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Let X be a (compact, Hausdorff) topological space. Define

VectR,C(X ) = {Topological vector bundles on X}
/

isomorphism,

the set of isomorphism classes of real/complex vector bundles on
X .

⊕ gives VectR,C(X ) the structure of a commutative monoid
(group without inverses).

⊗ gives VectR,C(X ) the structure of a commutative rig (ring
without negation), with unit the trivial line bundle.

The assignment X 7→ VectR,C(X ) is a contravariant functor.

Exercise

Prove these assertions.
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Learning to subtract

Let’s take a step back, and discuss subtraction.

Question

Suppose we have a commutative monoid (for example, the natural
numbers). How do we make it into a group?
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The Grothendieck K -construction

Definition

Suppose M is an abelian monoid. Define

K (M) = M ×M
/

∆.

where ∆ is the diagonal submonoid, and the quotient is a quotient
of monoids.

Exercise: show that K (N) ∼= Z, K (Z×) = Q×.

Lemma

K (M) is an abelian group.
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The K -theory of a space

Definition

Let X be .... Define K 0(X ) = K (VectC(X )), the K -theory of X
(resp. KO0(X ) = K (VectR(X ))).

Lemma

The assignment X 7→ K 0(X ) (resp. X 7→ KO0(X )), is a
contravariant functor from (compact, Hausdorff) topological
spaces into commutative rings. In fact, the assignment is
homotopy invariant.
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Exercises

Compute the rings K 0(pt) and KO0(pt).

Show that every complex vector bundle on a circle is trivial.
Conclude K 0(S1) = Z.

What about KO0(S1)?
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The Chern character

Definition

Let V → X be a complex hermitian vector bundle, with a
compatible connection ∇. Then define the Chern character form
Ch(∇) ∈ Ωeven(X ,C) by

Ch(∇) = Tr exp

[
− i

2π
Curv(∇)

]
.

A. Kahle A users guide to K -theory



Vector bundles
Clifford algebras

K -theory and differential operators

Properties of the Chern character

The Chern character form is closed and integral.

For (V ,∇V ), (W ,∇W ),

Ch(∇V⊕W ) = Ch(∇V ) + Ch(∇W ),

Ch(∇V⊗W ) = Ch(∇V ) ∧ Ch(∇W ).

For connections ∇, ∇′, there exists an α ∈ Ωodd(X ) so that

Ch(∇)− Ch(∇′) = dα.

⇒ the Chern character map descends to a homomorphism of
rings

Ch : K 0(X )→ Heven(X ;R).
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Exercises

Prove the assertions on the previous slide.
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K -theory as a cohomology theory?

Question

Can one extend the functors K and KO to define something like
cohomology? It turns out the answer is yes, but in order to do so
one needs somehow to be able to shift degree.
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Definition

We denote by X∗ denote a pointed topological space, and X+ the
union of X with a disjoint basepoint. The smash product of two
pointed topological spaces X∗, Y∗, is defined by

X∗ ∧ Y∗ = (X × Y )
/

(X∗ ∨ Y∗).

The reduced suspension of a pointed topological space X∗ is
defined by

S(X∗) = S1 ∧ X∗.

One writes Sn(X∗) for the n-fold reduced suspension.
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Exercises

Show that:

Sn ∧ Sm ∼= Sn+m,

Sn(X∗) ∼= Sn ∧ X .
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Definition

Let X∗ be a pointed topological space, and i : pt ↪→ X∗ the
canonical inclusion.

The reduced K -theory of the space is defined as

K̃ 0(X∗) := ker i∗ : K 0(X )→ K 0(pt).

for n ∈ Z≥0, define

K̃−n(X∗) := K̃ 0(Sn(X∗)),
K−n(X ) := K̃ 0(Sn(X+)),
K−n(X ,Y ) := K̃ 0(Sn(X/Y )).

