψA−|〈ψB+ | (39)

+ |ψA−〉|ψB+〉〈ψA+|〈ψB− |+ |ψA+〉|ψB−〉〈ψA+|〈ψB− |
]
. (40)

Since states with different fermion number are orthogonal one immediately finds the
reduced density matrix

ρA = 1
2
|ψA−〉〈ψA−|+ 1

2
|ψA+〉〈ψA+| = e− ln 2(|ψA−〉〈ψA−|+ |ψA+〉〈ψA+|) (41)

Since both states appearing here are orthogonal, this provides a Schmidt decom-
position with equal weight (the normalization can be checked by taking the trace
which needs to equal 1). We have thus proven the degeneracy of the entanglement
spectrum ε1 = ε2 = ln 2.

(d) See previous statement.

(e) For the trivial chain the groundstate is |0〉 which is a product state. The reduced
density matrix is ρA = |0A〉〈0A| where |0A〉 is the vacuum in the reduced chain. For
this reason there is a single entanglement eigenvalue ε1 = 0.

5. The Majorana chain II (Pfaffian)

1. Pfaffians of small rank anti-symmetric matrices are given by

Pf

(
0 λ
−λ 0

)
= λ , Pf


0 λ1 λ2 λ3
−λ1 0 λ4 λ5
−λ2 −λ4 0 λ6
−λ3 −λ5 −λ6 0

 = λ1λ6 − λ2λ5 + λ3λ4 . (42)

2. We start with the product

(WAW T )kl =
∑
m,n

WkmAmnWln . (43)
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Plugging this into the definition of the Pfaffian we find

Pf(WAW T ) =
1

2LL!

∑
σ∈S2L

sign(σ)
∑
{ik}

Wσ(1)i1Wσ(2)i2Ai1i2 · · ·Wσ(2L−1)i2L−1
Wσ(2L)i2LAi2L−1i2L

(44)

=
1

2LL!

∑
{ik}

∑
σ∈S2L

sign(σ)
[
Wσ(1)i1Wσ(2)i2 . . .Wσ(2L)i2L

][
Ai1i2 · · ·Ai2L−1i2L

]
.

(45)

We note that the summand vanishes if any two of the ik concide. This is due to summing
over the transposition which exchanges the two but gives a different sign factor. For this
reason, all ik can be assumed to be distinct. This means that the sum over all {ik} can
be replaced by a sum over all permutations π with ik = π(k). We then find

Pf(WAW T ) =
1

2LL!

∑
π∈S2L

∑
σ∈S2L

sign(σ)
[
Wσ(1)π(1)Wσ(2)π(2) . . .Wσ(2L)π(2L)

]
(46)

[
Aπ(1)π(2) · · ·Aπ(2L−1)π(2L)

]
. (47)

Next we note that the sum over the permutations σ and the product of W just gives
the determinant det(W ) if π(k) = k. In all the other cases one obtains sign(π) det(W )
since the factors first need to be brought into the correct order (the permutation in the
arguments of π can be mapped into the corresponding permutation of the arguments of
σ). This immediately implies

Pf(WAW T ) =
1

2LL!
det(W )

∑
π∈S2L

sign(π)
[
Aπ(1)π(2) · · ·Aπ(2L−1)π(2L)

]
(48)

= det(W ) Pf(A) . (49)

3. The Pfaffian is just the product of the corresponding λi,

Pf(Λ1 ⊕ · · · ⊕ ΛL) = λ1 · · ·λL . (50)

4. We set (γ1, γ2, γ3, . . .) = (a1, b1, a2, . . .). In this basis, the matrix A for Case i) has the
form

A =

(
0 −µ
µ 0

)
⊕ · · · ⊕

(
0 −µ
µ 0

)
. (51)

Here one has Pf(A) = (−µ)L and Π(L) = (− signµ)L and hence Γ = 1. Similarly, the
matrix A for Case ii) has the form

A =


0 · · · −2w

0 2w
−2w 0

...
...

2w · · · 0

 (52)
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To bring this matrix to standard form one needs to apply two cyclic permutations, one
bringing the last column in front of the second column and one bringing the last row in
front of the second row. Both transformations are implemented in terms of a W with
det(W ) = 1. We note that all blocks have the same sign except for the first. We thus
find Pf(A) = −(2w)L. This then implies Π(L) = −(signw)L, and hence Γ = −1.