One can make similar definitions for KO theory.
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Exercise

Show that:

K 0(X ) ∼= K̃ 0(X+),

K−1(pt) = 0.
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Theorem (Bott periodicity)

Let [H] ∈ K 0(CP1) denote the class of the canonical line bundle.
Then the map K̃ 0(X∗)→ K̃−2(X∗) = K̃ 0(S2(X∗)) defined by

[V ] 7→ ([H]− 1) � [V ]

is an isomorphism. Here � is the reduced exterior product.

Definition

Using periodicity, we define Kn(X ) for positive n.

Remark

There is a similar statement for KO, but with an eightfold
periodicity!
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K -theory as a cohomology theory

K • satisfies all the axioms of an ordinary cohomology theory
except the dimension axiom: periodicity shows K 2n(pt) = Z
for all n.

This makes it a generalised, or extraordinary cohomology
theory.

KO theory is a second example of such, with the values on a
point being eight periodic.

Tensor products extend to make K -theory into a ringed theory.

One may show the Chern character gives an isomorphism of
graded rings

Ch : K •(X )⊗ R→ H(X ;R[u, u−1])•,

where u has degree two.
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Clifford algebras: an interlude in algebra.
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Clifford algebras

Definition

Let V be a real vector space, with inner product (·, ·). Define

Cliff(V ) =
⊕

V⊗n
/
{v ⊗ w + w ⊗ v ∼ −2(v ,w)}.

Define Cliff = Cliff(V )⊗ C. For convenience, we write
Cliffn = Cliff(Rn).

Remarks

Cliff(V ) is a Z/2Z-graded, Z-filtered ring. It is not (graded)
commutative for dim(V ) > 0.
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Exercises

Show that:

Cliff(R) ∼= C,
Cliff(R2) ∼= H.

(as ungraded algebras)

Cliffn−1
∼= Cliffev

n (as algebras)

Show that Gr•(Cliff(V )) =
∧•(V ). Use this to give the

dimension of Cliff(V ) in terms of that of V , and give an
explicit isomorphism (as vector spaces, not rings)
Cliff(V ) ∼=

∧•(V ).
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Classification of complex Clifford algebras

Theorem

There are isomorphisms

Cliff2n
∼= M2n(C), Cliff2n+1

∼= M2n(C)⊕M2n(C).

Remark

This two-periodic classification is another manifestation of Bott
periodicity. There is an eight-periodic classification of real Clifford
algebras.
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Representation theory of Clifford algebras

There is a unique (ungraded) irrep S2n of Cliff2n, and two
inequivalent ungraded irreps S+

2n+1, S−2n+1.

The inclusion Cliffn−1 ↪→ Cliffev
n relates the ungraded

representations theory of Cliffn−1 with the graded
representations of Cliffn:

there is a decomposition S2n
∼= S+

2n ⊕ S−2n under the action of
Cliffev

2n, and there are two inequivalent irreducible graded
Cliff2n modules, S+

2n ⊕ S−2n and S−2n ⊕ S+
2n,

there is a unique irreducible graded Cliff2n+1 module:
S+

2n+1 ⊕ S−2n+1.

There is a similar, eight-periodic discussion of the
representation theory of real Clifford algebras.
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The spin group

write Pin(V ) ⊆ Cliff(V ) for the (Lie) group of units (invertible
elements) in Cliff(V ).

The grading on Cliff(V ) divides the group into two
components.

Denote by Spin(V ) the connected component of the identity
(the even component).

The following exact sequence holds:

1→ Z/2Z→ Spin(V )→ SO(V )→ 1.

The basic spinor modules form complex representations of the
spin group.

When dim(V ) = 2k, the group Spin(V ) has two inequivalent
irreducible complex representations, S(V )±.
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Spinors and the Clifford bundle

A Riemannian manifold is spin if there exists a principal
bundle SpindimX

Spin(X )→ SO(X )→ X .

A spin structure on X is a choice of such a double cover.

Assume X is spin with a chosen spin structure, and to simplify
things, that dimX = 2k. The bundle of spinors is the
associated Z2-graded bundle

S(X ) = S(X )+ ⊕ S(X )− = Spin(X )×Spindim X
S2k .

The Levi-Civita connection induces a connection on Spin(X ).

The bundle of spinors form a Z/2Z module-bundle for the
Clifford bundle Cliff(X )→ X . Any other module bundle
M → X decomposes as M ∼= S(X )⊗ V , where V is a vector
bundle.
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Dirac operators

Let (V ,∇) be a complex hermitian vector bundle with unitary
connection. Then the Dirac operator twisted by V is the first order
differential operator defined by

D(∇) : Γ(S(X )+ ⊗ V )
∇ // Ω1(S(X )+ ⊗ V )

c(·) // Γ(S(X )− ⊗ V ).

In local coordinates, writing ∇ = ∂ + a, one has

D = Γi∂i + Γiai .

The Dirac operator is elliptic (and hence Fredholm) when X is
compact.
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K -theory and differential operators

Fix a graded Hilbert space H = H0 ⊕ H1,

Choose compatible graded actions of Cliffn (and hence, Cliffn)
on H, for all n.

A Fredholm operator f : H0 → H1 is a bounded linear
operator with finite dimensional kernel and co-kernel
(= H1/Im(f )). Denote Fred(H) be the space of all such
operators, with the operator norm topology.

Define Fredk(H) ⊆ Fred(H) those operators that graded
commute with the action of Cliffk .
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The basic topology of Fredk(H)

Theorem

π0Fred2k(H) = Z, where the map is given by the index:

index f = dimCliff2k
ker f − dimCliff2k

coker f ,

for f ∈ Fred2k(H).

Fred2k+1(H) has three connected components: Fred±2k+1(H),
the essentially positive (negative) components, which are
contractible; and Fred∗2k+1(H).
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Fredholm operators and K -theory

The following is the basic theorem relating K -theory and Fredholm
operators.

Theorem

Let X be as before. Then there is an isomorphism of groups
K 0(X ) ∼= [X ,Fred(H)].

Theorem

Fred2k(H) ' ΩFred∗2k−1(H), for k > 0,

Fred∗2k+1(H) ' ΩFred2k(H), for k ≥ 0.

As a result, K−k(X ) ∼= [X ,Fred
(∗)
k (H)].
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A remark on KO

There is a similar statement for KO-theory, relating the KO-groups
to homotopy classes of maps to spaces of Fredholm operators
commuting with the real Clifford algebras. In particular, one has
that KO−1(X ) = [X ,Fred1,R(H)], and the appropriate index in this
case is the dimension of the kernel mod 2.
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Pushforwards

Suppose X is spin, and Riemannian, with a chosen spin
structure, and that dimX = 2k .

Let (V ,∇)→ X be a vector bundle with connection. The
class [V ] ∈ K 0(X ) is independent of the connection.

The Dirac Operator D(V ) is elliptic and Fredholm, so induces
a class [D(V )] ∈ K 0(pt) = Z. This is also independent of the
connection.

The assignment [V ] ∈ K 0(X ) 7→ [D(V )] ∈ K 0(pt), induces a
pushforward map π! : K 0(X )→ K 0(pt) ∼= K−2k(pt).
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The Atiyah-Singer Index theorem

This construction can be extended to families: for a
“Riemannian” submersion f : X → Y with compact, spin
fibres of relative dimension n, one obtains a map
f! : K •(X )→ K •−n(Y ).

Suppose f : X → Y is a Riemannian family with compact,
spin fibres of relative dimension n.

The Atiyah-Singer index theorem states that the diagramme
below commutes:

K •(X )
Â(X/Y )∧Ch//

f!
��

H(X ;R[u, u−1])•

f∗
��

K •−n(Y )
Ch// H(X ;R[u, u−1])•−n
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Said differently, the Chern character does not commute with
push-forward:

Chf! = f∗(Â(X/Y ) ∧ Ch).

In particular, when f : X → pt, one obtains the famous
Atiyah-Singer theorem: for (V ,∇) a hermitian complex vector
bundle with connection,

indexD(∇) =

∫
X
Â(X ) ∧ Ch(∇).
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