6. The Majorana chain III (effect of time reversal invariance)

1. A simple calculation yields that the Majorana modes of type a and b need to be considered
on a different footing:

TakT
−1 = T (ck + c†k)T

−1 = ck + c†k = ak (53)

TbkT
−1 = T [−i(ck − c†k)]T

−1 = +i(ck − c†k) = −bk . (54)

2. One easily finds

Hermitean T -invariantiakbk
iakal

ibkbl

akal

bkbl

3. By staggering systems with edge modes it looks as if there was a topological invariant in Z
which is just counting the number of edge modes (on one side of the chain). However, not
all configurations are stable since pairs of Majorana fermions can be gapped out using
interactions of the form iakal, ibkbl or iakbl. However, we note that the first two are
forbidden by time-reversal invariance. Hence imposing time-reversal invariance suggests
a Z-classification of topological phases (in 1D). However, as will be shown in the next part
of this exercise, this classification is actually reduced to Z8 if one allows for interactions.

4. See [2, 3].

7. Projective representations and central extensions

1. Projective representations of ZM × ZN

(a) The final result is H2
(
ZN × ZN

)
= ZN .

(b) The result is H2
(
ZM × ZN

)
= Zgcd(M,N), where gcd denotes the greatest common

divisor.

For many more explicit results, see [10].

2. By the replacement ρ(g) 7→ ρ(g)/ρ(1) one can always assume ρ(1) = 11. Let us then
investigate

ρ(T )ρ(T ) = ω(T, T ) ρ(T 2) = ω(T, T ) ρ(1) = ω(T, T ) . (55)

In contrast to the case of a unitary symmetry, the right hand side cannot be absorbed
into a redefinition of ρ(T ). Indeed, for any ξ ∈ U(1) one finds[

ξρ(T )
][
ξρ(T )

]
= ξξ̄ ρ(T )ρ(T ) = ω(T, T ) 11 . (56)
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It remains to find the allowed values of ω = ω(T, T ). These follow from the associativity
condition

lhs =
[
ρ(T )ρ(T )

]
ρ(T ) = ωρ(T )ρ(T ) = ω2 11 (57)

rhs = ρ(T )
[
ρ(T )ρ(T )

]
= ρ(T )ωρ(T ) = ω̄ ρ(T )ρ(T ) = ω̄ω 11 . (58)

Hence we conclude ω = ω̄. This only leaves the two possibilities ω = ±1.

3. The corresponding matrices can be obtained by investigating which matrices are rotating
vectors and Pauli matrices in the desired way. One obtains

ρ(Rx) =

1 0 0
0 −1 0
0 0 −1

 ρ(Ry) =

−1 0 0
0 1 0
0 0 −1

 ρ(Rz) =

−1 0 0
0 −1 0
0 0 1

 (59)

and

ρ(Rx) = σx =

(
0 1
1 0

)
ρ(Ry) = σy =

(
0 −i
i 0

)
ρ(Rz) = σz =

(
1 0
0 −1

)
. (60)

One can indeed verify that these square to the identity (a potentially arising phase in a
projective representation could be absorbed by multiplying the matrices with a constant).
One then clearly sees that

2D : ρ(Rx)ρ(Ry)ρ(Rx)
−1ρ(Ry)

−1 = −11 (61)

3D : ρ(Rx)ρ(Ry)ρ(Rx)
−1ρ(Ry)

−1 = 11 (62)

The sign in the first equation signals the presence of a projective representation.

4. The group multiplication should read

(α, g) · (β, h) = (αβω(g, h)ω(1, 1)−1, gh) . (63)

The rest is more or less calculation.

5. Some complex conjugation symbols need to be placed at various places depending on the
type and the position of certain factors. Where they appear should actually be rather
clear when going through the associativity condition and considering the replacement
ρ(g)→ f(g)ρ(g).

8. [?] Majorana chain versus transverse field Ising model

1. The result should be a transverse field Ising model of the form

H = −f
∑
k

Szk − J
∑
k

SykS
y
k+1 . (64)

Specifically, the images of the Hamiltonians discussed in the lecture are

Htrivial = −1

2

∑
k

Szk and Hnon-trivial = −1

2

∑
k

SykS
y
k+1 . (65)

The first Hamiltonian has a disordered (unique) groundstate with Szk = 1 on every site.
The second Hamiltonian has two groundstates, corresponding to a spontaneous breaking
of the Z2 symmetry Sz → −Sz. Remark: Non-local mappings of this type have been used
in various cases in order to classify phases of 1D systems.
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